dropped superfluous [code del]s
authorhaftmann
Mon, 12 Jul 2010 08:58:13 +0200
changeset 37765 26bdfb7b680b
parent 37764 3489daf839d5
child 37766 a779f463bae4
dropped superfluous [code del]s
src/HOL/Archimedean_Field.thy
src/HOL/Imperative_HOL/ex/Linked_Lists.thy
src/HOL/Library/Char_ord.thy
src/HOL/Library/ContNotDenum.thy
src/HOL/Library/Dlist.thy
src/HOL/Library/Enum.thy
src/HOL/Library/Fraction_Field.thy
src/HOL/Library/Fset.thy
src/HOL/Library/List_lexord.thy
src/HOL/Library/Multiset.thy
src/HOL/Library/Nat_Infinity.thy
src/HOL/Library/Option_ord.thy
src/HOL/Library/Polynomial.thy
src/HOL/Library/Product_ord.thy
src/HOL/Library/Sublist_Order.thy
src/HOL/Library/Univ_Poly.thy
src/HOL/Matrix/Matrix.thy
src/HOL/NSA/HDeriv.thy
src/HOL/NSA/HLim.thy
src/HOL/NSA/HLog.thy
src/HOL/NSA/HSEQ.thy
src/HOL/NSA/HSeries.thy
src/HOL/NSA/HyperDef.thy
src/HOL/NSA/HyperNat.thy
src/HOL/NSA/NSA.thy
src/HOL/NSA/NSCA.thy
src/HOL/NSA/NSComplex.thy
src/HOL/NSA/Star.thy
src/HOL/NSA/StarDef.thy
src/HOL/Number_Theory/Primes.thy
src/HOL/Old_Number_Theory/Legacy_GCD.thy
src/HOL/Old_Number_Theory/Primes.thy
src/HOL/Product_Type.thy
src/HOL/RealDef.thy
src/HOL/SupInf.thy
src/HOL/ex/Dedekind_Real.thy
src/HOL/ex/Gauge_Integration.thy
src/HOL/ex/Numeral.thy
--- a/src/HOL/Archimedean_Field.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Archimedean_Field.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -143,7 +143,7 @@
 
 definition
   floor :: "'a::archimedean_field \<Rightarrow> int" where
-  [code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
+  "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
 
 notation (xsymbols)
   floor  ("\<lfloor>_\<rfloor>")
@@ -274,7 +274,7 @@
 
 definition
   ceiling :: "'a::archimedean_field \<Rightarrow> int" where
-  [code del]: "ceiling x = - floor (- x)"
+  "ceiling x = - floor (- x)"
 
 notation (xsymbols)
   ceiling  ("\<lceil>_\<rceil>")
--- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -42,7 +42,7 @@
 definition
   traverse :: "'a\<Colon>heap node \<Rightarrow> 'a list Heap"
 where
-[code del]: "traverse = MREC (\<lambda>n. case n of Empty \<Rightarrow> return (Inl [])
+  "traverse = MREC (\<lambda>n. case n of Empty \<Rightarrow> return (Inl [])
                                 | Node x r \<Rightarrow> (do tl \<leftarrow> Ref.lookup r;
                                                   return (Inr tl) done))
                    (\<lambda>n tl xs. case n of Empty \<Rightarrow> undefined
--- a/src/HOL/Library/Char_ord.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Char_ord.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -63,11 +63,11 @@
 begin
 
 definition
-  char_less_eq_def [code del]: "c1 \<le> c2 \<longleftrightarrow> (case c1 of Char n1 m1 \<Rightarrow> case c2 of Char n2 m2 \<Rightarrow>
+  char_less_eq_def: "c1 \<le> c2 \<longleftrightarrow> (case c1 of Char n1 m1 \<Rightarrow> case c2 of Char n2 m2 \<Rightarrow>
     n1 < n2 \<or> n1 = n2 \<and> m1 \<le> m2)"
 
 definition
-  char_less_def [code del]: "c1 < c2 \<longleftrightarrow> (case c1 of Char n1 m1 \<Rightarrow> case c2 of Char n2 m2 \<Rightarrow>
+  char_less_def: "c1 < c2 \<longleftrightarrow> (case c1 of Char n1 m1 \<Rightarrow> case c2 of Char n2 m2 \<Rightarrow>
     n1 < n2 \<or> n1 = n2 \<and> m1 < m2)"
 
 instance
--- a/src/HOL/Library/ContNotDenum.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/ContNotDenum.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -402,7 +402,6 @@
        (f (Suc n)) \<notin> e)
       )"
 
-declare newInt.simps [code del]
 
 subsubsection {* Properties *}
 
--- a/src/HOL/Library/Dlist.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Dlist.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -23,7 +23,7 @@
 text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
 
 definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
-  [code del]: "Dlist xs = Abs_dlist (remdups xs)"
+  "Dlist xs = Abs_dlist (remdups xs)"
 
 lemma distinct_list_of_dlist [simp]:
   "distinct (list_of_dlist dxs)"
--- a/src/HOL/Library/Enum.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Enum.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -149,7 +149,7 @@
 begin
 
 definition
-  [code del]: "enum = map (\<lambda>ys. the o map_of (zip (enum\<Colon>'a list) ys)) (n_lists (length (enum\<Colon>'a\<Colon>enum list)) enum)"
+  "enum = map (\<lambda>ys. the o map_of (zip (enum\<Colon>'a list) ys)) (n_lists (length (enum\<Colon>'a\<Colon>enum list)) enum)"
 
 instance proof
   show "UNIV = set (enum \<Colon> ('a \<Rightarrow> 'b) list)"
@@ -278,7 +278,7 @@
 begin
 
 definition
-  [code del]: "enum = map (split Char) (product enum enum)"
+  "enum = map (split Char) (product enum enum)"
 
 lemma enum_chars [code]:
   "enum = chars"
--- a/src/HOL/Library/Fraction_Field.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Fraction_Field.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -69,7 +69,7 @@
 
 definition
   Fract :: "'a::idom \<Rightarrow> 'a \<Rightarrow> 'a fract" where
-  [code del]: "Fract a b = Abs_fract (fractrel `` {if b = 0 then (0, 1) else (a, b)})"
+  "Fract a b = Abs_fract (fractrel `` {if b = 0 then (0, 1) else (a, b)})"
 
 code_datatype Fract
 
@@ -93,13 +93,13 @@
 begin
 
 definition
-  Zero_fract_def [code, code_unfold]: "0 = Fract 0 1"
+  Zero_fract_def [code_unfold]: "0 = Fract 0 1"
 
 definition
-  One_fract_def [code, code_unfold]: "1 = Fract 1 1"
+  One_fract_def [code_unfold]: "1 = Fract 1 1"
 
 definition
-  add_fract_def [code del]:
+  add_fract_def:
   "q + r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
     fractrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
 
@@ -115,7 +115,7 @@
 qed
 
 definition
-  minus_fract_def [code del]:
+  minus_fract_def:
   "- q = Abs_fract (\<Union>x \<in> Rep_fract q. fractrel `` {(- fst x, snd x)})"
 
 lemma minus_fract [simp, code]: "- Fract a b = Fract (- a) (b::'a::idom)"
@@ -129,7 +129,7 @@
   by (cases "b = 0") (simp_all add: eq_fract)
 
 definition
-  diff_fract_def [code del]: "q - r = q + - (r::'a fract)"
+  diff_fract_def: "q - r = q + - (r::'a fract)"
 
 lemma diff_fract [simp]:
   assumes "b \<noteq> 0" and "d \<noteq> 0"
@@ -137,7 +137,7 @@
   using assms by (simp add: diff_fract_def diff_minus)
 
 definition
-  mult_fract_def [code del]:
+  mult_fract_def:
   "q * r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
     fractrel``{(fst x * fst y, snd x * snd y)})"
 
@@ -236,7 +236,7 @@
 begin
 
 definition
-  inverse_fract_def [code del]:
+  inverse_fract_def:
   "inverse q = Abs_fract (\<Union>x \<in> Rep_fract q.
      fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
 
@@ -250,7 +250,7 @@
 qed
 
 definition
-  divide_fract_def [code del]: "q / r = q * inverse (r:: 'a fract)"
+  divide_fract_def: "q / r = q * inverse (r:: 'a fract)"
 
 lemma divide_fract [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
   by (simp add: divide_fract_def)
@@ -318,12 +318,12 @@
 begin
 
 definition
-  le_fract_def [code del]:
+  le_fract_def:
    "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
       {(fst x * snd y)*(snd x * snd y) \<le> (fst y * snd x)*(snd x * snd y)})"
 
 definition
-  less_fract_def [code del]: "z < (w::'a fract) \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
+  less_fract_def: "z < (w::'a fract) \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
 
 lemma le_fract [simp]:
   assumes "b \<noteq> 0" and "d \<noteq> 0"
--- a/src/HOL/Library/Fset.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Fset.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -124,10 +124,10 @@
 begin
 
 definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" where
-  [simp, code del]: "Inf_fset As = Fset (Inf (image member As))"
+  [simp]: "Inf_fset As = Fset (Inf (image member As))"
 
 definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" where
-  [simp, code del]: "Sup_fset As = Fset (Sup (image member As))"
+  [simp]: "Sup_fset As = Fset (Sup (image member As))"
 
 instance proof
 qed (auto simp add: le_fun_def le_bool_def)
--- a/src/HOL/Library/List_lexord.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/List_lexord.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -62,10 +62,10 @@
 begin
 
 definition
-  [code del]: "(inf \<Colon> 'a list \<Rightarrow> _) = min"
+  "(inf \<Colon> 'a list \<Rightarrow> _) = min"
 
 definition
-  [code del]: "(sup \<Colon> 'a list \<Rightarrow> _) = max"
+  "(sup \<Colon> 'a list \<Rightarrow> _) = max"
 
 instance
   by intro_classes
--- a/src/HOL/Library/Multiset.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Multiset.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -978,11 +978,11 @@
 subsubsection {* Well-foundedness *}
 
 definition mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
-  [code del]: "mult1 r = {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
+  "mult1 r = {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
       (\<forall>b. b :# K --> (b, a) \<in> r)}"
 
 definition mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
-  [code del]: "mult r = (mult1 r)\<^sup>+"
+  "mult r = (mult1 r)\<^sup>+"
 
 lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
 by (simp add: mult1_def)
@@ -1498,7 +1498,7 @@
   by auto
 
 definition "ms_strict = mult pair_less"
-definition [code del]: "ms_weak = ms_strict \<union> Id"
+definition "ms_weak = ms_strict \<union> Id"
 
 lemma ms_reduction_pair: "reduction_pair (ms_strict, ms_weak)"
 unfolding reduction_pair_def ms_strict_def ms_weak_def pair_less_def
--- a/src/HOL/Library/Nat_Infinity.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Nat_Infinity.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -126,7 +126,7 @@
 begin
 
 definition
-  [code del]: "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))"
+  "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))"
 
 lemma plus_inat_simps [simp, code]:
   "Fin m + Fin n = Fin (m + n)"
@@ -177,7 +177,7 @@
 begin
 
 definition
-  times_inat_def [code del]:
+  times_inat_def:
   "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow>
     (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))"
 
@@ -238,11 +238,11 @@
 begin
 
 definition
-  [code del]: "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False)
+  "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False)
     | \<infinity> \<Rightarrow> True)"
 
 definition
-  [code del]: "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True)
+  "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True)
     | \<infinity> \<Rightarrow> False)"
 
 lemma inat_ord_simps [simp]:
--- a/src/HOL/Library/Option_ord.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Option_ord.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -12,10 +12,10 @@
 begin
 
 definition less_eq_option where
-  [code del]: "x \<le> y \<longleftrightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> x \<le> y))"
+  "x \<le> y \<longleftrightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> x \<le> y))"
 
 definition less_option where
-  [code del]: "x < y \<longleftrightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> x < y))"
+  "x < y \<longleftrightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> x < y))"
 
 lemma less_eq_option_None [simp]: "None \<le> x"
   by (simp add: less_eq_option_def)
--- a/src/HOL/Library/Polynomial.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Polynomial.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -98,7 +98,7 @@
 definition
   pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
 where
-  [code del]: "pCons a p = Abs_poly (nat_case a (coeff p))"
+  "pCons a p = Abs_poly (nat_case a (coeff p))"
 
 syntax
   "_poly" :: "args \<Rightarrow> 'a poly"  ("[:(_):]")
@@ -209,7 +209,7 @@
 function
   poly_rec :: "'b \<Rightarrow> ('a::zero \<Rightarrow> 'a poly \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a poly \<Rightarrow> 'b"
 where
-  poly_rec_pCons_eq_if [simp del, code del]:
+  poly_rec_pCons_eq_if [simp del]:
     "poly_rec z f (pCons a p) = f a p (if p = 0 then z else poly_rec z f p)"
 by (case_tac x, rename_tac q, case_tac q, auto)
 
@@ -266,7 +266,7 @@
 begin
 
 definition
-  plus_poly_def [code del]:
+  plus_poly_def:
     "p + q = Abs_poly (\<lambda>n. coeff p n + coeff q n)"
 
 lemma Poly_add:
@@ -305,11 +305,11 @@
 begin
 
 definition
-  uminus_poly_def [code del]:
+  uminus_poly_def:
     "- p = Abs_poly (\<lambda>n. - coeff p n)"
 
 definition
-  minus_poly_def [code del]:
+  minus_poly_def:
     "p - q = Abs_poly (\<lambda>n. coeff p n - coeff q n)"
 
 lemma Poly_minus:
@@ -512,7 +512,7 @@
 begin
 
 definition
-  times_poly_def [code del]:
+  times_poly_def:
     "p * q = poly_rec 0 (\<lambda>a p pq. smult a q + pCons 0 pq) p"
 
 lemma mult_poly_0_left: "(0::'a poly) * q = 0"
@@ -736,20 +736,16 @@
 begin
 
 definition
-  [code del]:
-    "x < y \<longleftrightarrow> pos_poly (y - x)"
+  "x < y \<longleftrightarrow> pos_poly (y - x)"
 
 definition
-  [code del]:
-    "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)"
+  "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)"
 
 definition
-  [code del]:
-    "abs (x::'a poly) = (if x < 0 then - x else x)"
+  "abs (x::'a poly) = (if x < 0 then - x else x)"
 
 definition
-  [code del]:
-    "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
+  "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
 
 instance proof
   fix x y :: "'a poly"
@@ -818,7 +814,6 @@
 definition
   pdivmod_rel :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> bool"
 where
-  [code del]:
   "pdivmod_rel x y q r \<longleftrightarrow>
     x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)"
 
@@ -943,10 +938,10 @@
 begin
 
 definition div_poly where
-  [code del]: "x div y = (THE q. \<exists>r. pdivmod_rel x y q r)"
+  "x div y = (THE q. \<exists>r. pdivmod_rel x y q r)"
 
 definition mod_poly where
-  [code del]: "x mod y = (THE r. \<exists>q. pdivmod_rel x y q r)"
+  "x mod y = (THE r. \<exists>q. pdivmod_rel x y q r)"
 
 lemma div_poly_eq:
   "pdivmod_rel x y q r \<Longrightarrow> x div y = q"
@@ -1133,7 +1128,7 @@
 by (relation "measure (\<lambda>(x, y). if y = 0 then 0 else Suc (degree y))")
    (auto dest: degree_mod_less)
 
-declare poly_gcd.simps [simp del, code del]
+declare poly_gcd.simps [simp del]
 
 lemma poly_gcd_dvd1 [iff]: "poly_gcd x y dvd x"
   and poly_gcd_dvd2 [iff]: "poly_gcd x y dvd y"
@@ -1287,7 +1282,7 @@
 
 definition
   synthetic_divmod :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly \<times> 'a"
-where [code del]:
+where
   "synthetic_divmod p c =
     poly_rec (0, 0) (\<lambda>a p (q, r). (pCons r q, a + c * r)) p"
 
@@ -1442,7 +1437,6 @@
 definition
   order :: "'a::idom \<Rightarrow> 'a poly \<Rightarrow> nat"
 where
-  [code del]:
   "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
 
 lemma coeff_linear_power:
@@ -1514,7 +1508,7 @@
 instantiation poly :: ("{zero,eq}") eq
 begin
 
-definition [code del]:
+definition
   "eq_class.eq (p::'a poly) q \<longleftrightarrow> p = q"
 
 instance
@@ -1574,7 +1568,7 @@
 definition
   pdivmod :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly"
 where
-  [code del]: "pdivmod x y = (x div y, x mod y)"
+  "pdivmod x y = (x div y, x mod y)"
 
 lemma div_poly_code [code]: "x div y = fst (pdivmod x y)"
   unfolding pdivmod_def by simp
--- a/src/HOL/Library/Product_ord.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Product_ord.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -12,10 +12,10 @@
 begin
 
 definition
-  prod_le_def [code del]: "x \<le> y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x \<le> snd y"
+  prod_le_def: "x \<le> y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x \<le> snd y"
 
 definition
-  prod_less_def [code del]: "x < y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x < snd y"
+  prod_less_def: "x < y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x < snd y"
 
 instance ..
 
--- a/src/HOL/Library/Sublist_Order.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Sublist_Order.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -26,7 +26,7 @@
   | take: "ys \<le> xs \<Longrightarrow> x # ys \<le> x # xs"
 
 definition
-  [code del]: "(xs \<Colon> 'a list) < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs"
+  "(xs \<Colon> 'a list) < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs"
 
 instance proof qed
 
--- a/src/HOL/Library/Univ_Poly.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Library/Univ_Poly.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -71,7 +71,7 @@
 
 definition (in semiring_0)
   divides :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"  (infixl "divides" 70) where
-  [code del]: "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"
+  "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"
 
     --{*order of a polynomial*}
 definition (in ring_1) order :: "'a => 'a list => nat" where
--- a/src/HOL/Matrix/Matrix.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Matrix/Matrix.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -776,7 +776,7 @@
 instantiation matrix :: (zero) zero
 begin
 
-definition zero_matrix_def [code del]: "0 = Abs_matrix (\<lambda>j i. 0)"
+definition zero_matrix_def: "0 = Abs_matrix (\<lambda>j i. 0)"
 
 instance ..
 
@@ -1459,9 +1459,9 @@
 instantiation matrix :: ("{lattice, zero}") lattice
 begin
 
-definition [code del]: "inf = combine_matrix inf"
+definition "inf = combine_matrix inf"
 
-definition [code del]: "sup = combine_matrix sup"
+definition "sup = combine_matrix sup"
 
 instance
   by default (auto simp add: inf_le1 inf_le2 le_infI le_matrix_def inf_matrix_def sup_matrix_def)
@@ -1472,7 +1472,7 @@
 begin
 
 definition
-  plus_matrix_def [code del]: "A + B = combine_matrix (op +) A B"
+  plus_matrix_def: "A + B = combine_matrix (op +) A B"
 
 instance ..
 
@@ -1482,7 +1482,7 @@
 begin
 
 definition
-  minus_matrix_def [code del]: "- A = apply_matrix uminus A"
+  minus_matrix_def: "- A = apply_matrix uminus A"
 
 instance ..
 
@@ -1492,7 +1492,7 @@
 begin
 
 definition
-  diff_matrix_def [code del]: "A - B = combine_matrix (op -) A B"
+  diff_matrix_def: "A - B = combine_matrix (op -) A B"
 
 instance ..
 
@@ -1502,7 +1502,7 @@
 begin
 
 definition
-  times_matrix_def [code del]: "A * B = mult_matrix (op *) (op +) A B"
+  times_matrix_def: "A * B = mult_matrix (op *) (op +) A B"
 
 instance ..
 
@@ -1512,7 +1512,7 @@
 begin
 
 definition
-  abs_matrix_def [code del]: "abs (A \<Colon> 'a matrix) = sup A (- A)"
+  abs_matrix_def: "abs (A \<Colon> 'a matrix) = sup A (- A)"
 
 instance ..
 
--- a/src/HOL/NSA/HDeriv.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HDeriv.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -26,7 +26,7 @@
 
 definition
   increment :: "[real=>real,real,hypreal] => hypreal" where
-  [code del]: "increment f x h = (@inc. f NSdifferentiable x &
+  "increment f x h = (@inc. f NSdifferentiable x &
            inc = ( *f* f)(hypreal_of_real x + h) - hypreal_of_real (f x))"
 
 
--- a/src/HOL/NSA/HLim.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HLim.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -16,18 +16,18 @@
 definition
   NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
             ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where
-  [code del]: "f -- a --NS> L =
+  "f -- a --NS> L =
     (\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))"
 
 definition
   isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
     --{*NS definition dispenses with limit notions*}
-  [code del]: "isNSCont f a = (\<forall>y. y @= star_of a -->
+  "isNSCont f a = (\<forall>y. y @= star_of a -->
          ( *f* f) y @= star_of (f a))"
 
 definition
   isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
-  [code del]: "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
+  "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
 
 
 subsection {* Limits of Functions *}
--- a/src/HOL/NSA/HLog.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HLog.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -20,11 +20,11 @@
 
 definition
   powhr  :: "[hypreal,hypreal] => hypreal"     (infixr "powhr" 80) where
-  [transfer_unfold, code del]: "x powhr a = starfun2 (op powr) x a"
+  [transfer_unfold]: "x powhr a = starfun2 (op powr) x a"
   
 definition
   hlog :: "[hypreal,hypreal] => hypreal" where
-  [transfer_unfold, code del]: "hlog a x = starfun2 log a x"
+  [transfer_unfold]: "hlog a x = starfun2 log a x"
 
 lemma powhr: "(star_n X) powhr (star_n Y) = star_n (%n. (X n) powr (Y n))"
 by (simp add: powhr_def starfun2_star_n)
--- a/src/HOL/NSA/HSEQ.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HSEQ.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -16,7 +16,7 @@
   NSLIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
     ("((_)/ ----NS> (_))" [60, 60] 60) where
     --{*Nonstandard definition of convergence of sequence*}
-  [code del]: "X ----NS> L = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
+  "X ----NS> L = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
 
 definition
   nslim :: "(nat => 'a::real_normed_vector) => 'a" where
@@ -31,12 +31,12 @@
 definition
   NSBseq :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Nonstandard definition for bounded sequence*}
-  [code del]: "NSBseq X = (\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite)"
+  "NSBseq X = (\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite)"
 
 definition
   NSCauchy :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Nonstandard definition*}
-  [code del]: "NSCauchy X = (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. ( *f* X) M \<approx> ( *f* X) N)"
+  "NSCauchy X = (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. ( *f* X) M \<approx> ( *f* X) N)"
 
 subsection {* Limits of Sequences *}
 
--- a/src/HOL/NSA/HSeries.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HSeries.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -13,7 +13,7 @@
 
 definition
   sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" where
-  [code del]: "sumhr = 
+  "sumhr = 
       (%(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N)"
 
 definition
@@ -22,7 +22,7 @@
 
 definition
   NSsummable :: "(nat=>real) => bool" where
-  [code del]: "NSsummable f = (\<exists>s. f NSsums s)"
+  "NSsummable f = (\<exists>s. f NSsums s)"
 
 definition
   NSsuminf   :: "(nat=>real) => real" where
--- a/src/HOL/NSA/HyperDef.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HyperDef.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -45,7 +45,7 @@
 begin
 
 definition
-  star_scaleR_def [transfer_unfold, code del]: "scaleR r \<equiv> *f* (scaleR r)"
+  star_scaleR_def [transfer_unfold]: "scaleR r \<equiv> *f* (scaleR r)"
 
 instance ..
 
@@ -111,7 +111,7 @@
 
 definition
   of_hypreal :: "hypreal \<Rightarrow> 'a::real_algebra_1 star" where
-  [transfer_unfold, code del]: "of_hypreal = *f* of_real"
+  [transfer_unfold]: "of_hypreal = *f* of_real"
 
 lemma Standard_of_hypreal [simp]:
   "r \<in> Standard \<Longrightarrow> of_hypreal r \<in> Standard"
@@ -435,7 +435,7 @@
 subsection{*Powers with Hypernatural Exponents*}
 
 definition pow :: "['a::power star, nat star] \<Rightarrow> 'a star" (infixr "pow" 80) where
-  hyperpow_def [transfer_unfold, code del]: "R pow N = ( *f2* op ^) R N"
+  hyperpow_def [transfer_unfold]: "R pow N = ( *f2* op ^) R N"
   (* hypernatural powers of hyperreals *)
 
 lemma Standard_hyperpow [simp]:
--- a/src/HOL/NSA/HyperNat.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/HyperNat.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -19,7 +19,7 @@
 
 definition
   hSuc :: "hypnat => hypnat" where
-  hSuc_def [transfer_unfold, code del]: "hSuc = *f* Suc"
+  hSuc_def [transfer_unfold]: "hSuc = *f* Suc"
 
 subsection{*Properties Transferred from Naturals*}
 
@@ -366,7 +366,7 @@
 
 definition
   of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where
-  of_hypnat_def [transfer_unfold, code del]: "of_hypnat = *f* of_nat"
+  of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"
 
 lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
 by transfer (rule of_nat_0)
--- a/src/HOL/NSA/NSA.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/NSA.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -15,15 +15,15 @@
 
 definition
   Infinitesimal  :: "('a::real_normed_vector) star set" where
-  [code del]: "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}"
+  "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}"
 
 definition
   HFinite :: "('a::real_normed_vector) star set" where
-  [code del]: "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
+  "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
 
 definition
   HInfinite :: "('a::real_normed_vector) star set" where
-  [code del]: "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
+  "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
 
 definition
   approx :: "['a::real_normed_vector star, 'a star] => bool"  (infixl "@=" 50) where
@@ -56,7 +56,7 @@
 
 definition
   scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" where
-  [transfer_unfold, code del]: "scaleHR = starfun2 scaleR"
+  [transfer_unfold]: "scaleHR = starfun2 scaleR"
 
 lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard"
 by (simp add: hnorm_def)
--- a/src/HOL/NSA/NSCA.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/NSCA.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -16,7 +16,7 @@
 
 definition --{* standard part map*}
   stc :: "hcomplex => hcomplex" where 
-  [code del]: "stc x = (SOME r. x \<in> HFinite & r:SComplex & r @= x)"
+  "stc x = (SOME r. x \<in> HFinite & r:SComplex & r @= x)"
 
 
 subsection{*Closure Laws for SComplex, the Standard Complex Numbers*}
--- a/src/HOL/NSA/NSComplex.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/NSComplex.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -25,11 +25,11 @@
 
 definition
   hRe :: "hcomplex => hypreal" where
-  [code del]: "hRe = *f* Re"
+  "hRe = *f* Re"
 
 definition
   hIm :: "hcomplex => hypreal" where
-  [code del]: "hIm = *f* Im"
+  "hIm = *f* Im"
 
 
   (*------ imaginary unit ----------*)
@@ -42,22 +42,22 @@
 
 definition
   hcnj :: "hcomplex => hcomplex" where
-  [code del]: "hcnj = *f* cnj"
+  "hcnj = *f* cnj"
 
   (*------------ Argand -------------*)
 
 definition
   hsgn :: "hcomplex => hcomplex" where
-  [code del]: "hsgn = *f* sgn"
+  "hsgn = *f* sgn"
 
 definition
   harg :: "hcomplex => hypreal" where
-  [code del]: "harg = *f* arg"
+  "harg = *f* arg"
 
 definition
   (* abbreviation for (cos a + i sin a) *)
   hcis :: "hypreal => hcomplex" where
-  [code del]:"hcis = *f* cis"
+  "hcis = *f* cis"
 
   (*----- injection from hyperreals -----*)
 
@@ -68,16 +68,16 @@
 definition
   (* abbreviation for r*(cos a + i sin a) *)
   hrcis :: "[hypreal, hypreal] => hcomplex" where
-  [code del]: "hrcis = *f2* rcis"
+  "hrcis = *f2* rcis"
 
   (*------------ e ^ (x + iy) ------------*)
 definition
   hexpi :: "hcomplex => hcomplex" where
-  [code del]: "hexpi = *f* expi"
+  "hexpi = *f* expi"
 
 definition
   HComplex :: "[hypreal,hypreal] => hcomplex" where
-  [code del]: "HComplex = *f2* Complex"
+  "HComplex = *f2* Complex"
 
 lemmas hcomplex_defs [transfer_unfold] =
   hRe_def hIm_def iii_def hcnj_def hsgn_def harg_def hcis_def
--- a/src/HOL/NSA/Star.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/Star.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -17,12 +17,12 @@
 
 definition
   InternalSets :: "'a star set set" where
-  [code del]: "InternalSets = {X. \<exists>As. X = *sn* As}"
+  "InternalSets = {X. \<exists>As. X = *sn* As}"
 
 definition
   (* nonstandard extension of function *)
   is_starext  :: "['a star => 'a star, 'a => 'a] => bool" where
-  [code del]: "is_starext F f = (\<forall>x y. \<exists>X \<in> Rep_star(x). \<exists>Y \<in> Rep_star(y).
+  "is_starext F f = (\<forall>x y. \<exists>X \<in> Rep_star(x). \<exists>Y \<in> Rep_star(y).
                         ((y = (F x)) = ({n. Y n = f(X n)} : FreeUltrafilterNat)))"
 
 definition
@@ -32,7 +32,7 @@
 
 definition
   InternalFuns :: "('a star => 'b star) set" where
-  [code del]:"InternalFuns = {X. \<exists>F. X = *fn* F}"
+  "InternalFuns = {X. \<exists>F. X = *fn* F}"
 
 
 (*--------------------------------------------------------
--- a/src/HOL/NSA/StarDef.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/NSA/StarDef.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -290,7 +290,7 @@
 subsection {* Internal predicates *}
 
 definition unstar :: "bool star \<Rightarrow> bool" where
-  [code del]: "unstar b \<longleftrightarrow> b = star_of True"
+  "unstar b \<longleftrightarrow> b = star_of True"
 
 lemma unstar_star_n: "unstar (star_n P) = ({n. P n} \<in> \<U>)"
 by (simp add: unstar_def star_of_def star_n_eq_iff)
@@ -431,7 +431,7 @@
 begin
 
 definition
-  star_zero_def [code del]:    "0 \<equiv> star_of 0"
+  star_zero_def:    "0 \<equiv> star_of 0"
 
 instance ..
 
@@ -441,7 +441,7 @@
 begin
 
 definition
-  star_one_def [code del]:     "1 \<equiv> star_of 1"
+  star_one_def:     "1 \<equiv> star_of 1"
 
 instance ..
 
@@ -451,7 +451,7 @@
 begin
 
 definition
-  star_add_def [code del]:     "(op +) \<equiv> *f2* (op +)"
+  star_add_def:     "(op +) \<equiv> *f2* (op +)"
 
 instance ..
 
@@ -461,7 +461,7 @@
 begin
 
 definition
-  star_mult_def [code del]:    "(op *) \<equiv> *f2* (op *)"
+  star_mult_def:    "(op *) \<equiv> *f2* (op *)"
 
 instance ..
 
@@ -471,7 +471,7 @@
 begin
 
 definition
-  star_minus_def [code del]:   "uminus \<equiv> *f* uminus"
+  star_minus_def:   "uminus \<equiv> *f* uminus"
 
 instance ..
 
@@ -481,7 +481,7 @@
 begin
 
 definition
-  star_diff_def [code del]:    "(op -) \<equiv> *f2* (op -)"
+  star_diff_def:    "(op -) \<equiv> *f2* (op -)"
 
 instance ..
 
--- a/src/HOL/Number_Theory/Primes.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Number_Theory/Primes.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -45,7 +45,7 @@
 definition
   prime_nat :: "nat \<Rightarrow> bool"
 where
-  [code del]: "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
+  "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
 
 instance proof qed
 
@@ -58,7 +58,7 @@
 definition
   prime_int :: "int \<Rightarrow> bool"
 where
-  [code del]: "prime_int p = prime (nat p)"
+  "prime_int p = prime (nat p)"
 
 instance proof qed
 
--- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -17,7 +17,7 @@
 
 definition
   is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where -- {* @{term gcd} as a relation *}
-  [code del]: "is_gcd m n p \<longleftrightarrow> p dvd m \<and> p dvd n \<and>
+  "is_gcd m n p \<longleftrightarrow> p dvd m \<and> p dvd n \<and>
     (\<forall>d. d dvd m \<longrightarrow> d dvd n \<longrightarrow> d dvd p)"
 
 text {* Uniqueness *}
--- a/src/HOL/Old_Number_Theory/Primes.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Old_Number_Theory/Primes.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -15,7 +15,7 @@
 
 definition
   prime :: "nat \<Rightarrow> bool" where
-  [code del]: "prime p \<longleftrightarrow> (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
+  "prime p \<longleftrightarrow> (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
 
 
 lemma two_is_prime: "prime 2"
--- a/src/HOL/Product_Type.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/Product_Type.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -829,7 +829,7 @@
 *}
 
 definition prod_fun :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
-  [code del]: "prod_fun f g = (\<lambda>(x, y). (f x, g y))"
+  "prod_fun f g = (\<lambda>(x, y). (f x, g y))"
 
 lemma prod_fun [simp, code]: "prod_fun f g (a, b) = (f a, g b)"
   by (simp add: prod_fun_def)
--- a/src/HOL/RealDef.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/RealDef.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -751,7 +751,7 @@
 begin
 
 definition
-  "(number_of x :: real) = of_int x"
+  [code del]: "(number_of x :: real) = of_int x"
 
 instance proof
 qed (rule number_of_real_def)
@@ -1498,8 +1498,6 @@
 
 subsection{*Numerals and Arithmetic*}
 
-declare number_of_real_def [code del]
-
 lemma [code_unfold_post]:
   "number_of k = real_of_int (number_of k)"
   unfolding number_of_is_id number_of_real_def ..
--- a/src/HOL/SupInf.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/SupInf.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -9,7 +9,7 @@
 instantiation real :: Sup 
 begin
 definition
-  Sup_real_def [code del]: "Sup X == (LEAST z::real. \<forall>x\<in>X. x\<le>z)"
+  Sup_real_def: "Sup X == (LEAST z::real. \<forall>x\<in>X. x\<le>z)"
 
 instance ..
 end
@@ -17,7 +17,7 @@
 instantiation real :: Inf 
 begin
 definition
-  Inf_real_def [code del]: "Inf (X::real set) == - (Sup (uminus ` X))"
+  Inf_real_def: "Inf (X::real set) == - (Sup (uminus ` X))"
 
 instance ..
 end
--- a/src/HOL/ex/Dedekind_Real.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/ex/Dedekind_Real.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -19,7 +19,7 @@
 
 definition
   cut :: "rat set => bool" where
-  [code del]: "cut A = ({} \<subset> A &
+  "cut A = ({} \<subset> A &
             A < {r. 0 < r} &
             (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))"
 
@@ -49,7 +49,7 @@
 
 definition
   psup :: "preal set => preal" where
-  [code del]: "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
+  "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
 
 definition
   add_set :: "[rat set,rat set] => rat set" where
@@ -57,7 +57,7 @@
 
 definition
   diff_set :: "[rat set,rat set] => rat set" where
-  [code del]: "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
+  "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
 
 definition
   mult_set :: "[rat set,rat set] => rat set" where
@@ -65,17 +65,17 @@
 
 definition
   inverse_set :: "rat set => rat set" where
-  [code del]: "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
+  "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
 
 instantiation preal :: "{ord, plus, minus, times, inverse, one}"
 begin
 
 definition
-  preal_less_def [code del]:
+  preal_less_def:
     "R < S == Rep_preal R < Rep_preal S"
 
 definition
-  preal_le_def [code del]:
+  preal_le_def:
     "R \<le> S == Rep_preal R \<subseteq> Rep_preal S"
 
 definition
@@ -1162,7 +1162,7 @@
 
 definition
   realrel   ::  "((preal * preal) * (preal * preal)) set" where
-  [code del]: "realrel = {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
+  "realrel = {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
 
 typedef (Real)  real = "UNIV//realrel"
   by (auto simp add: quotient_def)
@@ -1170,46 +1170,46 @@
 definition
   (** these don't use the overloaded "real" function: users don't see them **)
   real_of_preal :: "preal => real" where
-  [code del]: "real_of_preal m = Abs_Real (realrel `` {(m + 1, 1)})"
+  "real_of_preal m = Abs_Real (realrel `` {(m + 1, 1)})"
 
 instantiation real :: "{zero, one, plus, minus, uminus, times, inverse, ord, abs, sgn}"
 begin
 
 definition
-  real_zero_def [code del]: "0 = Abs_Real(realrel``{(1, 1)})"
+  real_zero_def: "0 = Abs_Real(realrel``{(1, 1)})"
 
 definition
-  real_one_def [code del]: "1 = Abs_Real(realrel``{(1 + 1, 1)})"
+  real_one_def: "1 = Abs_Real(realrel``{(1 + 1, 1)})"
 
 definition
-  real_add_def [code del]: "z + w =
+  real_add_def: "z + w =
        contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
                  { Abs_Real(realrel``{(x+u, y+v)}) })"
 
 definition
-  real_minus_def [code del]: "- r =  contents (\<Union>(x,y) \<in> Rep_Real(r). { Abs_Real(realrel``{(y,x)}) })"
+  real_minus_def: "- r =  contents (\<Union>(x,y) \<in> Rep_Real(r). { Abs_Real(realrel``{(y,x)}) })"
 
 definition
-  real_diff_def [code del]: "r - (s::real) = r + - s"
+  real_diff_def: "r - (s::real) = r + - s"
 
 definition
-  real_mult_def [code del]:
+  real_mult_def:
     "z * w =
        contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
                  { Abs_Real(realrel``{(x*u + y*v, x*v + y*u)}) })"
 
 definition
-  real_inverse_def [code del]: "inverse (R::real) = (THE S. (R = 0 & S = 0) | S * R = 1)"
+  real_inverse_def: "inverse (R::real) = (THE S. (R = 0 & S = 0) | S * R = 1)"
 
 definition
-  real_divide_def [code del]: "R / (S::real) = R * inverse S"
+  real_divide_def: "R / (S::real) = R * inverse S"
 
 definition
-  real_le_def [code del]: "z \<le> (w::real) \<longleftrightarrow>
+  real_le_def: "z \<le> (w::real) \<longleftrightarrow>
     (\<exists>x y u v. x+v \<le> u+y & (x,y) \<in> Rep_Real z & (u,v) \<in> Rep_Real w)"
 
 definition
-  real_less_def [code del]: "x < (y\<Colon>real) \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
+  real_less_def: "x < (y\<Colon>real) \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
 
 definition
   real_abs_def:  "abs (r::real) = (if r < 0 then - r else r)"
@@ -1656,7 +1656,7 @@
 begin
 
 definition
-  real_number_of_def [code del]: "(number_of w :: real) = of_int w"
+  real_number_of_def: "(number_of w :: real) = of_int w"
 
 instance
   by intro_classes (simp add: real_number_of_def)
--- a/src/HOL/ex/Gauge_Integration.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/ex/Gauge_Integration.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -28,7 +28,7 @@
 
 definition
   gauge :: "[real set, real => real] => bool" where
-  [code del]: "gauge E g = (\<forall>x\<in>E. 0 < g(x))"
+  "gauge E g = (\<forall>x\<in>E. 0 < g(x))"
 
 
 subsection {* Gauge-fine divisions *}
@@ -259,7 +259,7 @@
 
 definition
   Integral :: "[(real*real),real=>real,real] => bool" where
-  [code del]: "Integral = (%(a,b) f k. \<forall>e > 0.
+  "Integral = (%(a,b) f k. \<forall>e > 0.
                                (\<exists>\<delta>. gauge {a .. b} \<delta> &
                                (\<forall>D. fine \<delta> (a,b) D -->
                                          \<bar>rsum D f - k\<bar> < e)))"
--- a/src/HOL/ex/Numeral.thy	Mon Jul 12 08:58:12 2010 +0200
+++ b/src/HOL/ex/Numeral.thy	Mon Jul 12 08:58:13 2010 +0200
@@ -106,16 +106,16 @@
 begin
 
 definition plus_num :: "num \<Rightarrow> num \<Rightarrow> num" where
-  [code del]: "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
+  "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
 
 definition times_num :: "num \<Rightarrow> num \<Rightarrow> num" where
-  [code del]: "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
+  "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
 
 definition less_eq_num :: "num \<Rightarrow> num \<Rightarrow> bool" where
-  [code del]: "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
+  "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
 
 definition less_num :: "num \<Rightarrow> num \<Rightarrow> bool" where
-  [code del]: "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
+  "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
 
 instance ..
 
@@ -761,10 +761,10 @@
 lemmas [code_unfold] = Pls_def [symmetric] Mns_def [symmetric]
 
 definition sub :: "num \<Rightarrow> num \<Rightarrow> int" where
-  [simp, code del]: "sub m n = (of_num m - of_num n)"
+  [simp]: "sub m n = (of_num m - of_num n)"
 
 definition dup :: "int \<Rightarrow> int" where
-  [code del]: "dup k = 2 * k"
+  "dup k = 2 * k"
 
 lemma Dig_sub [code]:
   "sub One One = 0"