--- a/src/HOL/Limits.thy Fri Jun 12 12:00:30 2009 -0700
+++ b/src/HOL/Limits.thy Fri Jun 12 15:46:21 2009 -0700
@@ -471,6 +471,24 @@
shows "\<lbrakk>(f ---> a) net; (g ---> b) net\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x - g x) ---> a - b) net"
by (simp add: diff_minus tendsto_add tendsto_minus)
+lemma tendsto_setsum [tendsto_intros]:
+ fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
+ assumes "\<And>i. i \<in> S \<Longrightarrow> (f i ---> a i) net"
+ shows "((\<lambda>x. \<Sum>i\<in>S. f i x) ---> (\<Sum>i\<in>S. a i)) net"
+proof (cases "finite S")
+ assume "finite S" thus ?thesis using assms
+ proof (induct set: finite)
+ case empty show ?case
+ by (simp add: tendsto_const)
+ next
+ case (insert i F) thus ?case
+ by (simp add: tendsto_add)
+ qed
+next
+ assume "\<not> finite S" thus ?thesis
+ by (simp add: tendsto_const)
+qed
+
lemma (in bounded_linear) tendsto [tendsto_intros]:
"(g ---> a) net \<Longrightarrow> ((\<lambda>x. f (g x)) ---> f a) net"
by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
--- a/src/HOL/SEQ.thy Fri Jun 12 12:00:30 2009 -0700
+++ b/src/HOL/SEQ.thy Fri Jun 12 15:46:21 2009 -0700
@@ -348,23 +348,7 @@
fixes L :: "'a \<Rightarrow> 'b::real_normed_vector"
assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
shows "(\<lambda>m. \<Sum>n\<in>S. X n m) ----> (\<Sum>n\<in>S. L n)"
-proof (cases "finite S")
- case True
- thus ?thesis using n
- proof (induct)
- case empty
- show ?case
- by (simp add: LIMSEQ_const)
- next
- case insert
- thus ?case
- by (simp add: LIMSEQ_add)
- qed
-next
- case False
- thus ?thesis
- by (simp add: LIMSEQ_const)
-qed
+using n unfolding LIMSEQ_conv_tendsto by (rule tendsto_setsum)
lemma LIMSEQ_setprod:
fixes L :: "'a \<Rightarrow> 'b::{real_normed_algebra,comm_ring_1}"