--- a/src/HOL/Finite_Set.thy Sun Sep 04 06:27:59 2011 -0700
+++ b/src/HOL/Finite_Set.thy Mon Sep 05 19:18:38 2011 +0200
@@ -486,22 +486,9 @@
end
-instance unit :: finite proof
-qed (simp add: UNIV_unit)
-
-instance bool :: finite proof
-qed (simp add: UNIV_bool)
-
instance prod :: (finite, finite) finite proof
qed (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite)
-lemma finite_option_UNIV [simp]:
- "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
- by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
-
-instance option :: (finite) finite proof
-qed (simp add: UNIV_option_conv)
-
lemma inj_graph: "inj (%f. {(x, y). y = f x})"
by (rule inj_onI, auto simp add: set_eq_iff fun_eq_iff)
@@ -519,9 +506,22 @@
qed
qed
+instance bool :: finite proof
+qed (simp add: UNIV_bool)
+
+instance unit :: finite proof
+qed (simp add: UNIV_unit)
+
instance sum :: (finite, finite) finite proof
qed (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite)
+lemma finite_option_UNIV [simp]:
+ "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
+ by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
+
+instance option :: (finite) finite proof
+qed (simp add: UNIV_option_conv)
+
subsection {* A basic fold functional for finite sets *}
--- a/src/HOL/Nominal/nominal_permeq.ML Sun Sep 04 06:27:59 2011 -0700
+++ b/src/HOL/Nominal/nominal_permeq.ML Mon Sep 05 19:18:38 2011 +0200
@@ -130,7 +130,7 @@
case redex of
(* case pi o f == (%x. pi o (f ((rev pi)o x))) *)
(Const("Nominal.perm",_) $ pi $ f) =>
- (if (applicable_fun f) then SOME perm_fun_def else NONE)
+ (if applicable_fun f then SOME perm_fun_def else NONE)
| _ => NONE
end