Example for using the generalized version of nominal_inductive.
--- a/src/HOL/Nominal/Examples/W.thy Tue Oct 21 21:20:46 2008 +0200
+++ b/src/HOL/Nominal/Examples/W.thy Tue Oct 21 21:22:02 2008 +0200
@@ -1,9 +1,317 @@
(* "$Id$" *)
theory W
-imports "Nominal"
+imports Nominal
begin
-text {* stub until a cleaned-up version will appear here *}
+text {* Example for strong induction rules avoiding sets of atoms. *}
+
+atom_decl tvar var
+
+abbreviation
+ "difference_list" :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" ("_ - _" [60,60] 60)
+where
+ "xs - ys \<equiv> [x \<leftarrow> xs. x\<notin>set ys]"
+
+lemma difference_eqvt_tvar[eqvt]:
+ fixes pi::"tvar prm"
+ and Xs Ys::"tvar list"
+ shows "pi\<bullet>(Xs - Ys) = (pi\<bullet>Xs) - (pi\<bullet>Ys)"
+by (induct Xs) (simp_all add: eqvts)
+
+lemma difference_fresh:
+ fixes X::"tvar"
+ and Xs Ys::"tvar list"
+ assumes a: "X\<in>set Ys"
+ shows "X\<sharp>(Xs - Ys)"
+using a
+by (induct Xs) (auto simp add: fresh_list_nil fresh_list_cons fresh_atm)
+
+nominal_datatype ty =
+ TVar "tvar"
+ | Fun "ty" "ty" ("_\<rightarrow>_" [100,100] 100)
+
+nominal_datatype tyS =
+ Ty "ty"
+ | ALL "\<guillemotleft>tvar\<guillemotright>tyS" ("\<forall>[_]._" [100,100] 100)
+
+nominal_datatype trm =
+ Var "var"
+ | App "trm" "trm"
+ | Lam "\<guillemotleft>var\<guillemotright>trm" ("Lam [_]._" [100,100] 100)
+ | Let "\<guillemotleft>var\<guillemotright>trm" "trm"
+
+abbreviation
+ LetBe :: "var \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm" ("Let _ be _ in _" [100,100,100] 100)
+where
+ "Let x be t1 in t2 \<equiv> trm.Let x t2 t1"
+
+types
+ Ctxt = "(var\<times>tyS) list"
+
+text {* free type variables *}
+consts
+ ftv :: "'a \<Rightarrow> tvar list"
+
+primrec (ftv_of_prod)
+ "ftv (x,y) = (ftv x)@(ftv y)"
+
+defs (overloaded)
+ ftv_of_tvar[simp]: "ftv X \<equiv> [(X::tvar)]"
+ ftv_of_var[simp]: "ftv (x::var) \<equiv> []"
+
+primrec (ftv_of_list)
+ "ftv [] = []"
+ "ftv (x#xs) = (ftv x)@(ftv xs)"
+
+(* free type-variables of types *)
+nominal_primrec (ftv_ty)
+ "ftv (TVar X) = [X]"
+ "ftv (T\<^isub>1\<rightarrow>T\<^isub>2) = (ftv T\<^isub>1)@(ftv T\<^isub>2)"
+by (rule TrueI)+
+
+lemma ftv_ty_eqvt[eqvt]:
+ fixes pi::"tvar prm"
+ and T::"ty"
+ shows "pi\<bullet>(ftv T) = ftv (pi\<bullet>T)"
+by (nominal_induct T rule: ty.strong_induct)
+ (perm_simp add: append_eqvt)+
+
+nominal_primrec (ftv_tyS)
+ "ftv (Ty T) = ftv T"
+ "ftv (\<forall>[X].S) = (ftv S) - [X]"
+apply(finite_guess add: ftv_ty_eqvt fs_tvar1)+
+apply(rule TrueI)+
+apply(rule difference_fresh)
+apply(simp)
+apply(fresh_guess add: ftv_ty_eqvt fs_tvar1)+
+done
+
+lemma ftv_tyS_eqvt[eqvt]:
+ fixes pi::"tvar prm"
+ and S::"tyS"
+ shows "pi\<bullet>(ftv S) = ftv (pi\<bullet>S)"
+apply(nominal_induct S rule: tyS.strong_induct)
+apply(simp add: eqvts)
+apply(simp only: ftv_tyS.simps)
+apply(simp only: eqvts)
+apply(simp add: eqvts)
+done
+
+lemma ftv_Ctxt_eqvt[eqvt]:
+ fixes pi::"tvar prm"
+ and \<Gamma>::"Ctxt"
+ shows "pi\<bullet>(ftv \<Gamma>) = ftv (pi\<bullet>\<Gamma>)"
+by (induct \<Gamma>) (auto simp add: eqvts)
+
+text {* Valid *}
+inductive
+ valid :: "Ctxt \<Rightarrow> bool"
+where
+ V_Nil[intro]: "valid []"
+| V_Cons[intro]: "\<lbrakk>valid \<Gamma>;x\<sharp>\<Gamma>\<rbrakk>\<Longrightarrow> valid ((x,S)#\<Gamma>)"
+
+equivariance valid
+
+text {* General *}
+consts
+ gen :: "ty \<Rightarrow> tvar list \<Rightarrow> tyS"
+
+primrec
+ "gen T [] = Ty T"
+ "gen T (X#Xs) = \<forall>[X].(gen T Xs)"
+
+lemma gen_eqvt[eqvt]:
+ fixes pi::"tvar prm"
+ shows "pi\<bullet>(gen T Xs) = gen (pi\<bullet>T) (pi\<bullet>Xs)"
+by (induct Xs) (simp_all add: eqvts)
+
+abbreviation
+ close :: "Ctxt \<Rightarrow> ty \<Rightarrow> tyS"
+where
+ "close \<Gamma> T \<equiv> gen T ((ftv T) - (ftv \<Gamma>))"
+
+lemma close_eqvt[eqvt]:
+ fixes pi::"tvar prm"
+ shows "pi\<bullet>(close \<Gamma> T) = close (pi\<bullet>\<Gamma>) (pi\<bullet>T)"
+by (simp_all only: eqvts)
+
+text {* Substitution *}
+
+types Subst = "(tvar\<times>ty) list"
+
+consts
+ psubst :: "Subst \<Rightarrow> 'a \<Rightarrow> 'a" ("_<_>" [100,60] 120)
+
+abbreviation
+ subst :: "'a \<Rightarrow> tvar \<Rightarrow> ty \<Rightarrow> 'a" ("_[_::=_]" [100,100,100] 100)
+where
+ "smth[X::=T] \<equiv> ([(X,T)])<smth>"
+
+fun
+ lookup :: "Subst \<Rightarrow> tvar \<Rightarrow> ty"
+where
+ "lookup [] X = TVar X"
+| "lookup ((Y,T)#\<theta>) X = (if X=Y then T else lookup \<theta> X)"
+
+lemma lookup_eqvt[eqvt]:
+ fixes pi::"tvar prm"
+ shows "pi\<bullet>(lookup \<theta> X) = lookup (pi\<bullet>\<theta>) (pi\<bullet>X)"
+by (induct \<theta>) (auto simp add: eqvts)
+
+nominal_primrec (psubst_ty)
+ "\<theta><TVar X> = lookup \<theta> X"
+ "\<theta><T\<^isub>1 \<rightarrow> T\<^isub>2> = (\<theta><T\<^isub>1>) \<rightarrow> (\<theta><T\<^isub>2>)"
+by (rule TrueI)+
+
+lemma psubst_ty_eqvt[eqvt]:
+ fixes pi1::"tvar prm"
+ and \<theta>::"Subst"
+ and T::"ty"
+ shows "pi1\<bullet>(\<theta><T>) = (pi1\<bullet>\<theta>)<(pi1\<bullet>T)>"
+by (induct T rule: ty.induct) (simp_all add: eqvts)
+
+text {* instance *}
+inductive
+ general :: "ty \<Rightarrow> tyS \<Rightarrow> bool"("_ \<prec> _" [50,51] 50)
+where
+ G_Ty[intro]: "T \<prec> (Ty T)"
+| G_All[intro]: "\<lbrakk>X\<sharp>T'; (T::ty) \<prec> S\<rbrakk> \<Longrightarrow> T[X::=T'] \<prec> \<forall>[X].S"
+
+equivariance general[tvar]
+
+text{* typing judgements *}
+inductive
+ typing :: "Ctxt \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool" (" _ \<turnstile> _ : _ " [60,60,60] 60)
+where
+ T_VAR[intro]: "\<lbrakk>valid \<Gamma>; (x,S)\<in>set \<Gamma>; T \<prec> S\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+| T_APP[intro]: "\<lbrakk>\<Gamma> \<turnstile> t\<^isub>1 : T\<^isub>1\<rightarrow>T\<^isub>2; \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> App t\<^isub>1 t\<^isub>2 : T\<^isub>2"
+| T_LAM[intro]: "\<lbrakk>x\<sharp>\<Gamma>;((x,Ty T\<^isub>1)#\<Gamma>) \<turnstile> t : T\<^isub>2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].t : T\<^isub>1\<rightarrow>T\<^isub>2"
+| T_LET[intro]: "\<lbrakk>x\<sharp>\<Gamma>; \<Gamma> \<turnstile> t\<^isub>1 : T\<^isub>1; ((x,close \<Gamma> T\<^isub>1)#\<Gamma>) \<turnstile> t\<^isub>2 : T\<^isub>2; set (ftv T\<^isub>1 - ftv \<Gamma>) \<sharp>* T\<^isub>2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Let x be t\<^isub>1 in t\<^isub>2 : T\<^isub>2"
+
+lemma fresh_star_tvar_eqvt[eqvt]:
+ "(pi::tvar prm) \<bullet> ((Xs::tvar set) \<sharp>* (x::'a::{cp_tvar_tvar,pt_tvar})) = (pi \<bullet> Xs) \<sharp>* (pi \<bullet> x)"
+ by (simp only: pt_fresh_star_bij_ineq(1) [OF pt_tvar_inst pt_tvar_inst at_tvar_inst cp_tvar_tvar_inst] perm_bool)
+
+equivariance typing[tvar]
+
+lemma fresh_tvar_trm: "(X::tvar) \<sharp> (t::trm)"
+ by (nominal_induct t rule: trm.strong_induct) (simp_all add: fresh_atm abs_fresh)
+
+lemma ftv_ty: "supp (T::ty) = set (ftv T)"
+ by (nominal_induct T rule: ty.strong_induct) (simp_all add: ty.supp supp_atm)
+
+lemma ftv_tyS: "supp (s::tyS) = set (ftv s)"
+ by (nominal_induct s rule: tyS.strong_induct) (auto simp add: tyS.supp abs_supp ftv_ty)
+
+lemma ftv_Ctxt: "supp (\<Gamma>::Ctxt) = set (ftv \<Gamma>)"
+ apply (induct \<Gamma>)
+ apply (simp_all add: supp_list_nil supp_list_cons)
+ apply (case_tac a)
+ apply (simp add: supp_prod supp_atm ftv_tyS)
+ done
+
+lemma ftv_tvars: "supp (Tvs::tvar list) = set Tvs"
+ by (induct Tvs) (simp_all add: supp_list_nil supp_list_cons supp_atm)
+
+lemma difference_supp: "((supp ((xs::tvar list) - ys))::tvar set) = supp xs - supp ys"
+ by (induct xs) (auto simp add: supp_list_nil supp_list_cons ftv_tvars)
+
+lemma set_supp_eq: "set (xs::tvar list) = supp xs"
+ by (induct xs) (simp_all add: supp_list_nil supp_list_cons supp_atm)
+
+nominal_inductive2 typing
+ avoids T_LET: "set (ftv T\<^isub>1 - ftv \<Gamma>)"
+ apply (simp add: fresh_star_def fresh_def ftv_Ctxt)
+ apply (simp add: fresh_star_def fresh_tvar_trm)
+ apply assumption
+ apply simp
+ done
+
+lemma perm_fresh_fresh_aux:
+ "\<forall>(x,y)\<in>set (pi::tvar prm). x \<sharp> z \<and> y \<sharp> z \<Longrightarrow> pi \<bullet> (z::'a::pt_tvar) = z"
+ apply (induct pi rule: rev_induct)
+ apply simp
+ apply (simp add: split_paired_all pt_tvar2)
+ apply (frule_tac x="(a, b)" in bspec)
+ apply simp
+ apply (simp add: perm_fresh_fresh)
+ done
+
+lemma freshs_mem: "x \<in> (S::tvar set) \<Longrightarrow> S \<sharp>* z \<Longrightarrow> x \<sharp> z"
+ by (simp add: fresh_star_def)
+
+lemma fresh_gen_set:
+ fixes X::"tvar"
+ and Xs::"tvar list"
+ assumes asm: "X\<in>set Xs"
+ shows "X\<sharp>gen T Xs"
+using asm
+apply(induct Xs)
+apply(simp)
+apply(case_tac "X=a")
+apply(simp add: abs_fresh)
+apply(simp add: abs_fresh)
+done
+
+lemma close_fresh:
+ fixes \<Gamma>::"Ctxt"
+ shows "\<forall>(X::tvar)\<in>set ((ftv T) - (ftv \<Gamma>)). X\<sharp>(close \<Gamma> T)"
+by (simp add: fresh_gen_set)
+
+lemma gen_supp: "(supp (gen T Xs)::tvar set) = supp T - supp Xs"
+ by (induct Xs) (auto simp add: supp_list_nil supp_list_cons tyS.supp abs_supp supp_atm)
+
+lemma minus_Int_eq: "T - (T - U) = T \<inter> U"
+ by blast
+
+lemma close_supp: "supp (close \<Gamma> T) = set (ftv T) \<inter> set (ftv \<Gamma>)"
+ apply (simp add: gen_supp difference_supp ftv_ty ftv_Ctxt)
+ apply (simp only: set_supp_eq minus_Int_eq)
+ done
+
+lemma better_T_LET:
+ assumes x: "x\<sharp>\<Gamma>"
+ and t1: "\<Gamma> \<turnstile> t\<^isub>1 : T\<^isub>1"
+ and t2: "((x,close \<Gamma> T\<^isub>1)#\<Gamma>) \<turnstile> t\<^isub>2 : T\<^isub>2"
+ shows "\<Gamma> \<turnstile> Let x be t\<^isub>1 in t\<^isub>2 : T\<^isub>2"
+proof -
+ have fin: "finite (set (ftv T\<^isub>1 - ftv \<Gamma>))" by simp
+ obtain pi where pi1: "(pi \<bullet> set (ftv T\<^isub>1 - ftv \<Gamma>)) \<sharp>* (T\<^isub>2, \<Gamma>)"
+ and pi2: "set pi \<subseteq> set (ftv T\<^isub>1 - ftv \<Gamma>) \<times> (pi \<bullet> set (ftv T\<^isub>1 - ftv \<Gamma>))"
+ by (rule at_set_avoiding [OF at_tvar_inst fin fs_tvar1, of "(T\<^isub>2, \<Gamma>)"])
+ from pi1 have pi1': "(pi \<bullet> set (ftv T\<^isub>1 - ftv \<Gamma>)) \<sharp>* \<Gamma>"
+ by (simp add: fresh_star_prod)
+ have Gamma_fresh: "\<forall>(x,y)\<in>set pi. x \<sharp> \<Gamma> \<and> y \<sharp> \<Gamma>"
+ apply (rule ballI)
+ apply (simp add: split_paired_all)
+ apply (drule subsetD [OF pi2])
+ apply (erule SigmaE)
+ apply (drule freshs_mem [OF _ pi1'])
+ apply (simp add: ftv_Ctxt [symmetric] fresh_def)
+ done
+ have close_fresh': "\<forall>(x, y)\<in>set pi. x \<sharp> close \<Gamma> T\<^isub>1 \<and> y \<sharp> close \<Gamma> T\<^isub>1"
+ apply (rule ballI)
+ apply (simp add: split_paired_all)
+ apply (drule subsetD [OF pi2])
+ apply (erule SigmaE)
+ apply (drule bspec [OF close_fresh])
+ apply (drule freshs_mem [OF _ pi1'])
+ apply (simp add: fresh_def close_supp ftv_Ctxt)
+ done
+ note x
+ moreover from Gamma_fresh perm_boolI [OF t1, of pi]
+ have "\<Gamma> \<turnstile> t\<^isub>1 : pi \<bullet> T\<^isub>1"
+ by (simp add: perm_fresh_fresh_aux eqvts fresh_tvar_trm)
+ moreover from t2 close_fresh'
+ have "(x,(pi \<bullet> close \<Gamma> T\<^isub>1))#\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2"
+ by (simp add: perm_fresh_fresh_aux)
+ with Gamma_fresh have "(x,close \<Gamma> (pi \<bullet> T\<^isub>1))#\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2"
+ by (simp add: close_eqvt perm_fresh_fresh_aux)
+ moreover from pi1 Gamma_fresh
+ have "set (ftv (pi \<bullet> T\<^isub>1) - ftv \<Gamma>) \<sharp>* T\<^isub>2"
+ by (simp only: eqvts fresh_star_prod perm_fresh_fresh_aux)
+ ultimately show ?thesis by (rule T_LET)
+qed
end