--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Main/Docs/Main_Doc.thy Wed Mar 11 20:11:06 2009 +0100
@@ -0,0 +1,572 @@
+(*<*)
+theory Main_Doc
+imports Main
+begin
+
+ML {*
+fun pretty_term_type_only ctxt (t, T) =
+ (if fastype_of t = Sign.certify_typ (ProofContext.theory_of ctxt) T then ()
+ else error "term_type_only: type mismatch";
+ Syntax.pretty_typ ctxt T)
+
+val _ = ThyOutput.antiquotation "term_type_only" (Args.term -- Args.typ_abbrev)
+ (fn {source, context, ...} => fn arg =>
+ ThyOutput.output
+ (ThyOutput.maybe_pretty_source (pretty_term_type_only context) source [arg]));
+*}
+(*>*)
+text{*
+
+\begin{abstract}
+This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/dist/library/HOL/}.
+\end{abstract}
+
+\section{HOL}
+
+The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}.
+\smallskip
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const HOL.undefined} & @{typeof HOL.undefined}\\
+@{const HOL.default} & @{typeof HOL.default}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+@{term"~(x = y)"} & @{term[source]"\<not> (x = y)"} & (\verb$~=$)\\
+@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
+@{term"If x y z"} & @{term[source]"If x y z"}\\
+@{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\<lambda>x. e\<^isub>2)"}\\
+\end{supertabular}
+
+
+\section{Orderings}
+
+A collection of classes defining basic orderings:
+preorder, partial order, linear order, dense linear order and wellorder.
+\smallskip
+
+\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
+@{const HOL.less_eq} & @{typeof HOL.less_eq} & (\verb$<=$)\\
+@{const HOL.less} & @{typeof HOL.less}\\
+@{const Orderings.Least} & @{typeof Orderings.Least}\\
+@{const Orderings.min} & @{typeof Orderings.min}\\
+@{const Orderings.max} & @{typeof Orderings.max}\\
+@{const[source] top} & @{typeof Orderings.top}\\
+@{const[source] bot} & @{typeof Orderings.bot}\\
+@{const Orderings.mono} & @{typeof Orderings.mono}\\
+@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+@{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\verb$>=$)\\
+@{term[source]"x > y"} & @{term"x > y"}\\
+@{term"ALL x<=y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
+@{term"EX x<=y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
+@{term"LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
+\end{supertabular}
+
+
+\section{Lattices}
+
+Classes semilattice, lattice, distributive lattice and complete lattice (the
+latter in theory @{theory Set}).
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Lattices.inf} & @{typeof Lattices.inf}\\
+@{const Lattices.sup} & @{typeof Lattices.sup}\\
+@{const Set.Inf} & @{term_type_only Set.Inf "'a set \<Rightarrow> 'a::complete_lattice"}\\
+@{const Set.Sup} & @{term_type_only Set.Sup "'a set \<Rightarrow> 'a::complete_lattice"}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+Available by loading theory @{text Lattice_Syntax} in directory @{text
+Library}.
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
+@{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
+@{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
+@{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
+@{text[source]"\<Sqinter> A"} & @{term"Sup A"}\\
+@{text[source]"\<Squnion> A"} & @{term"Inf A"}\\
+@{text[source]"\<top>"} & @{term[source] top}\\
+@{text[source]"\<bottom>"} & @{term[source] bot}\\
+\end{supertabular}
+
+
+\section{Set}
+
+Sets are predicates: @{text[source]"'a set = 'a \<Rightarrow> bool"}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
+@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
+@{const insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
+@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
+@{const "op :"} & @{term_type_only "op :" "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\texttt{:})\\
+@{const Set.Un} & @{term_type_only Set.Un "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Un})\\
+@{const Set.Int} & @{term_type_only Set.Int "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Int})\\
+@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
+@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
+@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
+@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
+@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
+@{const UNIV} & @{term_type_only UNIV "'a set"}\\
+@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
+@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
+@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+@{text"{x\<^isub>1,\<dots>,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\<dots> (insert x\<^isub>n {})\<dots>)"}\\
+@{term"x ~: A"} & @{term[source]"\<not>(x \<in> A)"}\\
+@{term"A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
+@{term"A \<subset> B"} & @{term[source]"A < B"}\\
+@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
+@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
+@{term"{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
+@{term[mode=xsymbols]"UN x:I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
+@{term[mode=xsymbols]"UN x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
+@{term[mode=xsymbols]"INT x:I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
+@{term[mode=xsymbols]"INT x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
+@{term"ALL x:A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
+@{term"EX x:A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
+@{term"range f"} & @{term[source]"f ` UNIV"}\\
+\end{supertabular}
+
+
+\section{Fun}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const "Fun.id"} & @{typeof Fun.id}\\
+@{const "Fun.comp"} & @{typeof Fun.comp}\\
+@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
+@{const "Fun.inj"} & @{typeof Fun.inj}\\
+@{const "Fun.surj"} & @{typeof Fun.surj}\\
+@{const "Fun.bij"} & @{typeof Fun.bij}\\
+@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
+@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
+@{text"f(x\<^isub>1:=y\<^isub>1,\<dots>,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\<dots>(x\<^isub>n:=y\<^isub>n)"}\\
+\end{tabular}
+
+
+\section{Fixed Points}
+
+Theory: @{theory Inductive}.
+
+Least and greatest fixed points in a complete lattice @{typ 'a}:
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
+@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
+\end{tabular}
+
+Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
+
+\section{Sum\_Type}
+
+Type constructor @{text"+"}.
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
+@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
+@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
+\end{tabular}
+
+
+\section{Product\_Type}
+
+Types @{typ unit} and @{text"\<times>"}.
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
+@{const Pair} & @{typeof Pair}\\
+@{const fst} & @{typeof fst}\\
+@{const snd} & @{typeof snd}\\
+@{const split} & @{typeof split}\\
+@{const curry} & @{typeof curry}\\
+@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
+@{term"Pair a b"} & @{term[source]"Pair a b"}\\
+@{term"split (\<lambda>x y. t)"} & @{term[source]"split (\<lambda>x y. t)"}\\
+@{term"A <*> B"} & @{text"Sigma A (\<lambda>\<^raw:\_>. B)"} & (\verb$<*>$)
+\end{tabular}
+
+Pairs may be nested. Nesting to the right is printed as a tuple,
+e.g.\ \mbox{@{term"(a,b,c)"}} is really \mbox{@{text"(a, (b, c))"}.}
+Pattern matching with pairs and tuples extends to all binders,
+e.g.\ \mbox{@{prop"ALL (x,y):A. P"},} @{term"{(x,y). P}"}, etc.
+
+
+\section{Relation}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
+@{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('c*'a)set\<Rightarrow>('c*'b)set"}\\
+@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
+@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
+@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
+@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
+@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
+@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
+@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
+@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+@{term"converse r"} & @{term[source]"converse r"} & (\verb$^-1$)
+\end{tabular}
+
+\section{Equiv\_Relations}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
+@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
+@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
+@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
+%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"congruent r f"} & @{term[source]"congruent r f"}\\
+@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
+\end{tabular}
+
+
+\section{Transitive\_Closure}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
+@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
+@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\verb$^*$)\\
+@{term"trancl r"} & @{term[source]"trancl r"} & (\verb$^+$)\\
+@{term"reflcl r"} & @{term[source]"reflcl r"} & (\verb$^=$)
+\end{tabular}
+
+
+\section{Algebra}
+
+Theories @{theory OrderedGroup}, @{theory Ring_and_Field} and @{theory
+Divides} define a large collection of classes describing common algebraic
+structures from semigroups up to fields. Everything is done in terms of
+overloaded operators:
+
+\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
+@{text "0"} & @{typeof zero}\\
+@{text "1"} & @{typeof one}\\
+@{const plus} & @{typeof plus}\\
+@{const minus} & @{typeof minus}\\
+@{const uminus} & @{typeof uminus} & (\verb$-$)\\
+@{const times} & @{typeof times}\\
+@{const inverse} & @{typeof inverse}\\
+@{const divide} & @{typeof divide}\\
+@{const abs} & @{typeof abs}\\
+@{const sgn} & @{typeof sgn}\\
+@{const dvd_class.dvd} & @{typeof "dvd_class.dvd"}\\
+@{const div_class.div} & @{typeof "div_class.div"}\\
+@{const div_class.mod} & @{typeof "div_class.mod"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"abs x"} & @{term[source]"abs x"}
+\end{tabular}
+
+
+\section{Nat}
+
+@{datatype nat}
+\bigskip
+
+\begin{tabular}{@ {} lllllll @ {}}
+@{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op ^ :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
+@{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
+@{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
+@{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
+@{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
+@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "Min :: nat set \<Rightarrow> nat"} &
+@{term "Max :: nat set \<Rightarrow> nat"}\\
+\end{tabular}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Nat.of_nat} & @{typeof Nat.of_nat}
+\end{tabular}
+
+\section{Int}
+
+Type @{typ int}
+\bigskip
+
+\begin{tabular}{@ {} llllllll @ {}}
+@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "uminus :: int \<Rightarrow> int"} &
+@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
+@{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
+@{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
+@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
+@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
+@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
+@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "Min :: int set \<Rightarrow> int"} &
+@{term "Max :: int set \<Rightarrow> int"}\\
+@{term "abs :: int \<Rightarrow> int"} &
+@{term "sgn :: int \<Rightarrow> int"}\\
+\end{tabular}
+
+\begin{tabular}{@ {} l @ {~::~} l l @ {}}
+@{const Int.nat} & @{typeof Int.nat}\\
+@{const Int.of_int} & @{typeof Int.of_int}\\
+@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\verb$Ints$)
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
+\end{tabular}
+
+
+\section{Finite\_Set}
+
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
+@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set => nat"}\\
+@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
+@{const Finite_Set.fold_image} & @{typ "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
+@{const Finite_Set.setsum} & @{term_type_only Finite_Set.setsum "('a => 'b) => 'a set => 'b::comm_monoid_add"}\\
+@{const Finite_Set.setprod} & @{term_type_only Finite_Set.setprod "('a => 'b) => 'a set => 'b::comm_monoid_mult"}\\
+\end{supertabular}
+
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+@{term"setsum (%x. x) A"} & @{term[source]"setsum (\<lambda>x. x) A"} & (\verb$SUM$)\\
+@{term"setsum (%x. t) A"} & @{term[source]"setsum (\<lambda>x. t) A"}\\
+@{term[source]"\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}} & (\verb$PROD$)\\
+\end{supertabular}
+
+
+\section{Wellfounded}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
+@{const Wellfounded.acyclic} & @{term_type_only Wellfounded.acyclic "('a*'a)set\<Rightarrow>bool"}\\
+@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
+@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
+@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
+@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
+@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
+@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
+\end{supertabular}
+
+
+\section{SetInterval}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
+@{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
+@{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
+@{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
+@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
+@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
+@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
+@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term "lessThan y"} & @{term[source] "lessThan y"}\\
+@{term "atMost y"} & @{term[source] "atMost y"}\\
+@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
+@{term "atLeast x"} & @{term[source] "atLeast x"}\\
+@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
+@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
+@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
+@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
+@{term[mode=xsymbols] "UN i:{..n}. A"} & @{term[source] "\<Union> i \<in> {..n}. A"}\\
+@{term[mode=xsymbols] "UN i:{..<n}. A"} & @{term[source] "\<Union> i \<in> {..<n}. A"}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Inter>"} instead of @{text"\<Union>"}}\\
+@{term "setsum (%x. t) {a..b}"} & @{term[source] "setsum (\<lambda>x. t) {a..b}"}\\
+@{term "setsum (%x. t) {a..<b}"} & @{term[source] "setsum (\<lambda>x. t) {a..<b}"}\\
+@{term "setsum (%x. t) {..b}"} & @{term[source] "setsum (\<lambda>x. t) {..b}"}\\
+@{term "setsum (%x. t) {..<b}"} & @{term[source] "setsum (\<lambda>x. t) {..<b}"}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}}\\
+\end{supertabular}
+
+
+\section{Power}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Power.power} & @{typeof Power.power}
+\end{tabular}
+
+
+\section{Iterated Functions and Relations}
+
+Theory: @{theory Relation_Power}
+
+Iterated functions \ @{term[source]"(f::'a\<Rightarrow>'a) ^ n"} \
+and relations \ @{term[source]"(r::('a\<times>'a)set) ^ n"}.
+
+
+\section{Option}
+
+@{datatype option}
+\bigskip
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Option.the} & @{typeof Option.the}\\
+@{const Option.map} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
+@{const Option.set} & @{term_type_only Option.set "'a option \<Rightarrow> 'a set"}
+\end{tabular}
+
+\section{List}
+
+@{datatype list}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const List.append} & @{typeof List.append}\\
+@{const List.butlast} & @{typeof List.butlast}\\
+@{const List.concat} & @{typeof List.concat}\\
+@{const List.distinct} & @{typeof List.distinct}\\
+@{const List.drop} & @{typeof List.drop}\\
+@{const List.dropWhile} & @{typeof List.dropWhile}\\
+@{const List.filter} & @{typeof List.filter}\\
+@{const List.foldl} & @{typeof List.foldl}\\
+@{const List.foldr} & @{typeof List.foldr}\\
+@{const List.hd} & @{typeof List.hd}\\
+@{const List.last} & @{typeof List.last}\\
+@{const List.length} & @{typeof List.length}\\
+@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.listrel} & @{term_type_only List.listrel "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
+@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
+@{const List.listsum} & @{typeof List.listsum}\\
+@{const List.list_all2} & @{typeof List.list_all2}\\
+@{const List.list_update} & @{typeof List.list_update}\\
+@{const List.map} & @{typeof List.map}\\
+@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
+@{const List.remdups} & @{typeof List.remdups}\\
+@{const List.removeAll} & @{typeof List.removeAll}\\
+@{const List.remove1} & @{typeof List.remove1}\\
+@{const List.replicate} & @{typeof List.replicate}\\
+@{const List.rev} & @{typeof List.rev}\\
+@{const List.rotate} & @{typeof List.rotate}\\
+@{const List.rotate1} & @{typeof List.rotate1}\\
+@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
+@{const List.sort} & @{typeof List.sort}\\
+@{const List.sorted} & @{typeof List.sorted}\\
+@{const List.splice} & @{typeof List.splice}\\
+@{const List.sublist} & @{typeof List.sublist}\\
+@{const List.take} & @{typeof List.take}\\
+@{const List.takeWhile} & @{typeof List.takeWhile}\\
+@{const List.tl} & @{typeof List.tl}\\
+@{const List.upt} & @{typeof List.upt}\\
+@{const List.upto} & @{typeof List.upto}\\
+@{const List.zip} & @{typeof List.zip}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{text"[x\<^isub>1,\<dots>,x\<^isub>n]"} & @{text"x\<^isub>1 # \<dots> # x\<^isub>n # []"}\\
+@{term"[m..<n]"} & @{term[source]"upt m n"}\\
+@{term"[i..j]"} & @{term[source]"upto i j"}\\
+@{text"[e. x \<leftarrow> xs]"} & @{term"map (%x. e) xs"}\\
+@{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
+@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
+@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
+\end{supertabular}
+\medskip
+
+List comprehension: @{text"[e. q\<^isub>1, \<dots>, q\<^isub>n]"} where each
+qualifier @{text q\<^isub>i} is either a generator \mbox{@{text"pat \<leftarrow> e"}} or a
+guard, i.e.\ boolean expression.
+
+\section{Map}
+
+Maps model partial functions and are often used as finite tables. However,
+the domain of a map may be infinite.
+
+@{text"'a \<rightharpoonup> 'b = 'a \<Rightarrow> 'b option"}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Map.empty} & @{typeof Map.empty}\\
+@{const Map.map_add} & @{typeof Map.map_add}\\
+@{const Map.map_comp} & @{typeof Map.map_comp}\\
+@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
+@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
+@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
+@{const Map.map_le} & @{typeof Map.map_le}\\
+@{const Map.map_of} & @{typeof Map.map_of}\\
+@{const Map.map_upds} & @{typeof Map.map_upds}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"Map.empty"} & @{term"\<lambda>x. None"}\\
+@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
+@{text"m(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\<mapsto>y\<^isub>1)\<dots>(x\<^isub>n\<mapsto>y\<^isub>n)"}\\
+@{text"[x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n]"} & @{text[source]"Map.empty(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"}\\
+@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
+\end{tabular}
+
+*}
+(*<*)
+end
+(*>*)
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Main/Docs/ROOT.ML Wed Mar 11 20:11:06 2009 +0100
@@ -0,0 +1,1 @@
+use_thy "Main_Doc";
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Main/Docs/document/Main_Doc.tex Wed Mar 11 20:11:06 2009 +0100
@@ -0,0 +1,597 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Main{\isacharunderscore}Doc}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isadelimML
+%
+\endisadelimML
+%
+\isatagML
+%
+\endisatagML
+{\isafoldML}%
+%
+\isadelimML
+%
+\endisadelimML
+%
+\begin{isamarkuptext}%
+\begin{abstract}
+This document lists the main types, functions and syntax provided by theory \isa{Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/dist/library/HOL/}.
+\end{abstract}
+
+\section{HOL}
+
+The basic logic: \isa{x\ {\isacharequal}\ y}, \isa{True}, \isa{False}, \isa{{\isasymnot}\ P}, \isa{P\ {\isasymand}\ Q}, \isa{P\ {\isasymor}\ Q}, \isa{P\ {\isasymlongrightarrow}\ Q}, \isa{{\isasymforall}x{\isachardot}\ P}, \isa{{\isasymexists}x{\isachardot}\ P}, \isa{{\isasymexists}{\isacharbang}x{\isachardot}\ P}, \isa{THE\ x{\isachardot}\ P}.
+\smallskip
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{undefined} & \isa{{\isacharprime}a}\\
+\isa{default} & \isa{{\isacharprime}a}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+\isa{x\ {\isasymnoteq}\ y} & \isa{{\isachardoublequote}{\isasymnot}\ {\isacharparenleft}x\ {\isacharequal}\ y{\isacharparenright}{\isachardoublequote}} & (\verb$~=$)\\
+\isa{{\isachardoublequote}P\ {\isasymlongleftrightarrow}\ Q{\isachardoublequote}} & \isa{P\ {\isacharequal}\ Q} \\
+\isa{if\ x\ then\ y\ else\ z} & \isa{{\isachardoublequote}If\ x\ y\ z{\isachardoublequote}}\\
+\isa{let\ x\ {\isacharequal}\ e\isactrlisub {\isadigit{1}}\ in\ e\isactrlisub {\isadigit{2}}} & \isa{{\isachardoublequote}Let\ e\isactrlisub {\isadigit{1}}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ e\isactrlisub {\isadigit{2}}{\isacharparenright}{\isachardoublequote}}\\
+\end{supertabular}
+
+
+\section{Orderings}
+
+A collection of classes defining basic orderings:
+preorder, partial order, linear order, dense linear order and wellorder.
+\smallskip
+
+\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
+\isa{op\ {\isasymle}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ bool} & (\verb$<=$)\\
+\isa{op\ {\isacharless}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ bool}\\
+\isa{Least} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{min} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{max} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{top} & \isa{{\isacharprime}a}\\
+\isa{bot} & \isa{{\isacharprime}a}\\
+\isa{mono} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{strict{\isacharunderscore}mono} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+\isa{{\isachardoublequote}x\ {\isasymge}\ y{\isachardoublequote}} & \isa{y\ {\isasymle}\ x} & (\verb$>=$)\\
+\isa{{\isachardoublequote}x\ {\isachargreater}\ y{\isachardoublequote}} & \isa{y\ {\isacharless}\ x}\\
+\isa{{\isasymforall}x{\isasymle}y{\isachardot}\ P} & \isa{{\isachardoublequote}{\isasymforall}x{\isachardot}\ x\ {\isasymle}\ y\ {\isasymlongrightarrow}\ P{\isachardoublequote}}\\
+\isa{{\isasymexists}x{\isasymle}y{\isachardot}\ P} & \isa{{\isachardoublequote}{\isasymexists}x{\isachardot}\ x\ {\isasymle}\ y\ {\isasymand}\ P{\isachardoublequote}}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
+\isa{LEAST\ x{\isachardot}\ P} & \isa{{\isachardoublequote}Least\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
+\end{supertabular}
+
+
+\section{Lattices}
+
+Classes semilattice, lattice, distributive lattice and complete lattice (the
+latter in theory \isa{Set}).
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{inf} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{sup} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{Inf} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{Sup} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+Available by loading theory \isa{Lattice{\isacharunderscore}Syntax} in directory \isa{Library}.
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{{\isachardoublequote}x\ {\isasymsqsubseteq}\ y{\isachardoublequote}} & \isa{x\ {\isasymle}\ y}\\
+\isa{{\isachardoublequote}x\ {\isasymsqsubset}\ y{\isachardoublequote}} & \isa{x\ {\isacharless}\ y}\\
+\isa{{\isachardoublequote}x\ {\isasymsqinter}\ y{\isachardoublequote}} & \isa{inf\ x\ y}\\
+\isa{{\isachardoublequote}x\ {\isasymsqunion}\ y{\isachardoublequote}} & \isa{sup\ x\ y}\\
+\isa{{\isachardoublequote}{\isasymSqinter}\ A{\isachardoublequote}} & \isa{Sup\ A}\\
+\isa{{\isachardoublequote}{\isasymSqunion}\ A{\isachardoublequote}} & \isa{Inf\ A}\\
+\isa{{\isachardoublequote}{\isasymtop}{\isachardoublequote}} & \isa{top}\\
+\isa{{\isachardoublequote}{\isasymbottom}{\isachardoublequote}} & \isa{bot}\\
+\end{supertabular}
+
+
+\section{Set}
+
+Sets are predicates: \isa{{\isachardoublequote}{\isacharprime}a\ set\ \ {\isacharequal}\ \ {\isacharprime}a\ {\isasymRightarrow}\ bool{\isachardoublequote}}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
+\isa{{\isacharbraceleft}{\isacharbraceright}} & \isa{{\isacharprime}a\ set}\\
+\isa{insert} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{Collect} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{op\ {\isasymin}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ bool} & (\texttt{:})\\
+\isa{op\ {\isasymunion}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set} & (\texttt{Un})\\
+\isa{op\ {\isasyminter}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set} & (\texttt{Int})\\
+\isa{UNION} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
+\isa{INTER} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
+\isa{Union} & \isa{{\isacharprime}a\ set\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{Inter} & \isa{{\isacharprime}a\ set\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{Pow} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ set}\\
+\isa{UNIV} & \isa{{\isacharprime}a\ set}\\
+\isa{op\ {\isacharbackquote}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
+\isa{Ball} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{Bex} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+\isa{{\isacharbraceleft}x\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isacharbraceright}} & \isa{insert\ x\isactrlisub {\isadigit{1}}\ {\isacharparenleft}{\isasymdots}\ {\isacharparenleft}insert\ x\isactrlisub n\ {\isacharbraceleft}{\isacharbraceright}{\isacharparenright}{\isasymdots}{\isacharparenright}}\\
+\isa{x\ {\isasymnotin}\ A} & \isa{{\isachardoublequote}{\isasymnot}{\isacharparenleft}x\ {\isasymin}\ A{\isacharparenright}{\isachardoublequote}}\\
+\isa{A\ {\isasymsubseteq}\ B} & \isa{{\isachardoublequote}A\ {\isasymle}\ B{\isachardoublequote}}\\
+\isa{A\ {\isasymsubset}\ B} & \isa{{\isachardoublequote}A\ {\isacharless}\ B{\isachardoublequote}}\\
+\isa{{\isachardoublequote}A\ {\isasymsupseteq}\ B{\isachardoublequote}} & \isa{{\isachardoublequote}B\ {\isasymle}\ A{\isachardoublequote}}\\
+\isa{{\isachardoublequote}A\ {\isasymsupset}\ B{\isachardoublequote}} & \isa{{\isachardoublequote}B\ {\isacharless}\ A{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isachardot}\ P{\isacharbraceright}} & \isa{{\isachardoublequote}Collect\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
+\isa{{\isasymUnion}x{\isasymin}I{\isachardot}\ A} & \isa{{\isachardoublequote}UNION\ I\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}} & (\texttt{UN})\\
+\isa{{\isasymUnion}x{\isachardot}\ A} & \isa{{\isachardoublequote}UNION\ UNIV\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}}\\
+\isa{{\isasymInter}x{\isasymin}I{\isachardot}\ A} & \isa{{\isachardoublequote}INTER\ I\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}} & (\texttt{INT})\\
+\isa{{\isasymInter}x{\isachardot}\ A} & \isa{{\isachardoublequote}INTER\ UNIV\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}}\\
+\isa{{\isasymforall}x{\isasymin}A{\isachardot}\ P} & \isa{{\isachardoublequote}Ball\ A\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
+\isa{{\isasymexists}x{\isasymin}A{\isachardot}\ P} & \isa{{\isachardoublequote}Bex\ A\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
+\isa{range\ f} & \isa{{\isachardoublequote}f\ {\isacharbackquote}\ UNIV{\isachardoublequote}}\\
+\end{supertabular}
+
+
+\section{Fun}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{id} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{op\ {\isasymcirc}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}c\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\isa{inj{\isacharunderscore}on} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ bool}\\
+\isa{inj} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{surj} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{bij} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{bij{\isacharunderscore}betw} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set\ {\isasymRightarrow}\ bool}\\
+\isa{fun{\isacharunderscore}upd} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{f{\isacharparenleft}x\ {\isacharcolon}{\isacharequal}\ y{\isacharparenright}} & \isa{{\isachardoublequote}fun{\isacharunderscore}upd\ f\ x\ y{\isachardoublequote}}\\
+\isa{f{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isacharcolon}{\isacharequal}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isacharcolon}{\isacharequal}y\isactrlisub n{\isacharparenright}} & \isa{f{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isacharcolon}{\isacharequal}y\isactrlisub {\isadigit{1}}{\isacharparenright}{\isasymdots}{\isacharparenleft}x\isactrlisub n{\isacharcolon}{\isacharequal}y\isactrlisub n{\isacharparenright}}\\
+\end{tabular}
+
+
+\section{Fixed Points}
+
+Theory: \isa{Inductive}.
+
+Least and greatest fixed points in a complete lattice \isa{{\isacharprime}a}:
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{lfp} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{gfp} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\end{tabular}
+
+Note that in particular sets (\isa{{\isacharprime}a\ {\isasymRightarrow}\ bool}) are complete lattices.
+
+\section{Sum\_Type}
+
+Type constructor \isa{{\isacharplus}}.
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{Inl} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isacharplus}\ {\isacharprime}b}\\
+\isa{Inr} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isacharplus}\ {\isacharprime}a}\\
+\isa{op\ {\isacharless}{\isacharplus}{\isachargreater}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isacharplus}\ {\isacharprime}b{\isacharparenright}\ set}
+\end{tabular}
+
+
+\section{Product\_Type}
+
+Types \isa{unit} and \isa{{\isasymtimes}}.
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{{\isacharparenleft}{\isacharparenright}} & \isa{unit}\\
+\isa{Pair} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}\\
+\isa{fst} & \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{snd} & \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\isa{split} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c}\\
+\isa{curry} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c}\\
+\isa{Sigma} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
+\isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}} & \isa{{\isachardoublequote}Pair\ a\ b{\isachardoublequote}}\\
+\isa{{\isasymlambda}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}{\isachardot}\ t} & \isa{{\isachardoublequote}split\ {\isacharparenleft}{\isasymlambda}x\ y{\isachardot}\ t{\isacharparenright}{\isachardoublequote}}\\
+\isa{A\ {\isasymtimes}\ B} & \isa{Sigma\ A\ {\isacharparenleft}{\isasymlambda}\_{\isachardot}\ B{\isacharparenright}} & (\verb$<*>$)
+\end{tabular}
+
+Pairs may be nested. Nesting to the right is printed as a tuple,
+e.g.\ \mbox{\isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharcomma}\ c{\isacharparenright}}} is really \mbox{\isa{{\isacharparenleft}a{\isacharcomma}\ {\isacharparenleft}b{\isacharcomma}\ c{\isacharparenright}{\isacharparenright}}.}
+Pattern matching with pairs and tuples extends to all binders,
+e.g.\ \mbox{\isa{{\isasymforall}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}{\isasymin}A{\isachardot}\ P},} \isa{{\isacharbraceleft}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}{\isachardot}\ P{\isacharbraceright}}, etc.
+
+
+\section{Relation}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{converse} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{op\ O} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
+\isa{op\ {\isacharbackquote}{\isacharbackquote}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
+\isa{inv{\isacharunderscore}image} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
+\isa{Id{\isacharunderscore}on} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{Id} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{Domain} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{Range} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
+\isa{Field} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{refl{\isacharunderscore}on} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{refl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{sym} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{antisym} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{trans} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{irrefl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{total{\isacharunderscore}on} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{total} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+\isa{r{\isasyminverse}} & \isa{{\isachardoublequote}converse\ r{\isachardoublequote}} & (\verb$^-1$)
+\end{tabular}
+
+\section{Equiv\_Relations}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{equiv} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{op\ {\isacharslash}{\isacharslash}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ set}\\
+\isa{congruent} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{congruent{\isadigit{2}}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{f\ respects\ r} & \isa{{\isachardoublequote}congruent\ r\ f{\isachardoublequote}}\\
+\isa{f\ respects{\isadigit{2}}\ r} & \isa{{\isachardoublequote}congruent{\isadigit{2}}\ r\ r\ f{\isachardoublequote}}\\
+\end{tabular}
+
+
+\section{Transitive\_Closure}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{rtrancl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{trancl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{reflcl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+\isa{r\isactrlsup {\isacharasterisk}} & \isa{{\isachardoublequote}rtrancl\ r{\isachardoublequote}} & (\verb$^*$)\\
+\isa{r\isactrlsup {\isacharplus}} & \isa{{\isachardoublequote}trancl\ r{\isachardoublequote}} & (\verb$^+$)\\
+\isa{r\isactrlsup {\isacharequal}} & \isa{{\isachardoublequote}reflcl\ r{\isachardoublequote}} & (\verb$^=$)
+\end{tabular}
+
+
+\section{Algebra}
+
+Theories \isa{OrderedGroup}, \isa{Ring{\isacharunderscore}and{\isacharunderscore}Field} and \isa{Divides} define a large collection of classes describing common algebraic
+structures from semigroups up to fields. Everything is done in terms of
+overloaded operators:
+
+\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
+\isa{{\isadigit{0}}} & \isa{{\isacharprime}a}\\
+\isa{{\isadigit{1}}} & \isa{{\isacharprime}a}\\
+\isa{op\ {\isacharplus}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{op\ {\isacharminus}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{uminus} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a} & (\verb$-$)\\
+\isa{op\ {\isacharasterisk}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{inverse} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{op\ {\isacharslash}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{abs} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{sgn} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{op\ dvd} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ bool}\\
+\isa{op\ div} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{op\ mod} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{{\isasymbar}x{\isasymbar}} & \isa{{\isachardoublequote}abs\ x{\isachardoublequote}}
+\end{tabular}
+
+
+\section{Nat}
+
+\isa{\isacommand{datatype}\ nat\ {\isacharequal}\ {\isadigit{0}}\ {\isacharbar}\ Suc\ nat}
+\bigskip
+
+\begin{tabular}{@ {} lllllll @ {}}
+\isa{op\ {\isacharplus}} &
+\isa{op\ {\isacharminus}} &
+\isa{op\ {\isacharasterisk}} &
+\isa{op\ {\isacharcircum}} &
+\isa{op\ div}&
+\isa{op\ mod}&
+\isa{op\ dvd}\\
+\isa{op\ {\isasymle}} &
+\isa{op\ {\isacharless}} &
+\isa{min} &
+\isa{max} &
+\isa{Min} &
+\isa{Max}\\
+\end{tabular}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{of{\isacharunderscore}nat} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a}
+\end{tabular}
+
+\section{Int}
+
+Type \isa{int}
+\bigskip
+
+\begin{tabular}{@ {} llllllll @ {}}
+\isa{op\ {\isacharplus}} &
+\isa{op\ {\isacharminus}} &
+\isa{uminus} &
+\isa{op\ {\isacharasterisk}} &
+\isa{op\ {\isacharcircum}} &
+\isa{op\ div}&
+\isa{op\ mod}&
+\isa{op\ dvd}\\
+\isa{op\ {\isasymle}} &
+\isa{op\ {\isacharless}} &
+\isa{min} &
+\isa{max} &
+\isa{Min} &
+\isa{Max}\\
+\isa{abs} &
+\isa{sgn}\\
+\end{tabular}
+
+\begin{tabular}{@ {} l @ {~::~} l l @ {}}
+\isa{nat} & \isa{int\ {\isasymRightarrow}\ nat}\\
+\isa{of{\isacharunderscore}int} & \isa{int\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{{\isasymint}} & \isa{{\isacharprime}a\ set} & (\verb$Ints$)
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{int} & \isa{{\isachardoublequote}of{\isacharunderscore}nat{\isachardoublequote}}\\
+\end{tabular}
+
+
+\section{Finite\_Set}
+
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{finite} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ bool}\\
+\isa{card} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ nat}\\
+\isa{fold} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\isa{fold{\isacharunderscore}image} & \isa{{\isacharparenleft}{\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\isa{setsum} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\isa{setprod} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\end{supertabular}
+
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
+\isa{{\isasymSum}A} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ x{\isacharparenright}\ A{\isachardoublequote}} & (\verb$SUM$)\\
+\isa{{\isasymSum}x{\isasymin}A{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ A{\isachardoublequote}}\\
+\isa{{\isachardoublequote}{\isasymSum}x{\isacharbar}P{\isachardot}\ t{\isachardoublequote}} & \isa{{\isasymSum}x{\isasymin}{\isacharbraceleft}x{\isachardot}\ P{\isacharbraceright}{\isachardot}\ t}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for \isa{{\isasymProd}} instead of \isa{{\isasymSum}}} & (\verb$PROD$)\\
+\end{supertabular}
+
+
+\section{Wellfounded}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{wf} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{acyclic} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
+\isa{acc} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{measure} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ nat{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{op\ {\isacharless}{\isacharasterisk}lex{\isacharasterisk}{\isachargreater}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ {\isasymtimes}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
+\isa{op\ {\isacharless}{\isacharasterisk}mlex{\isacharasterisk}{\isachargreater}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ nat{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{less{\isacharunderscore}than} & \isa{{\isacharparenleft}nat\ {\isasymtimes}\ nat{\isacharparenright}\ set}\\
+\isa{pred{\isacharunderscore}nat} & \isa{{\isacharparenleft}nat\ {\isasymtimes}\ nat{\isacharparenright}\ set}\\
+\end{supertabular}
+
+
+\section{SetInterval}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{lessThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{atMost} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{greaterThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{atLeast} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{greaterThanLessThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{atLeastLessThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{greaterThanAtMost} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{atLeastAtMost} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{{\isacharbraceleft}{\isachardot}{\isachardot}{\isacharless}y{\isacharbraceright}} & \isa{{\isachardoublequote}lessThan\ y{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}{\isachardot}{\isachardot}y{\isacharbraceright}} & \isa{{\isachardoublequote}atMost\ y{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isacharless}{\isachardot}{\isachardot}{\isacharbraceright}} & \isa{{\isachardoublequote}greaterThan\ x{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isachardot}{\isachardot}{\isacharbraceright}} & \isa{{\isachardoublequote}atLeast\ x{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isacharless}{\isachardot}{\isachardot}{\isacharless}y{\isacharbraceright}} & \isa{{\isachardoublequote}greaterThanLessThan\ x\ y{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isachardot}{\isachardot}{\isacharless}y{\isacharbraceright}} & \isa{{\isachardoublequote}atLeastLessThan\ x\ y{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isacharless}{\isachardot}{\isachardot}y{\isacharbraceright}} & \isa{{\isachardoublequote}greaterThanAtMost\ x\ y{\isachardoublequote}}\\
+\isa{{\isacharbraceleft}x{\isachardot}{\isachardot}y{\isacharbraceright}} & \isa{{\isachardoublequote}atLeastAtMost\ x\ y{\isachardoublequote}}\\
+\isa{{\isasymUnion}\ i{\isasymle}n{\isachardot}\ A} & \isa{{\isachardoublequote}{\isasymUnion}\ i\ {\isasymin}\ {\isacharbraceleft}{\isachardot}{\isachardot}n{\isacharbraceright}{\isachardot}\ A{\isachardoublequote}}\\
+\isa{{\isasymUnion}\ i{\isacharless}n{\isachardot}\ A} & \isa{{\isachardoublequote}{\isasymUnion}\ i\ {\isasymin}\ {\isacharbraceleft}{\isachardot}{\isachardot}{\isacharless}n{\isacharbraceright}{\isachardot}\ A{\isachardoublequote}}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for \isa{{\isasymInter}} instead of \isa{{\isasymUnion}}}\\
+\isa{{\isasymSum}x\ {\isacharequal}\ a{\isachardot}{\isachardot}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}a{\isachardot}{\isachardot}b{\isacharbraceright}{\isachardoublequote}}\\
+\isa{{\isasymSum}x\ {\isacharequal}\ a{\isachardot}{\isachardot}{\isacharless}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}a{\isachardot}{\isachardot}{\isacharless}b{\isacharbraceright}{\isachardoublequote}}\\
+\isa{{\isasymSum}x{\isasymle}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}{\isachardot}{\isachardot}b{\isacharbraceright}{\isachardoublequote}}\\
+\isa{{\isasymSum}x{\isacharless}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}{\isachardot}{\isachardot}{\isacharless}b{\isacharbraceright}{\isachardoublequote}}\\
+\multicolumn{2}{@ {}l@ {}}{Similarly for \isa{{\isasymProd}} instead of \isa{{\isasymSum}}}\\
+\end{supertabular}
+
+
+\section{Power}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{op\ {\isacharcircum}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ {\isacharprime}a}
+\end{tabular}
+
+
+\section{Iterated Functions and Relations}
+
+Theory: \isa{Relation{\isacharunderscore}Power}
+
+Iterated functions \ \isa{{\isachardoublequote}{\isacharparenleft}f{\isacharcolon}{\isacharcolon}{\isacharprime}a{\isasymRightarrow}{\isacharprime}a{\isacharparenright}\ {\isacharcircum}\ n{\isachardoublequote}} \
+and relations \ \isa{{\isachardoublequote}{\isacharparenleft}r{\isacharcolon}{\isacharcolon}{\isacharparenleft}{\isacharprime}a{\isasymtimes}{\isacharprime}a{\isacharparenright}set{\isacharparenright}\ {\isacharcircum}\ n{\isachardoublequote}}.
+
+
+\section{Option}
+
+\isa{\isacommand{datatype}\ {\isacharprime}a\ option\ {\isacharequal}\ None\ {\isacharbar}\ Some\ {\isacharprime}a}
+\bigskip
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+\isa{the} & \isa{{\isacharprime}a\ option\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{Option{\isachardot}map} & \isa{{\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ option\ {\isasymRightarrow}\ {\isacharprime}b\ option{\isachardoublequote}}\\
+\isa{Option{\isachardot}set} & \isa{{\isacharprime}a\ option\ {\isasymRightarrow}\ {\isacharprime}a\ set}
+\end{tabular}
+
+\section{List}
+
+\isa{\isacommand{datatype}\ {\isacharprime}a\ list\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharbar}\ op\ {\isacharhash}\ {\isacharprime}a\ {\isacharparenleft}{\isacharprime}a\ list{\isacharparenright}}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{op\ {\isacharat}} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{butlast} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{concat} & \isa{{\isacharprime}a\ list\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{distinct} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ bool}\\
+\isa{drop} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{dropWhile} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{filter} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{foldl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{foldr} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b}\\
+\isa{hd} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{last} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{length} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ nat}\\
+\isa{lenlex} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
+\isa{lex} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
+\isa{lexn} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
+\isa{lexord} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
+\isa{listrel} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
+\isa{lists} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ list\ set}\\
+\isa{listset} & \isa{{\isacharprime}a\ set\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ set}\\
+\isa{listsum} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
+\isa{list{\isacharunderscore}all{\isadigit{2}}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ bool}\\
+\isa{list{\isacharunderscore}update} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{map} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list}\\
+\isa{measures} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ nat{\isacharparenright}\ list\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
+\isa{remdups} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{removeAll} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{remove{\isadigit{1}}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{replicate} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{rev} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{rotate} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{rotate{\isadigit{1}}} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{set} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{sort} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{sorted} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ bool}\\
+\isa{splice} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{sublist} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharparenleft}nat\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{take} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{takeWhile} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{tl} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{upt} & \isa{nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat\ list}\\
+\isa{upto} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
+\isa{zip} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ list}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{{\isacharbrackleft}x\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isacharbrackright}} & \isa{x\isactrlisub {\isadigit{1}}\ {\isacharhash}\ {\isasymdots}\ {\isacharhash}\ x\isactrlisub n\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}}\\
+\isa{{\isacharbrackleft}m{\isachardot}{\isachardot}{\isacharless}n{\isacharbrackright}} & \isa{{\isachardoublequote}upt\ m\ n{\isachardoublequote}}\\
+\isa{{\isacharbrackleft}i{\isachardot}{\isachardot}j{\isacharbrackright}} & \isa{{\isachardoublequote}upto\ i\ j{\isachardoublequote}}\\
+\isa{{\isacharbrackleft}e{\isachardot}\ x\ {\isasymleftarrow}\ xs{\isacharbrackright}} & \isa{map\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ e{\isacharparenright}\ xs}\\
+\isa{{\isacharbrackleft}x{\isasymleftarrow}xs\ {\isachardot}\ b{\isacharbrackright}} & \isa{{\isachardoublequote}filter\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharparenright}\ xs{\isachardoublequote}} \\
+\isa{xs{\isacharbrackleft}n\ {\isacharcolon}{\isacharequal}\ x{\isacharbrackright}} & \isa{{\isachardoublequote}list{\isacharunderscore}update\ xs\ n\ x{\isachardoublequote}}\\
+\isa{{\isasymSum}x{\isasymleftarrow}xs{\isachardot}\ e} & \isa{{\isachardoublequote}listsum\ {\isacharparenleft}map\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ e{\isacharparenright}\ xs{\isacharparenright}{\isachardoublequote}}\\
+\end{supertabular}
+\medskip
+
+List comprehension: \isa{{\isacharbrackleft}e{\isachardot}\ q\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ q\isactrlisub n{\isacharbrackright}} where each
+qualifier \isa{q\isactrlisub i} is either a generator \mbox{\isa{pat\ {\isasymleftarrow}\ e}} or a
+guard, i.e.\ boolean expression.
+
+\section{Map}
+
+Maps model partial functions and are often used as finite tables. However,
+the domain of a map may be infinite.
+
+\isa{{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b\ \ {\isacharequal}\ \ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ option}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\isa{Map{\isachardot}empty} & \isa{{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
+\isa{op\ {\isacharplus}{\isacharplus}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
+\isa{op\ {\isasymcirc}\isactrlsub m} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymrightharpoonup}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}c\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
+\isa{op\ {\isacharbar}{\isacharbackquote}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
+\isa{dom} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
+\isa{ran} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
+\isa{op\ {\isasymsubseteq}\isactrlsub m} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
+\isa{map{\isacharunderscore}of} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ list\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
+\isa{map{\isacharunderscore}upds} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+\isa{Map{\isachardot}empty} & \isa{{\isasymlambda}x{\isachardot}\ None}\\
+\isa{m{\isacharparenleft}x\ {\isasymmapsto}\ y{\isacharparenright}} & \isa{{\isachardoublequote}m{\isacharparenleft}x{\isacharcolon}{\isacharequal}Some\ y{\isacharparenright}{\isachardoublequote}}\\
+\isa{m{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharparenright}} & \isa{{\isachardoublequote}m{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharparenright}{\isasymdots}{\isacharparenleft}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharparenright}{\isachardoublequote}}\\
+\isa{{\isacharbrackleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharbrackright}} & \isa{{\isachardoublequote}Map{\isachardot}empty{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharparenright}{\isachardoublequote}}\\
+\isa{m{\isacharparenleft}xs\ {\isacharbrackleft}{\isasymmapsto}{\isacharbrackright}\ ys{\isacharparenright}} & \isa{{\isachardoublequote}map{\isacharunderscore}upds\ m\ xs\ ys{\isachardoublequote}}\\
+\end{tabular}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End:
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Main/IsaMakefile Wed Mar 11 20:11:06 2009 +0100
@@ -0,0 +1,31 @@
+
+## targets
+
+default: HOL-Docs
+images:
+test: HOL-Docs
+
+all: images test
+
+
+## global settings
+
+SRC = $(ISABELLE_HOME)/src
+OUT = $(ISABELLE_OUTPUT)
+LOG = $(OUT)/log
+
+USEDIR = $(ISABELLE_TOOL) usedir -v true -i false -d false -C false -D document
+
+
+## sessions
+
+HOL-Docs: $(LOG)/HOL-Docs.gz
+
+$(LOG)/HOL-Docs.gz: Docs/Main_Doc.thy Docs/ROOT.ML
+ @$(USEDIR) HOL Docs
+
+
+## clean
+
+clean:
+ @rm -f $(LOG)/HOL-Docs.gz
--- a/doc-src/Main/Main_Doc.tex Wed Mar 11 20:09:23 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,597 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Main{\isacharunderscore}Doc}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isadelimML
-%
-\endisadelimML
-%
-\isatagML
-%
-\endisatagML
-{\isafoldML}%
-%
-\isadelimML
-%
-\endisadelimML
-%
-\begin{isamarkuptext}%
-\begin{abstract}
-This document lists the main types, functions and syntax provided by theory \isa{Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/dist/library/HOL/}.
-\end{abstract}
-
-\section{HOL}
-
-The basic logic: \isa{x\ {\isacharequal}\ y}, \isa{True}, \isa{False}, \isa{{\isasymnot}\ P}, \isa{P\ {\isasymand}\ Q}, \isa{P\ {\isasymor}\ Q}, \isa{P\ {\isasymlongrightarrow}\ Q}, \isa{{\isasymforall}x{\isachardot}\ P}, \isa{{\isasymexists}x{\isachardot}\ P}, \isa{{\isasymexists}{\isacharbang}x{\isachardot}\ P}, \isa{THE\ x{\isachardot}\ P}.
-\smallskip
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{undefined} & \isa{{\isacharprime}a}\\
-\isa{default} & \isa{{\isacharprime}a}\\
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-\isa{x\ {\isasymnoteq}\ y} & \isa{{\isachardoublequote}{\isasymnot}\ {\isacharparenleft}x\ {\isacharequal}\ y{\isacharparenright}{\isachardoublequote}} & (\verb$~=$)\\
-\isa{{\isachardoublequote}P\ {\isasymlongleftrightarrow}\ Q{\isachardoublequote}} & \isa{P\ {\isacharequal}\ Q} \\
-\isa{if\ x\ then\ y\ else\ z} & \isa{{\isachardoublequote}If\ x\ y\ z{\isachardoublequote}}\\
-\isa{let\ x\ {\isacharequal}\ e\isactrlisub {\isadigit{1}}\ in\ e\isactrlisub {\isadigit{2}}} & \isa{{\isachardoublequote}Let\ e\isactrlisub {\isadigit{1}}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ e\isactrlisub {\isadigit{2}}{\isacharparenright}{\isachardoublequote}}\\
-\end{supertabular}
-
-
-\section{Orderings}
-
-A collection of classes defining basic orderings:
-preorder, partial order, linear order, dense linear order and wellorder.
-\smallskip
-
-\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
-\isa{op\ {\isasymle}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ bool} & (\verb$<=$)\\
-\isa{op\ {\isacharless}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ bool}\\
-\isa{Least} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{min} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{max} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{top} & \isa{{\isacharprime}a}\\
-\isa{bot} & \isa{{\isacharprime}a}\\
-\isa{mono} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{strict{\isacharunderscore}mono} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-\isa{{\isachardoublequote}x\ {\isasymge}\ y{\isachardoublequote}} & \isa{y\ {\isasymle}\ x} & (\verb$>=$)\\
-\isa{{\isachardoublequote}x\ {\isachargreater}\ y{\isachardoublequote}} & \isa{y\ {\isacharless}\ x}\\
-\isa{{\isasymforall}x{\isasymle}y{\isachardot}\ P} & \isa{{\isachardoublequote}{\isasymforall}x{\isachardot}\ x\ {\isasymle}\ y\ {\isasymlongrightarrow}\ P{\isachardoublequote}}\\
-\isa{{\isasymexists}x{\isasymle}y{\isachardot}\ P} & \isa{{\isachardoublequote}{\isasymexists}x{\isachardot}\ x\ {\isasymle}\ y\ {\isasymand}\ P{\isachardoublequote}}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
-\isa{LEAST\ x{\isachardot}\ P} & \isa{{\isachardoublequote}Least\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
-\end{supertabular}
-
-
-\section{Lattices}
-
-Classes semilattice, lattice, distributive lattice and complete lattice (the
-latter in theory \isa{Set}).
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{inf} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{sup} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{Inf} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{Sup} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-Available by loading theory \isa{Lattice{\isacharunderscore}Syntax} in directory \isa{Library}.
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{{\isachardoublequote}x\ {\isasymsqsubseteq}\ y{\isachardoublequote}} & \isa{x\ {\isasymle}\ y}\\
-\isa{{\isachardoublequote}x\ {\isasymsqsubset}\ y{\isachardoublequote}} & \isa{x\ {\isacharless}\ y}\\
-\isa{{\isachardoublequote}x\ {\isasymsqinter}\ y{\isachardoublequote}} & \isa{inf\ x\ y}\\
-\isa{{\isachardoublequote}x\ {\isasymsqunion}\ y{\isachardoublequote}} & \isa{sup\ x\ y}\\
-\isa{{\isachardoublequote}{\isasymSqinter}\ A{\isachardoublequote}} & \isa{Sup\ A}\\
-\isa{{\isachardoublequote}{\isasymSqunion}\ A{\isachardoublequote}} & \isa{Inf\ A}\\
-\isa{{\isachardoublequote}{\isasymtop}{\isachardoublequote}} & \isa{top}\\
-\isa{{\isachardoublequote}{\isasymbottom}{\isachardoublequote}} & \isa{bot}\\
-\end{supertabular}
-
-
-\section{Set}
-
-Sets are predicates: \isa{{\isachardoublequote}{\isacharprime}a\ set\ \ {\isacharequal}\ \ {\isacharprime}a\ {\isasymRightarrow}\ bool{\isachardoublequote}}
-\bigskip
-
-\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
-\isa{{\isacharbraceleft}{\isacharbraceright}} & \isa{{\isacharprime}a\ set}\\
-\isa{insert} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{Collect} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{op\ {\isasymin}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ bool} & (\texttt{:})\\
-\isa{op\ {\isasymunion}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set} & (\texttt{Un})\\
-\isa{op\ {\isasyminter}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set} & (\texttt{Int})\\
-\isa{UNION} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
-\isa{INTER} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
-\isa{Union} & \isa{{\isacharprime}a\ set\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{Inter} & \isa{{\isacharprime}a\ set\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{Pow} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ set}\\
-\isa{UNIV} & \isa{{\isacharprime}a\ set}\\
-\isa{op\ {\isacharbackquote}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
-\isa{Ball} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{Bex} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-\isa{{\isacharbraceleft}x\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isacharbraceright}} & \isa{insert\ x\isactrlisub {\isadigit{1}}\ {\isacharparenleft}{\isasymdots}\ {\isacharparenleft}insert\ x\isactrlisub n\ {\isacharbraceleft}{\isacharbraceright}{\isacharparenright}{\isasymdots}{\isacharparenright}}\\
-\isa{x\ {\isasymnotin}\ A} & \isa{{\isachardoublequote}{\isasymnot}{\isacharparenleft}x\ {\isasymin}\ A{\isacharparenright}{\isachardoublequote}}\\
-\isa{A\ {\isasymsubseteq}\ B} & \isa{{\isachardoublequote}A\ {\isasymle}\ B{\isachardoublequote}}\\
-\isa{A\ {\isasymsubset}\ B} & \isa{{\isachardoublequote}A\ {\isacharless}\ B{\isachardoublequote}}\\
-\isa{{\isachardoublequote}A\ {\isasymsupseteq}\ B{\isachardoublequote}} & \isa{{\isachardoublequote}B\ {\isasymle}\ A{\isachardoublequote}}\\
-\isa{{\isachardoublequote}A\ {\isasymsupset}\ B{\isachardoublequote}} & \isa{{\isachardoublequote}B\ {\isacharless}\ A{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isachardot}\ P{\isacharbraceright}} & \isa{{\isachardoublequote}Collect\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
-\isa{{\isasymUnion}x{\isasymin}I{\isachardot}\ A} & \isa{{\isachardoublequote}UNION\ I\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}} & (\texttt{UN})\\
-\isa{{\isasymUnion}x{\isachardot}\ A} & \isa{{\isachardoublequote}UNION\ UNIV\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}}\\
-\isa{{\isasymInter}x{\isasymin}I{\isachardot}\ A} & \isa{{\isachardoublequote}INTER\ I\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}} & (\texttt{INT})\\
-\isa{{\isasymInter}x{\isachardot}\ A} & \isa{{\isachardoublequote}INTER\ UNIV\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ A{\isacharparenright}{\isachardoublequote}}\\
-\isa{{\isasymforall}x{\isasymin}A{\isachardot}\ P} & \isa{{\isachardoublequote}Ball\ A\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
-\isa{{\isasymexists}x{\isasymin}A{\isachardot}\ P} & \isa{{\isachardoublequote}Bex\ A\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P{\isacharparenright}{\isachardoublequote}}\\
-\isa{range\ f} & \isa{{\isachardoublequote}f\ {\isacharbackquote}\ UNIV{\isachardoublequote}}\\
-\end{supertabular}
-
-
-\section{Fun}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{id} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{op\ {\isasymcirc}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}c\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\isa{inj{\isacharunderscore}on} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ bool}\\
-\isa{inj} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{surj} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{bij} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{bij{\isacharunderscore}betw} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set\ {\isasymRightarrow}\ bool}\\
-\isa{fun{\isacharunderscore}upd} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{f{\isacharparenleft}x\ {\isacharcolon}{\isacharequal}\ y{\isacharparenright}} & \isa{{\isachardoublequote}fun{\isacharunderscore}upd\ f\ x\ y{\isachardoublequote}}\\
-\isa{f{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isacharcolon}{\isacharequal}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isacharcolon}{\isacharequal}y\isactrlisub n{\isacharparenright}} & \isa{f{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isacharcolon}{\isacharequal}y\isactrlisub {\isadigit{1}}{\isacharparenright}{\isasymdots}{\isacharparenleft}x\isactrlisub n{\isacharcolon}{\isacharequal}y\isactrlisub n{\isacharparenright}}\\
-\end{tabular}
-
-
-\section{Fixed Points}
-
-Theory: \isa{Inductive}.
-
-Least and greatest fixed points in a complete lattice \isa{{\isacharprime}a}:
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{lfp} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{gfp} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\end{tabular}
-
-Note that in particular sets (\isa{{\isacharprime}a\ {\isasymRightarrow}\ bool}) are complete lattices.
-
-\section{Sum\_Type}
-
-Type constructor \isa{{\isacharplus}}.
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{Inl} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isacharplus}\ {\isacharprime}b}\\
-\isa{Inr} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isacharplus}\ {\isacharprime}a}\\
-\isa{op\ {\isacharless}{\isacharplus}{\isachargreater}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isacharplus}\ {\isacharprime}b{\isacharparenright}\ set}
-\end{tabular}
-
-
-\section{Product\_Type}
-
-Types \isa{unit} and \isa{{\isasymtimes}}.
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{{\isacharparenleft}{\isacharparenright}} & \isa{unit}\\
-\isa{Pair} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}\\
-\isa{fst} & \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{snd} & \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\isa{split} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c}\\
-\isa{curry} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c}\\
-\isa{Sigma} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
-\isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}} & \isa{{\isachardoublequote}Pair\ a\ b{\isachardoublequote}}\\
-\isa{{\isasymlambda}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}{\isachardot}\ t} & \isa{{\isachardoublequote}split\ {\isacharparenleft}{\isasymlambda}x\ y{\isachardot}\ t{\isacharparenright}{\isachardoublequote}}\\
-\isa{A\ {\isasymtimes}\ B} & \isa{Sigma\ A\ {\isacharparenleft}{\isasymlambda}\_{\isachardot}\ B{\isacharparenright}} & (\verb$<*>$)
-\end{tabular}
-
-Pairs may be nested. Nesting to the right is printed as a tuple,
-e.g.\ \mbox{\isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharcomma}\ c{\isacharparenright}}} is really \mbox{\isa{{\isacharparenleft}a{\isacharcomma}\ {\isacharparenleft}b{\isacharcomma}\ c{\isacharparenright}{\isacharparenright}}.}
-Pattern matching with pairs and tuples extends to all binders,
-e.g.\ \mbox{\isa{{\isasymforall}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}{\isasymin}A{\isachardot}\ P},} \isa{{\isacharbraceleft}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}{\isachardot}\ P{\isacharbraceright}}, etc.
-
-
-\section{Relation}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{converse} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{op\ O} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
-\isa{op\ {\isacharbackquote}{\isacharbackquote}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
-\isa{inv{\isacharunderscore}image} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
-\isa{Id{\isacharunderscore}on} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{Id} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{Domain} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{Range} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
-\isa{Field} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{refl{\isacharunderscore}on} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{refl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{sym} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{antisym} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{trans} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{irrefl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{total{\isacharunderscore}on} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{total} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-\isa{r{\isasyminverse}} & \isa{{\isachardoublequote}converse\ r{\isachardoublequote}} & (\verb$^-1$)
-\end{tabular}
-
-\section{Equiv\_Relations}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{equiv} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{op\ {\isacharslash}{\isacharslash}} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set\ set}\\
-\isa{congruent} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{congruent{\isadigit{2}}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}c{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{f\ respects\ r} & \isa{{\isachardoublequote}congruent\ r\ f{\isachardoublequote}}\\
-\isa{f\ respects{\isadigit{2}}\ r} & \isa{{\isachardoublequote}congruent{\isadigit{2}}\ r\ r\ f{\isachardoublequote}}\\
-\end{tabular}
-
-
-\section{Transitive\_Closure}
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{rtrancl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{trancl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{reflcl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-\isa{r\isactrlsup {\isacharasterisk}} & \isa{{\isachardoublequote}rtrancl\ r{\isachardoublequote}} & (\verb$^*$)\\
-\isa{r\isactrlsup {\isacharplus}} & \isa{{\isachardoublequote}trancl\ r{\isachardoublequote}} & (\verb$^+$)\\
-\isa{r\isactrlsup {\isacharequal}} & \isa{{\isachardoublequote}reflcl\ r{\isachardoublequote}} & (\verb$^=$)
-\end{tabular}
-
-
-\section{Algebra}
-
-Theories \isa{OrderedGroup}, \isa{Ring{\isacharunderscore}and{\isacharunderscore}Field} and \isa{Divides} define a large collection of classes describing common algebraic
-structures from semigroups up to fields. Everything is done in terms of
-overloaded operators:
-
-\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
-\isa{{\isadigit{0}}} & \isa{{\isacharprime}a}\\
-\isa{{\isadigit{1}}} & \isa{{\isacharprime}a}\\
-\isa{op\ {\isacharplus}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{op\ {\isacharminus}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{uminus} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a} & (\verb$-$)\\
-\isa{op\ {\isacharasterisk}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{inverse} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{op\ {\isacharslash}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{abs} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{sgn} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{op\ dvd} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ bool}\\
-\isa{op\ div} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{op\ mod} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{{\isasymbar}x{\isasymbar}} & \isa{{\isachardoublequote}abs\ x{\isachardoublequote}}
-\end{tabular}
-
-
-\section{Nat}
-
-\isa{\isacommand{datatype}\ nat\ {\isacharequal}\ {\isadigit{0}}\ {\isacharbar}\ Suc\ nat}
-\bigskip
-
-\begin{tabular}{@ {} lllllll @ {}}
-\isa{op\ {\isacharplus}} &
-\isa{op\ {\isacharminus}} &
-\isa{op\ {\isacharasterisk}} &
-\isa{op\ {\isacharcircum}} &
-\isa{op\ div}&
-\isa{op\ mod}&
-\isa{op\ dvd}\\
-\isa{op\ {\isasymle}} &
-\isa{op\ {\isacharless}} &
-\isa{min} &
-\isa{max} &
-\isa{Min} &
-\isa{Max}\\
-\end{tabular}
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{of{\isacharunderscore}nat} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a}
-\end{tabular}
-
-\section{Int}
-
-Type \isa{int}
-\bigskip
-
-\begin{tabular}{@ {} llllllll @ {}}
-\isa{op\ {\isacharplus}} &
-\isa{op\ {\isacharminus}} &
-\isa{uminus} &
-\isa{op\ {\isacharasterisk}} &
-\isa{op\ {\isacharcircum}} &
-\isa{op\ div}&
-\isa{op\ mod}&
-\isa{op\ dvd}\\
-\isa{op\ {\isasymle}} &
-\isa{op\ {\isacharless}} &
-\isa{min} &
-\isa{max} &
-\isa{Min} &
-\isa{Max}\\
-\isa{abs} &
-\isa{sgn}\\
-\end{tabular}
-
-\begin{tabular}{@ {} l @ {~::~} l l @ {}}
-\isa{nat} & \isa{int\ {\isasymRightarrow}\ nat}\\
-\isa{of{\isacharunderscore}int} & \isa{int\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{{\isasymint}} & \isa{{\isacharprime}a\ set} & (\verb$Ints$)
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{int} & \isa{{\isachardoublequote}of{\isacharunderscore}nat{\isachardoublequote}}\\
-\end{tabular}
-
-
-\section{Finite\_Set}
-
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{finite} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ bool}\\
-\isa{card} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ nat}\\
-\isa{fold} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\isa{fold{\isacharunderscore}image} & \isa{{\isacharparenleft}{\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\isa{setsum} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\isa{setprod} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\end{supertabular}
-
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-\isa{{\isasymSum}A} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ x{\isacharparenright}\ A{\isachardoublequote}} & (\verb$SUM$)\\
-\isa{{\isasymSum}x{\isasymin}A{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ A{\isachardoublequote}}\\
-\isa{{\isachardoublequote}{\isasymSum}x{\isacharbar}P{\isachardot}\ t{\isachardoublequote}} & \isa{{\isasymSum}x{\isasymin}{\isacharbraceleft}x{\isachardot}\ P{\isacharbraceright}{\isachardot}\ t}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for \isa{{\isasymProd}} instead of \isa{{\isasymSum}}} & (\verb$PROD$)\\
-\end{supertabular}
-
-
-\section{Wellfounded}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{wf} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{acyclic} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ bool}\\
-\isa{acc} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{measure} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ nat{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{op\ {\isacharless}{\isacharasterisk}lex{\isacharasterisk}{\isachargreater}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ {\isasymtimes}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ set}\\
-\isa{op\ {\isacharless}{\isacharasterisk}mlex{\isacharasterisk}{\isachargreater}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ nat{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{less{\isacharunderscore}than} & \isa{{\isacharparenleft}nat\ {\isasymtimes}\ nat{\isacharparenright}\ set}\\
-\isa{pred{\isacharunderscore}nat} & \isa{{\isacharparenleft}nat\ {\isasymtimes}\ nat{\isacharparenright}\ set}\\
-\end{supertabular}
-
-
-\section{SetInterval}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{lessThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{atMost} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{greaterThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{atLeast} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{greaterThanLessThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{atLeastLessThan} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{greaterThanAtMost} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{atLeastAtMost} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{{\isacharbraceleft}{\isachardot}{\isachardot}{\isacharless}y{\isacharbraceright}} & \isa{{\isachardoublequote}lessThan\ y{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}{\isachardot}{\isachardot}y{\isacharbraceright}} & \isa{{\isachardoublequote}atMost\ y{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isacharless}{\isachardot}{\isachardot}{\isacharbraceright}} & \isa{{\isachardoublequote}greaterThan\ x{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isachardot}{\isachardot}{\isacharbraceright}} & \isa{{\isachardoublequote}atLeast\ x{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isacharless}{\isachardot}{\isachardot}{\isacharless}y{\isacharbraceright}} & \isa{{\isachardoublequote}greaterThanLessThan\ x\ y{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isachardot}{\isachardot}{\isacharless}y{\isacharbraceright}} & \isa{{\isachardoublequote}atLeastLessThan\ x\ y{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isacharless}{\isachardot}{\isachardot}y{\isacharbraceright}} & \isa{{\isachardoublequote}greaterThanAtMost\ x\ y{\isachardoublequote}}\\
-\isa{{\isacharbraceleft}x{\isachardot}{\isachardot}y{\isacharbraceright}} & \isa{{\isachardoublequote}atLeastAtMost\ x\ y{\isachardoublequote}}\\
-\isa{{\isasymUnion}\ i{\isasymle}n{\isachardot}\ A} & \isa{{\isachardoublequote}{\isasymUnion}\ i\ {\isasymin}\ {\isacharbraceleft}{\isachardot}{\isachardot}n{\isacharbraceright}{\isachardot}\ A{\isachardoublequote}}\\
-\isa{{\isasymUnion}\ i{\isacharless}n{\isachardot}\ A} & \isa{{\isachardoublequote}{\isasymUnion}\ i\ {\isasymin}\ {\isacharbraceleft}{\isachardot}{\isachardot}{\isacharless}n{\isacharbraceright}{\isachardot}\ A{\isachardoublequote}}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for \isa{{\isasymInter}} instead of \isa{{\isasymUnion}}}\\
-\isa{{\isasymSum}x\ {\isacharequal}\ a{\isachardot}{\isachardot}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}a{\isachardot}{\isachardot}b{\isacharbraceright}{\isachardoublequote}}\\
-\isa{{\isasymSum}x\ {\isacharequal}\ a{\isachardot}{\isachardot}{\isacharless}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}a{\isachardot}{\isachardot}{\isacharless}b{\isacharbraceright}{\isachardoublequote}}\\
-\isa{{\isasymSum}x{\isasymle}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}{\isachardot}{\isachardot}b{\isacharbraceright}{\isachardoublequote}}\\
-\isa{{\isasymSum}x{\isacharless}b{\isachardot}\ t} & \isa{{\isachardoublequote}setsum\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ t{\isacharparenright}\ {\isacharbraceleft}{\isachardot}{\isachardot}{\isacharless}b{\isacharbraceright}{\isachardoublequote}}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for \isa{{\isasymProd}} instead of \isa{{\isasymSum}}}\\
-\end{supertabular}
-
-
-\section{Power}
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{op\ {\isacharcircum}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ {\isacharprime}a}
-\end{tabular}
-
-
-\section{Iterated Functions and Relations}
-
-Theory: \isa{Relation{\isacharunderscore}Power}
-
-Iterated functions \ \isa{{\isachardoublequote}{\isacharparenleft}f{\isacharcolon}{\isacharcolon}{\isacharprime}a{\isasymRightarrow}{\isacharprime}a{\isacharparenright}\ {\isacharcircum}\ n{\isachardoublequote}} \
-and relations \ \isa{{\isachardoublequote}{\isacharparenleft}r{\isacharcolon}{\isacharcolon}{\isacharparenleft}{\isacharprime}a{\isasymtimes}{\isacharprime}a{\isacharparenright}set{\isacharparenright}\ {\isacharcircum}\ n{\isachardoublequote}}.
-
-
-\section{Option}
-
-\isa{\isacommand{datatype}\ {\isacharprime}a\ option\ {\isacharequal}\ None\ {\isacharbar}\ Some\ {\isacharprime}a}
-\bigskip
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{the} & \isa{{\isacharprime}a\ option\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{Option{\isachardot}map} & \isa{{\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ option\ {\isasymRightarrow}\ {\isacharprime}b\ option{\isachardoublequote}}\\
-\isa{Option{\isachardot}set} & \isa{{\isacharprime}a\ option\ {\isasymRightarrow}\ {\isacharprime}a\ set}
-\end{tabular}
-
-\section{List}
-
-\isa{\isacommand{datatype}\ {\isacharprime}a\ list\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharbar}\ op\ {\isacharhash}\ {\isacharprime}a\ {\isacharparenleft}{\isacharprime}a\ list{\isacharparenright}}
-\bigskip
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{op\ {\isacharat}} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{butlast} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{concat} & \isa{{\isacharprime}a\ list\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{distinct} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ bool}\\
-\isa{drop} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{dropWhile} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{filter} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{foldl} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{foldr} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}b}\\
-\isa{hd} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{last} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{length} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ nat}\\
-\isa{lenlex} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
-\isa{lex} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
-\isa{lexn} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
-\isa{lexord} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
-\isa{listrel} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ list\ {\isasymtimes}\ {\isacharprime}a\ list{\isacharparenright}\ set}\\
-\isa{lists} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ list\ set}\\
-\isa{listset} & \isa{{\isacharprime}a\ set\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ set}\\
-\isa{listsum} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a}\\
-\isa{list{\isacharunderscore}all{\isadigit{2}}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ bool}\\
-\isa{list{\isacharunderscore}update} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{map} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list}\\
-\isa{measures} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ nat{\isacharparenright}\ list\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}\ set}\\
-\isa{remdups} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{removeAll} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{remove{\isadigit{1}}} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{replicate} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{rev} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{rotate} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{rotate{\isadigit{1}}} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{set} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{sort} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{sorted} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ bool}\\
-\isa{splice} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{sublist} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharparenleft}nat\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{take} & \isa{nat\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{takeWhile} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{tl} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{upt} & \isa{nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat\ list}\\
-\isa{upto} & \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ list}\\
-\isa{zip} & \isa{{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ list}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{{\isacharbrackleft}x\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isacharbrackright}} & \isa{x\isactrlisub {\isadigit{1}}\ {\isacharhash}\ {\isasymdots}\ {\isacharhash}\ x\isactrlisub n\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}}\\
-\isa{{\isacharbrackleft}m{\isachardot}{\isachardot}{\isacharless}n{\isacharbrackright}} & \isa{{\isachardoublequote}upt\ m\ n{\isachardoublequote}}\\
-\isa{{\isacharbrackleft}i{\isachardot}{\isachardot}j{\isacharbrackright}} & \isa{{\isachardoublequote}upto\ i\ j{\isachardoublequote}}\\
-\isa{{\isacharbrackleft}e{\isachardot}\ x\ {\isasymleftarrow}\ xs{\isacharbrackright}} & \isa{map\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ e{\isacharparenright}\ xs}\\
-\isa{{\isacharbrackleft}x{\isasymleftarrow}xs\ {\isachardot}\ b{\isacharbrackright}} & \isa{{\isachardoublequote}filter\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharparenright}\ xs{\isachardoublequote}} \\
-\isa{xs{\isacharbrackleft}n\ {\isacharcolon}{\isacharequal}\ x{\isacharbrackright}} & \isa{{\isachardoublequote}list{\isacharunderscore}update\ xs\ n\ x{\isachardoublequote}}\\
-\isa{{\isasymSum}x{\isasymleftarrow}xs{\isachardot}\ e} & \isa{{\isachardoublequote}listsum\ {\isacharparenleft}map\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ e{\isacharparenright}\ xs{\isacharparenright}{\isachardoublequote}}\\
-\end{supertabular}
-\medskip
-
-List comprehension: \isa{{\isacharbrackleft}e{\isachardot}\ q\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ q\isactrlisub n{\isacharbrackright}} where each
-qualifier \isa{q\isactrlisub i} is either a generator \mbox{\isa{pat\ {\isasymleftarrow}\ e}} or a
-guard, i.e.\ boolean expression.
-
-\section{Map}
-
-Maps model partial functions and are often used as finite tables. However,
-the domain of a map may be infinite.
-
-\isa{{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b\ \ {\isacharequal}\ \ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b\ option}
-\bigskip
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-\isa{Map{\isachardot}empty} & \isa{{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
-\isa{op\ {\isacharplus}{\isacharplus}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
-\isa{op\ {\isasymcirc}\isactrlsub m} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}c\ {\isasymrightharpoonup}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}c\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
-\isa{op\ {\isacharbar}{\isacharbackquote}} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
-\isa{dom} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ set}\\
-\isa{ran} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ set}\\
-\isa{op\ {\isasymsubseteq}\isactrlsub m} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ bool}\\
-\isa{map{\isacharunderscore}of} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b{\isacharparenright}\ list\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
-\isa{map{\isacharunderscore}upds} & \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}b\ list\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymrightharpoonup}\ {\isacharprime}b}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{Map{\isachardot}empty} & \isa{{\isasymlambda}x{\isachardot}\ None}\\
-\isa{m{\isacharparenleft}x\ {\isasymmapsto}\ y{\isacharparenright}} & \isa{{\isachardoublequote}m{\isacharparenleft}x{\isacharcolon}{\isacharequal}Some\ y{\isacharparenright}{\isachardoublequote}}\\
-\isa{m{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharparenright}} & \isa{{\isachardoublequote}m{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharparenright}{\isasymdots}{\isacharparenleft}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharparenright}{\isachardoublequote}}\\
-\isa{{\isacharbrackleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharbrackright}} & \isa{{\isachardoublequote}Map{\isachardot}empty{\isacharparenleft}x\isactrlisub {\isadigit{1}}{\isasymmapsto}y\isactrlisub {\isadigit{1}}{\isacharcomma}{\isasymdots}{\isacharcomma}x\isactrlisub n{\isasymmapsto}y\isactrlisub n{\isacharparenright}{\isachardoublequote}}\\
-\isa{m{\isacharparenleft}xs\ {\isacharbrackleft}{\isasymmapsto}{\isacharbrackright}\ ys{\isacharparenright}} & \isa{{\isachardoublequote}map{\isacharunderscore}upds\ m\ xs\ ys{\isachardoublequote}}\\
-\end{tabular}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End:
--- a/doc-src/Main/Makefile Wed Mar 11 20:09:23 2009 +0100
+++ b/doc-src/Main/Makefile Wed Mar 11 20:11:06 2009 +0100
@@ -1,6 +1,3 @@
-#
-# $Id$
-#
## targets
@@ -11,12 +8,10 @@
include ../Makefile.in
-SRC = ../../src/HOL/Docs/generated
-
NAME = main
-FILES = $(NAME).tex Main_Doc.tex \
- isabelle.sty isabellesym.sty pdfsetup.sty
+FILES = ../isabelle.sty ../isabellesym.sty ../pdfsetup.sty $(NAME).tex \
+ Docs/document/Main_Doc.tex
dvi: $(NAME).dvi
@@ -27,19 +22,3 @@
$(NAME).pdf: $(FILES)
$(PDFLATEX) $(NAME)
- $(FIXBOOKMARKS) $(NAME).out
- $(PDFLATEX) $(NAME)
- $(PDFLATEX) $(NAME)
-
-isabelle.sty:
- ln ../isabelle.sty .
-
-isabellesym.sty:
- ln ../isabellesym.sty .
-
-pdfsetup.sty:
- ln ../pdfsetup.sty .
-
-copy:
- cp $(SRC)/Main_Doc.tex Main_Doc.tex
- cp $(SRC)/root.tex main.tex
--- a/doc-src/Main/main.tex Wed Mar 11 20:09:23 2009 +0100
+++ b/doc-src/Main/main.tex Wed Mar 11 20:11:06 2009 +0100
@@ -8,7 +8,7 @@
\headsep=0mm
\textheight=234mm
-\usepackage{isabelle,isabellesym}
+\usepackage{../isabelle,../isabellesym}
% further packages required for unusual symbols (see also
% isabellesym.sty), use only when needed
@@ -36,7 +36,7 @@
%for \<cent>, \<currency>
% this should be the last package used
-\usepackage{pdfsetup}
+\usepackage{../pdfsetup}
% urls in roman style, theory text in math-similar italics
\urlstyle{rm}
@@ -56,7 +56,7 @@
\date{\today}
\maketitle
-\input{Main_Doc}
+\input{Docs/document/Main_Doc.tex}
% optional bibliography
%\bibliographystyle{abbrv}
--- a/doc/Contents Wed Mar 11 20:09:23 2009 +0100
+++ b/doc/Contents Wed Mar 11 20:11:06 2009 +0100
@@ -8,6 +8,7 @@
sugar LaTeX sugar for proof documents
Reference Manuals
+ main What's in Main
isar-ref The Isabelle/Isar Reference Manual
implementation The Isabelle/Isar Implementation Manual
system The Isabelle System Manual
--- a/src/HOL/Docs/Main_Doc.thy Wed Mar 11 20:09:23 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,572 +0,0 @@
-(*<*)
-theory Main_Doc
-imports Main
-begin
-
-ML {*
-fun pretty_term_type_only ctxt (t, T) =
- (if fastype_of t = Sign.certify_typ (ProofContext.theory_of ctxt) T then ()
- else error "term_type_only: type mismatch";
- Syntax.pretty_typ ctxt T)
-
-val _ = ThyOutput.antiquotation "term_type_only" (Args.term -- Args.typ_abbrev)
- (fn {source, context, ...} => fn arg =>
- ThyOutput.output
- (ThyOutput.maybe_pretty_source (pretty_term_type_only context) source [arg]));
-*}
-(*>*)
-text{*
-
-\begin{abstract}
-This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/dist/library/HOL/}.
-\end{abstract}
-
-\section{HOL}
-
-The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}.
-\smallskip
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const HOL.undefined} & @{typeof HOL.undefined}\\
-@{const HOL.default} & @{typeof HOL.default}\\
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-@{term"~(x = y)"} & @{term[source]"\<not> (x = y)"} & (\verb$~=$)\\
-@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
-@{term"If x y z"} & @{term[source]"If x y z"}\\
-@{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\<lambda>x. e\<^isub>2)"}\\
-\end{supertabular}
-
-
-\section{Orderings}
-
-A collection of classes defining basic orderings:
-preorder, partial order, linear order, dense linear order and wellorder.
-\smallskip
-
-\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
-@{const HOL.less_eq} & @{typeof HOL.less_eq} & (\verb$<=$)\\
-@{const HOL.less} & @{typeof HOL.less}\\
-@{const Orderings.Least} & @{typeof Orderings.Least}\\
-@{const Orderings.min} & @{typeof Orderings.min}\\
-@{const Orderings.max} & @{typeof Orderings.max}\\
-@{const[source] top} & @{typeof Orderings.top}\\
-@{const[source] bot} & @{typeof Orderings.bot}\\
-@{const Orderings.mono} & @{typeof Orderings.mono}\\
-@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-@{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\verb$>=$)\\
-@{term[source]"x > y"} & @{term"x > y"}\\
-@{term"ALL x<=y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
-@{term"EX x<=y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
-@{term"LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
-\end{supertabular}
-
-
-\section{Lattices}
-
-Classes semilattice, lattice, distributive lattice and complete lattice (the
-latter in theory @{theory Set}).
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Lattices.inf} & @{typeof Lattices.inf}\\
-@{const Lattices.sup} & @{typeof Lattices.sup}\\
-@{const Set.Inf} & @{term_type_only Set.Inf "'a set \<Rightarrow> 'a::complete_lattice"}\\
-@{const Set.Sup} & @{term_type_only Set.Sup "'a set \<Rightarrow> 'a::complete_lattice"}\\
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-Available by loading theory @{text Lattice_Syntax} in directory @{text
-Library}.
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
-@{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
-@{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
-@{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
-@{text[source]"\<Sqinter> A"} & @{term"Sup A"}\\
-@{text[source]"\<Squnion> A"} & @{term"Inf A"}\\
-@{text[source]"\<top>"} & @{term[source] top}\\
-@{text[source]"\<bottom>"} & @{term[source] bot}\\
-\end{supertabular}
-
-
-\section{Set}
-
-Sets are predicates: @{text[source]"'a set = 'a \<Rightarrow> bool"}
-\bigskip
-
-\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
-@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
-@{const insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
-@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
-@{const "op :"} & @{term_type_only "op :" "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\texttt{:})\\
-@{const Set.Un} & @{term_type_only Set.Un "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Un})\\
-@{const Set.Int} & @{term_type_only Set.Int "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Int})\\
-@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
-@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
-@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
-@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
-@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
-@{const UNIV} & @{term_type_only UNIV "'a set"}\\
-@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
-@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
-@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-@{text"{x\<^isub>1,\<dots>,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\<dots> (insert x\<^isub>n {})\<dots>)"}\\
-@{term"x ~: A"} & @{term[source]"\<not>(x \<in> A)"}\\
-@{term"A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
-@{term"A \<subset> B"} & @{term[source]"A < B"}\\
-@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
-@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
-@{term"{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
-@{term[mode=xsymbols]"UN x:I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
-@{term[mode=xsymbols]"UN x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
-@{term[mode=xsymbols]"INT x:I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
-@{term[mode=xsymbols]"INT x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
-@{term"ALL x:A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
-@{term"EX x:A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
-@{term"range f"} & @{term[source]"f ` UNIV"}\\
-\end{supertabular}
-
-
-\section{Fun}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const "Fun.id"} & @{typeof Fun.id}\\
-@{const "Fun.comp"} & @{typeof Fun.comp}\\
-@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
-@{const "Fun.inj"} & @{typeof Fun.inj}\\
-@{const "Fun.surj"} & @{typeof Fun.surj}\\
-@{const "Fun.bij"} & @{typeof Fun.bij}\\
-@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
-@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
-@{text"f(x\<^isub>1:=y\<^isub>1,\<dots>,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\<dots>(x\<^isub>n:=y\<^isub>n)"}\\
-\end{tabular}
-
-
-\section{Fixed Points}
-
-Theory: @{theory Inductive}.
-
-Least and greatest fixed points in a complete lattice @{typ 'a}:
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
-@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
-\end{tabular}
-
-Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
-
-\section{Sum\_Type}
-
-Type constructor @{text"+"}.
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
-@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
-@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
-\end{tabular}
-
-
-\section{Product\_Type}
-
-Types @{typ unit} and @{text"\<times>"}.
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
-@{const Pair} & @{typeof Pair}\\
-@{const fst} & @{typeof fst}\\
-@{const snd} & @{typeof snd}\\
-@{const split} & @{typeof split}\\
-@{const curry} & @{typeof curry}\\
-@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
-@{term"Pair a b"} & @{term[source]"Pair a b"}\\
-@{term"split (\<lambda>x y. t)"} & @{term[source]"split (\<lambda>x y. t)"}\\
-@{term"A <*> B"} & @{text"Sigma A (\<lambda>\<^raw:\_>. B)"} & (\verb$<*>$)
-\end{tabular}
-
-Pairs may be nested. Nesting to the right is printed as a tuple,
-e.g.\ \mbox{@{term"(a,b,c)"}} is really \mbox{@{text"(a, (b, c))"}.}
-Pattern matching with pairs and tuples extends to all binders,
-e.g.\ \mbox{@{prop"ALL (x,y):A. P"},} @{term"{(x,y). P}"}, etc.
-
-
-\section{Relation}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
-@{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('c*'a)set\<Rightarrow>('c*'b)set"}\\
-@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
-@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
-@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
-@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
-@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
-@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
-@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
-@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
-@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-@{term"converse r"} & @{term[source]"converse r"} & (\verb$^-1$)
-\end{tabular}
-
-\section{Equiv\_Relations}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
-@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
-@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
-@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
-%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term"congruent r f"} & @{term[source]"congruent r f"}\\
-@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
-\end{tabular}
-
-
-\section{Transitive\_Closure}
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
-@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
-@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\verb$^*$)\\
-@{term"trancl r"} & @{term[source]"trancl r"} & (\verb$^+$)\\
-@{term"reflcl r"} & @{term[source]"reflcl r"} & (\verb$^=$)
-\end{tabular}
-
-
-\section{Algebra}
-
-Theories @{theory OrderedGroup}, @{theory Ring_and_Field} and @{theory
-Divides} define a large collection of classes describing common algebraic
-structures from semigroups up to fields. Everything is done in terms of
-overloaded operators:
-
-\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
-@{text "0"} & @{typeof zero}\\
-@{text "1"} & @{typeof one}\\
-@{const plus} & @{typeof plus}\\
-@{const minus} & @{typeof minus}\\
-@{const uminus} & @{typeof uminus} & (\verb$-$)\\
-@{const times} & @{typeof times}\\
-@{const inverse} & @{typeof inverse}\\
-@{const divide} & @{typeof divide}\\
-@{const abs} & @{typeof abs}\\
-@{const sgn} & @{typeof sgn}\\
-@{const dvd_class.dvd} & @{typeof "dvd_class.dvd"}\\
-@{const div_class.div} & @{typeof "div_class.div"}\\
-@{const div_class.mod} & @{typeof "div_class.mod"}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term"abs x"} & @{term[source]"abs x"}
-\end{tabular}
-
-
-\section{Nat}
-
-@{datatype nat}
-\bigskip
-
-\begin{tabular}{@ {} lllllll @ {}}
-@{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
-@{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
-@{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
-@{term "op ^ :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
-@{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
-@{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
-@{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
-@{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
-@{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
-@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
-@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
-@{term "Min :: nat set \<Rightarrow> nat"} &
-@{term "Max :: nat set \<Rightarrow> nat"}\\
-\end{tabular}
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Nat.of_nat} & @{typeof Nat.of_nat}
-\end{tabular}
-
-\section{Int}
-
-Type @{typ int}
-\bigskip
-
-\begin{tabular}{@ {} llllllll @ {}}
-@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
-@{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
-@{term "uminus :: int \<Rightarrow> int"} &
-@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
-@{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
-@{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
-@{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
-@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
-@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
-@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
-@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
-@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
-@{term "Min :: int set \<Rightarrow> int"} &
-@{term "Max :: int set \<Rightarrow> int"}\\
-@{term "abs :: int \<Rightarrow> int"} &
-@{term "sgn :: int \<Rightarrow> int"}\\
-\end{tabular}
-
-\begin{tabular}{@ {} l @ {~::~} l l @ {}}
-@{const Int.nat} & @{typeof Int.nat}\\
-@{const Int.of_int} & @{typeof Int.of_int}\\
-@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\verb$Ints$)
-\end{tabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
-\end{tabular}
-
-
-\section{Finite\_Set}
-
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
-@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set => nat"}\\
-@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
-@{const Finite_Set.fold_image} & @{typ "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
-@{const Finite_Set.setsum} & @{term_type_only Finite_Set.setsum "('a => 'b) => 'a set => 'b::comm_monoid_add"}\\
-@{const Finite_Set.setprod} & @{term_type_only Finite_Set.setprod "('a => 'b) => 'a set => 'b::comm_monoid_mult"}\\
-\end{supertabular}
-
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
-@{term"setsum (%x. x) A"} & @{term[source]"setsum (\<lambda>x. x) A"} & (\verb$SUM$)\\
-@{term"setsum (%x. t) A"} & @{term[source]"setsum (\<lambda>x. t) A"}\\
-@{term[source]"\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}} & (\verb$PROD$)\\
-\end{supertabular}
-
-
-\section{Wellfounded}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
-@{const Wellfounded.acyclic} & @{term_type_only Wellfounded.acyclic "('a*'a)set\<Rightarrow>bool"}\\
-@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
-@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
-@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
-@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
-@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
-@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
-\end{supertabular}
-
-
-\section{SetInterval}
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
-@{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
-@{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
-@{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
-@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
-@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
-@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
-@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term "lessThan y"} & @{term[source] "lessThan y"}\\
-@{term "atMost y"} & @{term[source] "atMost y"}\\
-@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
-@{term "atLeast x"} & @{term[source] "atLeast x"}\\
-@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
-@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
-@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
-@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
-@{term[mode=xsymbols] "UN i:{..n}. A"} & @{term[source] "\<Union> i \<in> {..n}. A"}\\
-@{term[mode=xsymbols] "UN i:{..<n}. A"} & @{term[source] "\<Union> i \<in> {..<n}. A"}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Inter>"} instead of @{text"\<Union>"}}\\
-@{term "setsum (%x. t) {a..b}"} & @{term[source] "setsum (\<lambda>x. t) {a..b}"}\\
-@{term "setsum (%x. t) {a..<b}"} & @{term[source] "setsum (\<lambda>x. t) {a..<b}"}\\
-@{term "setsum (%x. t) {..b}"} & @{term[source] "setsum (\<lambda>x. t) {..b}"}\\
-@{term "setsum (%x. t) {..<b}"} & @{term[source] "setsum (\<lambda>x. t) {..<b}"}\\
-\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}}\\
-\end{supertabular}
-
-
-\section{Power}
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Power.power} & @{typeof Power.power}
-\end{tabular}
-
-
-\section{Iterated Functions and Relations}
-
-Theory: @{theory Relation_Power}
-
-Iterated functions \ @{term[source]"(f::'a\<Rightarrow>'a) ^ n"} \
-and relations \ @{term[source]"(r::('a\<times>'a)set) ^ n"}.
-
-
-\section{Option}
-
-@{datatype option}
-\bigskip
-
-\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Option.the} & @{typeof Option.the}\\
-@{const Option.map} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
-@{const Option.set} & @{term_type_only Option.set "'a option \<Rightarrow> 'a set"}
-\end{tabular}
-
-\section{List}
-
-@{datatype list}
-\bigskip
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const List.append} & @{typeof List.append}\\
-@{const List.butlast} & @{typeof List.butlast}\\
-@{const List.concat} & @{typeof List.concat}\\
-@{const List.distinct} & @{typeof List.distinct}\\
-@{const List.drop} & @{typeof List.drop}\\
-@{const List.dropWhile} & @{typeof List.dropWhile}\\
-@{const List.filter} & @{typeof List.filter}\\
-@{const List.foldl} & @{typeof List.foldl}\\
-@{const List.foldr} & @{typeof List.foldr}\\
-@{const List.hd} & @{typeof List.hd}\\
-@{const List.last} & @{typeof List.last}\\
-@{const List.length} & @{typeof List.length}\\
-@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
-@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
-@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
-@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
-@{const List.listrel} & @{term_type_only List.listrel "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
-@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
-@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
-@{const List.listsum} & @{typeof List.listsum}\\
-@{const List.list_all2} & @{typeof List.list_all2}\\
-@{const List.list_update} & @{typeof List.list_update}\\
-@{const List.map} & @{typeof List.map}\\
-@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
-@{const List.remdups} & @{typeof List.remdups}\\
-@{const List.removeAll} & @{typeof List.removeAll}\\
-@{const List.remove1} & @{typeof List.remove1}\\
-@{const List.replicate} & @{typeof List.replicate}\\
-@{const List.rev} & @{typeof List.rev}\\
-@{const List.rotate} & @{typeof List.rotate}\\
-@{const List.rotate1} & @{typeof List.rotate1}\\
-@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
-@{const List.sort} & @{typeof List.sort}\\
-@{const List.sorted} & @{typeof List.sorted}\\
-@{const List.splice} & @{typeof List.splice}\\
-@{const List.sublist} & @{typeof List.sublist}\\
-@{const List.take} & @{typeof List.take}\\
-@{const List.takeWhile} & @{typeof List.takeWhile}\\
-@{const List.tl} & @{typeof List.tl}\\
-@{const List.upt} & @{typeof List.upt}\\
-@{const List.upto} & @{typeof List.upto}\\
-@{const List.zip} & @{typeof List.zip}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{text"[x\<^isub>1,\<dots>,x\<^isub>n]"} & @{text"x\<^isub>1 # \<dots> # x\<^isub>n # []"}\\
-@{term"[m..<n]"} & @{term[source]"upt m n"}\\
-@{term"[i..j]"} & @{term[source]"upto i j"}\\
-@{text"[e. x \<leftarrow> xs]"} & @{term"map (%x. e) xs"}\\
-@{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
-@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
-@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
-\end{supertabular}
-\medskip
-
-List comprehension: @{text"[e. q\<^isub>1, \<dots>, q\<^isub>n]"} where each
-qualifier @{text q\<^isub>i} is either a generator \mbox{@{text"pat \<leftarrow> e"}} or a
-guard, i.e.\ boolean expression.
-
-\section{Map}
-
-Maps model partial functions and are often used as finite tables. However,
-the domain of a map may be infinite.
-
-@{text"'a \<rightharpoonup> 'b = 'a \<Rightarrow> 'b option"}
-\bigskip
-
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
-@{const Map.empty} & @{typeof Map.empty}\\
-@{const Map.map_add} & @{typeof Map.map_add}\\
-@{const Map.map_comp} & @{typeof Map.map_comp}\\
-@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
-@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
-@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
-@{const Map.map_le} & @{typeof Map.map_le}\\
-@{const Map.map_of} & @{typeof Map.map_of}\\
-@{const Map.map_upds} & @{typeof Map.map_upds}\\
-\end{supertabular}
-
-\subsubsection*{Syntax}
-
-\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term"Map.empty"} & @{term"\<lambda>x. None"}\\
-@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
-@{text"m(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\<mapsto>y\<^isub>1)\<dots>(x\<^isub>n\<mapsto>y\<^isub>n)"}\\
-@{text"[x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n]"} & @{text[source]"Map.empty(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"}\\
-@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
-\end{tabular}
-
-*}
-(*<*)
-end
-(*>*)
\ No newline at end of file
--- a/src/HOL/Docs/ROOT.ML Wed Mar 11 20:09:23 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-use_thy "Main_Doc";
--- a/src/HOL/Docs/document/root.tex Wed Mar 11 20:09:23 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,65 +0,0 @@
-\documentclass[12pt,a4paper]{article}
-
-\oddsidemargin=4.6mm
-\evensidemargin=4.6mm
-\textwidth=150mm
-\topmargin=4.6mm
-\headheight=0mm
-\headsep=0mm
-\textheight=234mm
-
-\usepackage{isabelle,isabellesym}
-
-% further packages required for unusual symbols (see also
-% isabellesym.sty), use only when needed
-
-\usepackage{amssymb}
- %for \<leadsto>, \<box>, \<diamond>, \<sqsupset>, \<mho>, \<Join>,
- %\<lhd>, \<lesssim>, \<greatersim>, \<lessapprox>, \<greaterapprox>,
- %\<triangleq>, \<yen>, \<lozenge>
-
-%\usepackage[greek,english]{babel}
- %option greek for \<euro>
- %option english (default language) for \<guillemotleft>, \<guillemotright>
-
-%\usepackage[latin1]{inputenc}
- %for \<onesuperior>, \<onequarter>, \<twosuperior>, \<onehalf>,
- %\<threesuperior>, \<threequarters>, \<degree>
-
-\usepackage[only,bigsqcap]{stmaryrd}
- %for \<Sqinter>
-
-%\usepackage{eufrak}
- %for \<AA> ... \<ZZ>, \<aa> ... \<zz> (also included in amssymb)
-
-%\usepackage{textcomp}
- %for \<cent>, \<currency>
-
-% this should be the last package used
-\usepackage{pdfsetup}
-
-% urls in roman style, theory text in math-similar italics
-\urlstyle{rm}
-\isabellestyle{it}
-
-% for uniform font size
-\renewcommand{\isastyle}{\isastyleminor}
-
-\parindent 0pt\parskip 0.5ex
-
-\usepackage{supertabular}
-
-\begin{document}
-
-\title{What's in Main}
-\author{Tobias Nipkow}
-\date{\today}
-\maketitle
-
-\input{Main_Doc}
-
-% optional bibliography
-%\bibliographystyle{abbrv}
-%\bibliography{root}
-
-\end{document}
--- a/src/HOL/IsaMakefile Wed Mar 11 20:09:23 2009 +0100
+++ b/src/HOL/IsaMakefile Wed Mar 11 20:11:06 2009 +0100
@@ -15,7 +15,6 @@
HOL-Auth \
HOL-Bali \
HOL-Decision_Procs \
- HOL-Docs \
HOL-Extraction \
HOL-HahnBanach \
HOL-Hoare \