--- a/src/HOL/Analysis/Abstract_Topological_Spaces.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Analysis/Abstract_Topological_Spaces.thy Mon Aug 21 18:38:25 2023 +0100
@@ -35,10 +35,6 @@
"\<lbrakk>connectedin X C; closedin X T; openin X T\<rbrakk> \<Longrightarrow> C \<subseteq> T \<or> disjnt C T"
by (metis Diff_eq_empty_iff Int_empty_right clopenin_eq_frontier_of connectedin_Int_frontier_of disjnt_def)
-lemma connected_space_quotient_map_image:
- "\<lbrakk>quotient_map X X' q; connected_space X\<rbrakk> \<Longrightarrow> connected_space X'"
- by (metis connectedin_continuous_map_image connectedin_topspace quotient_imp_continuous_map quotient_imp_surjective_map)
-
lemma connected_space_retraction_map_image:
"\<lbrakk>retraction_map X X' r; connected_space X\<rbrakk> \<Longrightarrow> connected_space X'"
using connected_space_quotient_map_image retraction_imp_quotient_map by blast
@@ -291,8 +287,6 @@
by (simp add: Ceq \<open>a \<in> U\<close> \<open>a \<in> topspace X\<close> connected_component_in_connected_components_of)
qed
-thm connected_space_iff_components_eq
-
lemma open_in_finite_connected_components:
assumes "finite(connected_components_of X)" "C \<in> connected_components_of X"
shows "openin X C"
@@ -307,12 +301,7 @@
lemma connected_components_of_disjoint:
assumes "C \<in> connected_components_of X" "C' \<in> connected_components_of X"
shows "(disjnt C C' \<longleftrightarrow> (C \<noteq> C'))"
-proof -
- have "C \<noteq> {}"
- using nonempty_connected_components_of assms by blast
- with assms show ?thesis
- by (metis disjnt_self_iff_empty pairwiseD pairwise_disjoint_connected_components_of)
-qed
+ using assms nonempty_connected_components_of pairwiseD pairwise_disjoint_connected_components_of by fastforce
lemma connected_components_of_overlap:
"\<lbrakk>C \<in> connected_components_of X; C' \<in> connected_components_of X\<rbrakk> \<Longrightarrow> C \<inter> C' \<noteq> {} \<longleftrightarrow> C = C'"
@@ -439,8 +428,7 @@
next
case False
then show ?thesis
- apply (simp add: PiE_iff)
- by (smt (verit) Collect_empty_eq False PiE_eq_empty_iff PiE_iff connected_component_of_eq_empty)
+ by (smt (verit, best) PiE_eq_empty_iff PiE_iff connected_component_of_eq_empty topspace_product_topology)
qed
@@ -490,11 +478,14 @@
lemma monotone_map_from_subtopology:
assumes "monotone_map X Y f"
- "\<And>x y. x \<in> topspace X \<and> y \<in> topspace X \<and> x \<in> S \<and> f x = f y \<Longrightarrow> y \<in> S"
+ "\<And>x y. \<lbrakk>x \<in> topspace X; y \<in> topspace X; x \<in> S; f x = f y\<rbrakk> \<Longrightarrow> y \<in> S"
shows "monotone_map (subtopology X S) Y f"
- using assms
- unfolding monotone_map_def connectedin_subtopology
- by (smt (verit, del_insts) Collect_cong Collect_empty_eq IntE IntI connectedin_empty image_subset_iff mem_Collect_eq subsetI topspace_subtopology)
+proof -
+ have "\<And>y. y \<in> topspace Y \<Longrightarrow> connectedin X {x \<in> topspace X. x \<in> S \<and> f x = y}"
+ by (smt (verit) Collect_cong assms connectedin_empty empty_def monotone_map_def)
+ then show ?thesis
+ using assms by (auto simp: monotone_map_def connectedin_subtopology)
+qed
lemma monotone_map_restriction:
"monotone_map X Y f \<and> {x \<in> topspace X. f x \<in> v} = u
@@ -5115,17 +5106,10 @@
locally_compact_space_prod_topology by blast
qed
-text \<open>Essentially the same proof\<close>
lemma k_space_prod_topology_right:
assumes "k_space X" and Y: "locally_compact_space Y" "Hausdorff_space Y \<or> regular_space Y"
shows "k_space (prod_topology X Y)"
-proof -
- obtain q and Z :: "('a set * 'a) topology" where "locally_compact_space Z" and q: "quotient_map Z X q"
- using \<open>k_space X\<close> k_space_as_quotient by blast
- then show ?thesis
- using quotient_map_prod_left [OF Y q] using Y k_space_quotient_map_image locally_compact_imp_k_space
- locally_compact_space_prod_topology by blast
-qed
+ using assms homeomorphic_k_space homeomorphic_space_prod_topology_swap k_space_prod_topology_left by blast
lemma continuous_map_from_k_space:
@@ -5258,13 +5242,7 @@
f \<in> (topspace X) \<rightarrow> topspace Y \<and>
(\<forall>k. compactin Y k
\<longrightarrow> open_map (subtopology X {x \<in> topspace X. f x \<in> k}) (subtopology Y k) f)"
- (is "?lhs=?rhs")
-proof
- show "?lhs \<Longrightarrow> ?rhs"
- by (simp add: open_map_imp_subset_topspace open_map_restriction)
- show "?rhs \<Longrightarrow> ?lhs"
- by (simp add: assms open_map_into_k_space)
-qed
+ using assms open_map_imp_subset_topspace open_map_into_k_space open_map_restriction by fastforce
lemma closed_map_into_k_space_eq:
assumes "k_space Y"
--- a/src/HOL/Analysis/Path_Connected.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Analysis/Path_Connected.thy Mon Aug 21 18:38:25 2023 +0100
@@ -50,16 +50,6 @@
unfolding path_def path_image_def
using continuous_on_compose by blast
-lemma continuous_on_translation_eq:
- fixes g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_vector"
- shows "continuous_on A ((+) a \<circ> g) = continuous_on A g"
-proof -
- have g: "g = (\<lambda>x. -a + x) \<circ> ((\<lambda>x. a + x) \<circ> g)"
- by (rule ext) simp
- show ?thesis
- by (metis (no_types, opaque_lifting) g continuous_on_compose homeomorphism_def homeomorphism_translation)
-qed
-
lemma path_translation_eq:
fixes g :: "real \<Rightarrow> 'a :: real_normed_vector"
shows "path((\<lambda>x. a + x) \<circ> g) = path g"
@@ -251,23 +241,11 @@
by auto
lemma path_image_reversepath[simp]: "path_image (reversepath g) = path_image g"
-proof -
- have *: "\<And>g. path_image (reversepath g) \<subseteq> path_image g"
- unfolding path_image_def subset_eq reversepath_def Ball_def image_iff
- by force
- show ?thesis
- using *[of g] *[of "reversepath g"]
- unfolding reversepath_reversepath
- by auto
-qed
+ by (metis cancel_comm_monoid_add_class.diff_cancel diff_zero image_comp
+ image_diff_atLeastAtMost path_image_def reversepath_o)
lemma path_reversepath [simp]: "path (reversepath g) \<longleftrightarrow> path g"
-proof -
- have *: "\<And>g. path g \<Longrightarrow> path (reversepath g)"
- by (metis cancel_comm_monoid_add_class.diff_cancel continuous_on_compose
- continuous_on_op_minus diff_zero image_diff_atLeastAtMost path_def reversepath_o)
- then show ?thesis by force
-qed
+ by (metis continuous_on_compose continuous_on_op_minus image_comp image_ident path_def path_image_def path_image_reversepath reversepath_o reversepath_reversepath)
lemma arc_reversepath:
assumes "arc g" shows "arc(reversepath g)"
@@ -375,8 +353,8 @@
by auto
lemma subset_path_image_join:
- assumes "path_image g1 \<subseteq> s" and "path_image g2 \<subseteq> s"
- shows "path_image (g1 +++ g2) \<subseteq> s"
+ assumes "path_image g1 \<subseteq> S" and "path_image g2 \<subseteq> S"
+ shows "path_image (g1 +++ g2) \<subseteq> S"
using path_image_join_subset[of g1 g2] and assms
by auto
@@ -495,16 +473,10 @@
"path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}"
shows "arc(g1 +++ g2)"
proof -
- have injg1: "inj_on g1 {0..1}"
- using assms
- by (simp add: arc_def)
- have injg2: "inj_on g2 {0..1}"
+ have injg1: "inj_on g1 {0..1}" and injg2: "inj_on g2 {0..1}"
+ and g11: "g1 1 = g2 0" and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g2 0}"
using assms
- by (simp add: arc_def)
- have g11: "g1 1 = g2 0"
- and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g2 0}"
- using assms
- by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
+ by (auto simp: arc_def pathfinish_def pathstart_def path_image_def)
{ fix x and y::real
assume xy: "g2 (2 * x - 1) = g1 (2 * y)" "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1"
then have "g1 (2 * y) = g2 0"
@@ -660,9 +632,9 @@
lemma simple_path_join_loop_eq:
assumes "pathfinish g2 = pathstart g1" "pathfinish g1 = pathstart g2"
- shows "simple_path(g1 +++ g2) \<longleftrightarrow>
+ shows "simple_path(g1 +++ g2) \<longleftrightarrow>
arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}"
-by (metis assms simple_path_joinE simple_path_join_loop)
+ by (metis assms simple_path_joinE simple_path_join_loop)
lemma arc_join_eq:
assumes "pathfinish g1 = pathstart g2"
@@ -672,8 +644,8 @@
proof
assume ?lhs then show ?rhs
using reversepath_simps assms
- by (smt (verit, ccfv_threshold) Int_commute arc_distinct_ends arc_imp_simple_path arc_reversepath
- in_mono insertE pathfinish_join reversepath_joinpaths simple_path_joinE subsetI)
+ by (smt (verit, best) Int_commute arc_reversepath arc_simple_path in_mono insertE pathstart_join
+ reversepath_joinpaths simple_path_joinE subsetI)
next
assume ?rhs then show ?lhs
using assms
@@ -681,18 +653,17 @@
qed
lemma arc_join_eq_alt:
- "pathfinish g1 = pathstart g2
- \<Longrightarrow> (arc(g1 +++ g2) \<longleftrightarrow>
- arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 = {pathstart g2})"
-using pathfinish_in_path_image by (fastforce simp: arc_join_eq)
+ "pathfinish g1 = pathstart g2
+ \<Longrightarrow> arc(g1 +++ g2) \<longleftrightarrow> arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 = {pathstart g2}"
+ using pathfinish_in_path_image by (fastforce simp: arc_join_eq)
subsection\<^marker>\<open>tag unimportant\<close>\<open>The joining of paths is associative\<close>
lemma path_assoc:
- "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart r\<rbrakk>
+ "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart r\<rbrakk>
\<Longrightarrow> path(p +++ (q +++ r)) \<longleftrightarrow> path((p +++ q) +++ r)"
-by simp
+ by simp
lemma simple_path_assoc:
assumes "pathfinish p = pathstart q" "pathfinish q = pathstart r"
@@ -740,18 +711,18 @@
subsubsection\<^marker>\<open>tag unimportant\<close>\<open>Symmetry and loops\<close>
lemma path_sym:
- "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> path(p +++ q) \<longleftrightarrow> path(q +++ p)"
+ "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> path(p +++ q) \<longleftrightarrow> path(q +++ p)"
by auto
lemma simple_path_sym:
- "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk>
+ "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk>
\<Longrightarrow> simple_path(p +++ q) \<longleftrightarrow> simple_path(q +++ p)"
-by (metis (full_types) inf_commute insert_commute simple_path_joinE simple_path_join_loop)
+ by (metis (full_types) inf_commute insert_commute simple_path_joinE simple_path_join_loop)
lemma path_image_sym:
- "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk>
+ "\<lbrakk>pathfinish p = pathstart q; pathfinish q = pathstart p\<rbrakk>
\<Longrightarrow> path_image(p +++ q) = path_image(q +++ p)"
-by (simp add: path_image_join sup_commute)
+ by (simp add: path_image_join sup_commute)
subsection\<open>Subpath\<close>
@@ -821,7 +792,7 @@
lemma sum_le_prod1:
fixes a::real shows "\<lbrakk>a \<le> 1; b \<le> 1\<rbrakk> \<Longrightarrow> a + b \<le> 1 + a * b"
-by (metis add.commute affine_ineq mult.right_neutral)
+ by (metis add.commute affine_ineq mult.right_neutral)
lemma simple_path_subpath_eq:
"simple_path(subpath u v g) \<longleftrightarrow>
@@ -871,9 +842,8 @@
assumes "simple_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<noteq> v"
shows "simple_path(subpath u v g)"
using assms
- apply (simp add: simple_path_subpath_eq simple_path_imp_path)
- apply (simp add: simple_path_def loop_free_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce)
- done
+ unfolding simple_path_subpath_eq
+ by (force simp: simple_path_def loop_free_def closed_segment_real_eq image_affinity_atLeastAtMost)
lemma arc_simple_path_subpath:
"\<lbrakk>simple_path g; u \<in> {0..1}; v \<in> {0..1}; g u \<noteq> g v\<rbrakk> \<Longrightarrow> arc(subpath u v g)"
@@ -1049,7 +1019,7 @@
shows "pathfinish (shiftpath a g) = g a"
and "pathstart (shiftpath a g) = g a"
using assms
- by (auto intro!: pathfinish_shiftpath pathstart_shiftpath)
+ by (simp_all add: pathstart_shiftpath pathfinish_shiftpath)
lemma closed_shiftpath:
assumes "pathfinish g = pathstart g"
@@ -1082,7 +1052,7 @@
proof (rule continuous_on_eq)
show "continuous_on {1-a..1} (g \<circ> (+) (a - 1))"
by (intro continuous_intros continuous_on_subset [OF contg]) (use \<open>a \<in> {0..1}\<close> in auto)
- qed (auto simp: "**" add.commute add_diff_eq)
+ qed (auto simp: "**" add.commute add_diff_eq)
qed auto
qed
@@ -1699,19 +1669,8 @@
lemma path_connected_path_component [simp]:
"path_connected (path_component_set S x)"
-proof (clarsimp simp: path_connected_def)
- fix y z
- assume pa: "path_component S x y" "path_component S x z"
- then have pae: "path_component_set S x = path_component_set S y"
- using path_component_eq by auto
- obtain g where g: "path g \<and> path_image g \<subseteq> S \<and> pathstart g = y \<and> pathfinish g = z"
- using pa path_component_sym path_component_trans path_component_def by metis
- then have "path_image g \<subseteq> path_component_set S x"
- using pae path_component_maximal path_connected_path_image by blast
- then show "\<exists>g. path g \<and> path_image g \<subseteq> path_component_set S x \<and>
- pathstart g = y \<and> pathfinish g = z"
- using g by blast
-qed
+ by (smt (verit) mem_Collect_eq path_component_def path_component_eq path_component_maximal
+ path_connected_component path_connected_path_image pathstart_in_path_image)
lemma path_component:
"path_component S x y \<longleftrightarrow> (\<exists>t. path_connected t \<and> t \<subseteq> S \<and> x \<in> t \<and> y \<in> t)"
@@ -1726,13 +1685,7 @@
lemma path_component_path_component [simp]:
"path_component_set (path_component_set S x) x = path_component_set S x"
-proof (cases "x \<in> S")
- case True show ?thesis
- by (metis True mem_Collect_eq path_component_refl path_connected_component_set path_connected_path_component)
-next
- case False then show ?thesis
- by (metis False empty_iff path_component_eq_empty)
-qed
+ by (metis (full_types) mem_Collect_eq path_component_eq_empty path_component_refl path_connected_component_set path_connected_path_component)
lemma path_component_subset_connected_component:
"(path_component_set S x) \<subseteq> (connected_component_set S x)"
@@ -1750,8 +1703,8 @@
lemma path_connected_linear_image:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
assumes "path_connected S" "bounded_linear f"
- shows "path_connected(f ` S)"
-by (auto simp: linear_continuous_on assms path_connected_continuous_image)
+ shows "path_connected(f ` S)"
+ by (auto simp: linear_continuous_on assms path_connected_continuous_image)
lemma is_interval_path_connected: "is_interval S \<Longrightarrow> path_connected S"
by (simp add: convex_imp_path_connected is_interval_convex)
@@ -1814,8 +1767,8 @@
lemma linear_homeomorphic_image:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes "linear f" "inj f"
- shows "S homeomorphic f ` S"
-by (meson homeomorphic_def homeomorphic_sym linear_homeomorphism_image [OF assms])
+ shows "S homeomorphic f ` S"
+ by (meson homeomorphic_def homeomorphic_sym linear_homeomorphism_image [OF assms])
lemma path_connected_Times:
assumes "path_connected s" "path_connected t"
@@ -1851,7 +1804,7 @@
lemma is_interval_path_connected_1:
fixes s :: "real set"
shows "is_interval s \<longleftrightarrow> path_connected s"
-using is_interval_connected_1 is_interval_path_connected path_connected_imp_connected by blast
+ using is_interval_connected_1 is_interval_path_connected path_connected_imp_connected by blast
subsection\<^marker>\<open>tag unimportant\<close>\<open>Path components\<close>
@@ -1885,20 +1838,15 @@
qed
lemma path_component_unique:
- assumes "x \<in> c" "c \<subseteq> S" "path_connected c"
- "\<And>c'. \<lbrakk>x \<in> c'; c' \<subseteq> S; path_connected c'\<rbrakk> \<Longrightarrow> c' \<subseteq> c"
- shows "path_component_set S x = c"
- (is "?lhs = ?rhs")
-proof
- show "?lhs \<subseteq> ?rhs"
- using assms
- by (metis mem_Collect_eq path_component_refl path_component_subset path_connected_path_component subsetD)
-qed (simp add: assms path_component_maximal)
+ assumes "x \<in> C" "C \<subseteq> S" "path_connected C"
+ "\<And>C'. \<lbrakk>x \<in> C'; C' \<subseteq> S; path_connected C'\<rbrakk> \<Longrightarrow> C' \<subseteq> C"
+ shows "path_component_set S x = C"
+ by (smt (verit, best) Collect_cong assms path_component path_component_of_subset path_connected_component_set)
lemma path_component_intermediate_subset:
- "path_component_set u a \<subseteq> t \<and> t \<subseteq> u
- \<Longrightarrow> path_component_set t a = path_component_set u a"
-by (metis (no_types) path_component_mono path_component_path_component subset_antisym)
+ "path_component_set U a \<subseteq> T \<and> T \<subseteq> U
+ \<Longrightarrow> path_component_set T a = path_component_set U a"
+ by (metis (no_types) path_component_mono path_component_path_component subset_antisym)
lemma complement_path_component_Union:
fixes x :: "'a :: topological_space"
@@ -2078,9 +2026,8 @@
proof
assume ?lhs
then show ?rhs
- apply (simp add: fun_eq_iff path_component_in_topspace)
- apply (meson path_component_of_sym path_component_of_trans)
- done
+ unfolding fun_eq_iff path_component_in_topspace
+ by (metis path_component_in_topspace path_component_of_sym path_component_of_trans)
qed (simp add: path_component_of_refl)
lemma path_component_of_disjoint:
@@ -2105,7 +2052,7 @@
have "topspace (subtopology X (path_component_of_set X x)) = path_component_of_set X x"
by (meson path_component_of_subset_topspace topspace_subtopology_subset)
then have "path_connected_space (subtopology X (path_component_of_set X x))"
- by (metis (full_types) path_component_of_aux mem_Collect_eq path_component_of_equiv path_connected_space_iff_path_component)
+ by (metis mem_Collect_eq path_component_of_aux path_component_of_equiv path_connected_space_iff_path_component)
then show ?thesis
by (simp add: path_component_of_subset_topspace path_connectedin_def)
qed
@@ -2152,13 +2099,14 @@
by (metis imageI nonempty_path_components_of path_component_of_eq_empty path_components_of_def)
lemma path_connectedin_Union:
- assumes \<A>: "\<And>S. S \<in> \<A> \<Longrightarrow> path_connectedin X S" "\<Inter>\<A> \<noteq> {}"
+ assumes \<A>: "\<And>S. S \<in> \<A> \<Longrightarrow> path_connectedin X S" and "\<Inter>\<A> \<noteq> {}"
shows "path_connectedin X (\<Union>\<A>)"
proof -
obtain a where "\<And>S. S \<in> \<A> \<Longrightarrow> a \<in> S"
using assms by blast
then have "\<And>x. x \<in> topspace (subtopology X (\<Union>\<A>)) \<Longrightarrow> path_component_of (subtopology X (\<Union>\<A>)) a x"
- by simp (meson Union_upper \<A> path_component_of path_connectedin_subtopology)
+ unfolding topspace_subtopology path_component_of
+ by (metis (full_types) IntD2 Union_iff Union_upper \<A> path_connectedin_subtopology)
then show ?thesis
using \<A> unfolding path_connectedin_def
by (metis Sup_le_iff path_component_of_equiv path_connected_space_iff_path_component)
@@ -2462,8 +2410,8 @@
{PiE I B |B. \<forall>i \<in> I. B i \<in> path_components_of(X i)}" (is "?lhs=?rhs")
proof
show "?lhs \<subseteq> ?rhs"
- apply (simp add: path_components_of_def image_subset_iff)
- by (smt (verit, best) PiE_iff image_eqI path_component_of_product_topology)
+ unfolding path_components_of_def image_subset_iff
+ by (smt (verit) image_iff mem_Collect_eq path_component_of_product_topology topspace_product_topology_alt)
next
show "?rhs \<subseteq> ?lhs"
proof
@@ -2542,14 +2490,6 @@
assumes "2 \<le> DIM('a)"
shows "path_connected(sphere a r)"
proof (cases r "0::real" rule: linorder_cases)
- case less
- then show ?thesis
- by simp
-next
- case equal
- then show ?thesis
- by simp
-next
case greater
then have eq: "(sphere (0::'a) r) = (\<lambda>x. (r / norm x) *\<^sub>R x) ` (- {0::'a})"
by (force simp: image_iff split: if_split_asm)
@@ -2557,13 +2497,11 @@
by (intro continuous_intros) auto
then have "path_connected ((\<lambda>x. (r / norm x) *\<^sub>R x) ` (- {0::'a}))"
by (intro path_connected_continuous_image path_connected_punctured_universe assms)
- with eq have "path_connected (sphere (0::'a) r)"
- by auto
- then have "path_connected((+) a ` (sphere (0::'a) r))"
+ with eq have "path_connected((+) a ` (sphere (0::'a) r))"
by (simp add: path_connected_translation)
then show ?thesis
by (metis add.right_neutral sphere_translation)
-qed
+qed auto
lemma connected_sphere:
fixes a :: "'a :: euclidean_space"
@@ -3000,14 +2938,13 @@
proof -
obtain i::'a where i: "i \<in> Basis"
using nonempty_Basis by blast
- obtain B where B: "B>0" "-S \<subseteq> ball 0 B"
+ obtain B where "B>0" and B: "-S \<subseteq> ball 0 B"
using bounded_subset_ballD [OF bs, of 0] by auto
then have *: "\<And>x. B \<le> norm x \<Longrightarrow> x \<in> S"
by (force simp: ball_def dist_norm)
- obtain x' where x': "connected_component S x x'" "norm x' > B"
- using B(1) bo(1) bounded_pos by force
- obtain y' where y': "connected_component S y y'" "norm y' > B"
- using B(1) bo(2) bounded_pos by force
+ obtain x' y' where x': "connected_component S x x'" "norm x' > B"
+ and y': "connected_component S y y'" "norm y' > B"
+ using \<open>B>0\<close> bo bounded_pos by (metis linorder_not_le mem_Collect_eq)
have x'y': "connected_component S x' y'"
unfolding connected_component_def
proof (intro exI conjI)
@@ -3197,8 +3134,8 @@
fixes S :: "'a::euclidean_space set"
assumes S: "bounded S" "2 \<le> DIM('a)"
shows "- (outside S) = {x. \<forall>B. \<exists>y. B \<le> norm(y) \<and> \<not> connected_component (- S) x y}"
- apply (auto intro: less_imp_le simp: not_outside_connected_component_lt [OF assms])
- by (meson gt_ex less_le_trans)
+ unfolding not_outside_connected_component_lt [OF assms]
+ by (metis (no_types, opaque_lifting) dual_order.strict_trans1 gt_ex pinf(8))
lemma inside_connected_component_lt:
fixes S :: "'a::euclidean_space set"
@@ -3327,10 +3264,10 @@
qed
lemma connected_component_UNIV [simp]:
- fixes x :: "'a::real_normed_vector"
- shows "connected_component_set UNIV x = UNIV"
-using connected_iff_eq_connected_component_set [of "UNIV::'a set"] connected_UNIV
-by auto
+ fixes x :: "'a::real_normed_vector"
+ shows "connected_component_set UNIV x = UNIV"
+ using connected_iff_eq_connected_component_set [of "UNIV::'a set"] connected_UNIV
+ by auto
lemma connected_component_eq_UNIV:
fixes x :: "'a::real_normed_vector"
@@ -3484,10 +3421,8 @@
lemma inside_frontier_eq_interior:
fixes S :: "'a :: {real_normed_vector, perfect_space} set"
shows "\<lbrakk>bounded S; convex S\<rbrakk> \<Longrightarrow> inside(frontier S) = interior S"
- apply (simp add: inside_outside outside_frontier_eq_complement_closure)
- using closure_subset interior_subset
- apply (auto simp: frontier_def)
- done
+ unfolding inside_outside outside_frontier_eq_complement_closure
+ using closure_subset interior_subset by (auto simp: frontier_def)
lemma open_inside:
fixes S :: "'a::real_normed_vector set"
@@ -3527,10 +3462,10 @@
qed
lemma closure_inside_subset:
- fixes S :: "'a::real_normed_vector set"
- assumes "closed S"
- shows "closure(inside S) \<subseteq> S \<union> inside S"
-by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside)
+ fixes S :: "'a::real_normed_vector set"
+ assumes "closed S"
+ shows "closure(inside S) \<subseteq> S \<union> inside S"
+ by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside)
lemma frontier_inside_subset:
fixes S :: "'a::real_normed_vector set"
@@ -3594,7 +3529,7 @@
lemma inside_outside_intersect_connected:
"\<lbrakk>connected T; inside S \<inter> T \<noteq> {}; outside S \<inter> T \<noteq> {}\<rbrakk> \<Longrightarrow> S \<inter> T \<noteq> {}"
apply (simp add: inside_def outside_def ex_in_conv [symmetric] disjoint_eq_subset_Compl, clarify)
- by (metis (no_types, opaque_lifting) Compl_anti_mono connected_component_eq connected_component_maximal contra_subsetD double_compl)
+ by (metis compl_le_swap1 connected_componentI connected_component_eq mem_Collect_eq)
lemma outside_bounded_nonempty:
fixes S :: "'a :: {real_normed_vector, perfect_space} set"
@@ -4045,7 +3980,8 @@
have "embedding_map (top_of_set S) euclideanreal f"
using that embedding_map_into_euclideanreal [of "top_of_set S" f] assms by auto
then show ?thesis
- by (simp add: embedding_map_def) (metis all_closedin_homeomorphic_image f homeomorphism_injective_closed_map that)
+ unfolding embedding_map_def topspace_euclidean_subtopology
+ by (metis f homeomorphic_map_closedness_eq homeomorphism_injective_closed_map that)
qed
qed (metis homeomorphism_def inj_onI)
--- a/src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy Mon Aug 21 18:38:25 2023 +0100
@@ -316,15 +316,13 @@
((\<lambda>u. f u / (u - w)) has_contour_integral (\<lambda>x. 2 * of_real pi * \<i> * f x) w) (circlepath z r)"
by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute)
show ?thes1
- apply (simp add: power2_eq_square)
- apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1, simplified])
- apply (blast intro: int)
- done
+ unfolding power2_eq_square
+ using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1]
+ by fastforce
have "((\<lambda>x. 2 * of_real pi * \<i> * f x) has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2)) (at w)"
- apply (simp add: power2_eq_square)
- apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x", simplified])
- apply (blast intro: int)
- done
+ unfolding power2_eq_square
+ using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x"]
+ by fastforce
then have fder: "(f has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2) / (2 * of_real pi * \<i>)) (at w)"
by (rule DERIV_cdivide [where f = "\<lambda>x. 2 * of_real pi * \<i> * f x" and c = "2 * of_real pi * \<i>", simplified])
show ?thes2
@@ -396,8 +394,7 @@
lemma has_field_derivative_higher_deriv:
"\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
\<Longrightarrow> ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)"
-by (metis (no_types, opaque_lifting) DERIV_deriv_iff_field_differentiable at_within_open comp_apply
- funpow.simps(2) holomorphic_higher_deriv holomorphic_on_def)
+ using holomorphic_derivI holomorphic_higher_deriv by fastforce
lemma higher_deriv_cmult:
assumes "f holomorphic_on A" "x \<in> A" "open A"
@@ -644,7 +641,7 @@
by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z)) holomorphic_on S"
by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
- have "(*) u holomorphic_on S" "f holomorphic_on (*) u ` S"
+ have u: "(*) u holomorphic_on S" "f holomorphic_on (*) u ` S"
by (rule holo0 holomorphic_intros)+
then have holo1: "(\<lambda>w. f (u * w)) holomorphic_on S"
by (rule holomorphic_on_compose [where g=f, unfolded o_def])
@@ -658,12 +655,7 @@
have "(deriv ^^ n) f analytic_on T"
by (simp add: analytic_on_open f holomorphic_higher_deriv T)
then have "(\<lambda>w. (deriv ^^ n) f (u * w)) analytic_on S"
- proof -
- have "(deriv ^^ n) f \<circ> (*) u holomorphic_on S"
- by (simp add: holo2 holomorphic_on_compose)
- then show ?thesis
- by (simp add: S analytic_on_open o_def)
- qed
+ by (meson S u analytic_on_open holo2 holomorphic_on_compose holomorphic_transform o_def)
then show ?thesis
by (intro deriv_cmult analytic_on_imp_differentiable_at [OF _ Suc.prems])
qed
@@ -1298,15 +1290,15 @@
lemma series_and_derivative_comparison_complex:
fixes S :: "complex set"
assumes S: "open S"
- and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
- and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
+ and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
+ and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
-apply (rule ex_forward [OF to_g], assumption)
-apply (erule exE)
-apply (rule_tac x="Re \<circ> h" in exI)
-apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
-done
+ apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
+ apply (rule ex_forward [OF to_g], assumption)
+ apply (erule exE)
+ apply (rule_tac x="Re \<circ> h" in exI)
+ apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
+ done
text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
lemma series_differentiable_comparison_complex:
@@ -1410,9 +1402,8 @@
corollary holomorphic_iff_power_series:
"f holomorphic_on ball z r \<longleftrightarrow>
(\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
- apply (intro iffI ballI holomorphic_power_series, assumption+)
- apply (force intro: power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"])
- done
+ using power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"] holomorphic_power_series
+ by blast
lemma power_series_analytic:
"(\<And>w. w \<in> ball z r \<Longrightarrow> (\<lambda>n. a n*(w - z)^n) sums f w) \<Longrightarrow> f analytic_on ball z r"
@@ -1670,12 +1661,8 @@
obtain \<delta> where "\<delta>>0" and \<delta>: "cball w \<delta> \<subseteq> U" using open_contains_cball \<open>open U\<close> \<open>w \<in> U\<close> by force
let ?TZ = "cball w \<delta> \<times> closed_segment a b"
have "uniformly_continuous_on ?TZ (\<lambda>(x,y). F x y)"
- proof (rule compact_uniformly_continuous)
- show "continuous_on ?TZ (\<lambda>(x,y). F x y)"
- by (rule continuous_on_subset[OF cond_uu]) (use SigmaE \<delta> abu in blast)
- show "compact ?TZ"
- by (simp add: compact_Times)
- qed
+ by (metis Sigma_mono \<delta> abu compact_Times compact_cball compact_segment compact_uniformly_continuous
+ cond_uu continuous_on_subset)
then obtain \<eta> where "\<eta>>0"
and \<eta>: "\<And>x x'. \<lbrakk>x\<in>?TZ; x'\<in>?TZ; dist x' x < \<eta>\<rbrakk> \<Longrightarrow>
dist ((\<lambda>(x,y). F x y) x') ((\<lambda>(x,y). F x y) x) < \<epsilon>/norm(b - a)"
@@ -1992,16 +1979,10 @@
by (auto intro: continuous_on_swap_args cond_uu)
qed
have cont_cint_d\<gamma>: "continuous_on {0..1} ((\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) \<circ> \<gamma>)"
- proof (rule continuous_on_compose)
- show "continuous_on {0..1} \<gamma>"
- using \<open>path \<gamma>\<close> path_def by blast
- show "continuous_on (\<gamma> ` {0..1}) (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
- using pasz unfolding path_image_def
- by (auto intro!: continuous_on_subset [OF cont_cint_d])
- qed
+ by (metis Diff_subset \<open>path \<gamma>\<close> cont_cint_d continuous_on_compose continuous_on_subset pasz path_def path_image_def)
have "continuous_on {0..1} (\<lambda>x. vector_derivative \<gamma> (at x))"
using pf\<gamma>' by (simp add: continuous_on_polymonial_function vector_derivative_at [OF \<gamma>'])
- then have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>"
+ then have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>"
apply (simp add: contour_integrable_on)
apply (rule integrable_continuous_real)
by (rule continuous_on_mult [OF cont_cint_d\<gamma> [unfolded o_def]])
@@ -2632,8 +2613,8 @@
have g_nz: "g \<noteq> 0"
proof -
define z :: complex where "z = (if r = \<infinity> then 1 else of_real (real_of_ereal r / 2))"
- from \<open>r > 0\<close> have "z \<in> eball 0 r"
- by (cases r) (auto simp: z_def eball_def)
+ have "z \<in> eball 0 r"
+ using \<open>r > 0\<close> ereal_less_real_iff z_def by fastforce
moreover have "z \<noteq> 0" using \<open>r > 0\<close>
by (cases r) (auto simp: z_def)
ultimately have "eval_fps g z \<noteq> 0" by (rule assms(6))
--- a/src/HOL/Complex_Analysis/Cauchy_Integral_Theorem.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Cauchy_Integral_Theorem.thy Mon Aug 21 18:38:25 2023 +0100
@@ -842,7 +842,7 @@
by (simp add: has_field_derivative_def has_derivative_at2 bounded_linear_mult_right)
qed
-(** Existence of a primitive.*)
+text \<open>Existence of a primitive\<close>
lemma holomorphic_starlike_primitive:
fixes f :: "complex \<Rightarrow> complex"
assumes contf: "continuous_on S f"
@@ -1017,8 +1017,7 @@
assumes gpd: "g piecewise_differentiable_on {a..b}"
and dh: "\<And>x. x \<in> S \<Longrightarrow> (f has_field_derivative f' x) (at x within S)"
and gs: "\<And>x. x \<in> {a..b} \<Longrightarrow> g x \<in> S"
- shows
- "(\<lambda>x. f' (g x) * vector_derivative g (at x within {a..b})) integrable_on {a..b}"
+ shows "(\<lambda>x. f' (g x) * vector_derivative g (at x within {a..b})) integrable_on {a..b}"
proof (cases "cbox a b = {}")
case False
then show ?thesis
--- a/src/HOL/Complex_Analysis/Complex_Singularities.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Complex_Singularities.thy Mon Aug 21 18:38:25 2023 +0100
@@ -74,10 +74,14 @@
assumes "open A" "x \<in> A" "f holomorphic_on A"
shows "\<not>is_pole f x"
proof -
- have "continuous_on A f" by (intro holomorphic_on_imp_continuous_on) fact
- with assms have "isCont f x" by (simp add: continuous_on_eq_continuous_at)
- hence "f \<midarrow>x\<rightarrow> f x" by (simp add: isCont_def)
- thus "\<not>is_pole f x" unfolding is_pole_def
+ have "continuous_on A f"
+ by (intro holomorphic_on_imp_continuous_on) fact
+ with assms have "isCont f x"
+ by (simp add: continuous_on_eq_continuous_at)
+ hence "f \<midarrow>x\<rightarrow> f x"
+ by (simp add: isCont_def)
+ thus "\<not>is_pole f x"
+ unfolding is_pole_def
using not_tendsto_and_filterlim_at_infinity[of "at x" f "f x"] by auto
qed
@@ -87,17 +91,19 @@
(auto simp: filterlim_at eventually_at intro!: exI[of _ 1] tendsto_eq_intros)
lemma is_pole_cmult_iff [simp]:
- "c \<noteq> 0 \<Longrightarrow> is_pole (\<lambda>z. c * f z :: 'a :: real_normed_field) z \<longleftrightarrow> is_pole f z"
+ assumes "c \<noteq> 0"
+ shows "is_pole (\<lambda>z. c * f z :: 'a :: real_normed_field) z \<longleftrightarrow> is_pole f z"
proof
- assume *: "c \<noteq> 0" "is_pole (\<lambda>z. c * f z) z"
- have "is_pole (\<lambda>z. inverse c * (c * f z)) z" unfolding is_pole_def
- by (rule tendsto_mult_filterlim_at_infinity tendsto_const)+ (use * in \<open>auto simp: is_pole_def\<close>)
+ assume "is_pole (\<lambda>z. c * f z) z"
+ with \<open>c\<noteq>0\<close> have "is_pole (\<lambda>z. inverse c * (c * f z)) z"
+ unfolding is_pole_def
+ by (force intro: tendsto_mult_filterlim_at_infinity)
thus "is_pole f z"
- using *(1) by (simp add: field_simps)
+ using \<open>c\<noteq>0\<close> by (simp add: field_simps)
next
- assume *: "c \<noteq> 0" "is_pole f z"
- show "is_pole (\<lambda>z. c * f z) z" unfolding is_pole_def
- by (rule tendsto_mult_filterlim_at_infinity tendsto_const)+ (use * in \<open>auto simp: is_pole_def\<close>)
+ assume "is_pole f z"
+ with \<open>c\<noteq>0\<close> show "is_pole (\<lambda>z. c * f z) z"
+ by (auto intro!: tendsto_mult_filterlim_at_infinity simp: is_pole_def)
qed
lemma is_pole_uminus_iff [simp]: "is_pole (\<lambda>z. -f z :: 'a :: real_normed_field) z \<longleftrightarrow> is_pole f z"
@@ -184,7 +190,13 @@
lemma is_pole_mult_analytic_nonzero2:
assumes "is_pole f x" "g analytic_on {x}" "g x \<noteq> 0"
shows "is_pole (\<lambda>x. f x * g x) x"
- by (subst mult.commute, rule is_pole_mult_analytic_nonzero1) (use assms in auto)
+proof -
+ have g: "g analytic_on {x}"
+ using assms by auto
+ show ?thesis
+ using is_pole_mult_analytic_nonzero1 [OF \<open>is_pole f x\<close> g] \<open>g x \<noteq> 0\<close>
+ by (simp add: mult.commute)
+qed
lemma is_pole_mult_analytic_nonzero1_iff:
assumes "f analytic_on {x}" "f x \<noteq> 0"
@@ -433,7 +445,8 @@
\<and> f w = g2 w * (w - z) powi n2 \<and> g2 w\<noteq>0"
using \<open>fac n1 g1 r1\<close> \<open>fac n2 g2 r2\<close> unfolding fac_def r_def
by fastforce
- ultimately show "n1=n2" using g1_holo g2_holo \<open>g1 z\<noteq>0\<close> \<open>g2 z\<noteq>0\<close>
+ ultimately show "n1=n2"
+ using g1_holo g2_holo \<open>g1 z\<noteq>0\<close> \<open>g2 z\<noteq>0\<close>
apply (elim holomorphic_factor_unique)
by (auto simp add:r_def)
qed
@@ -561,24 +574,7 @@
assumes "isolated_singularity_at g z"
assumes "\<forall>\<^sub>F w in (at z). g w = f w"
shows "isolated_singularity_at f z"
-proof -
- obtain r1 where "r1>0" and r1:"g analytic_on ball z r1 - {z}"
- using assms(1) unfolding isolated_singularity_at_def by auto
- obtain r2 where "r2>0" and r2:" \<forall>x. x \<noteq> z \<and> dist x z < r2 \<longrightarrow> g x = f x"
- using assms(2) unfolding eventually_at by auto
- define r3 where "r3=min r1 r2"
- have "r3>0" unfolding r3_def using \<open>r1>0\<close> \<open>r2>0\<close> by auto
- moreover have "f analytic_on ball z r3 - {z}"
- proof -
- have "g holomorphic_on ball z r3 - {z}"
- using r1 unfolding r3_def by (subst (asm) analytic_on_open,auto)
- then have "f holomorphic_on ball z r3 - {z}"
- using r2 unfolding r3_def
- by (auto simp add:dist_commute elim!:holomorphic_transform)
- then show ?thesis by (subst analytic_on_open,auto)
- qed
- ultimately show ?thesis unfolding isolated_singularity_at_def by auto
-qed
+ using assms isolated_singularity_at_cong by blast
lemma not_essential_powr[singularity_intros]:
assumes "LIM w (at z). f w :> (at x)"
@@ -704,8 +700,7 @@
have ?thesis when "\<not> ((\<exists>\<^sub>Fw in (at z). f w\<noteq>0) \<and> (\<exists>\<^sub>Fw in (at z). g w\<noteq>0))"
proof -
have "\<forall>\<^sub>Fw in (at z). fg w=0"
- using that[unfolded frequently_def, simplified] unfolding fg_def
- by (auto elim: eventually_rev_mp)
+ using fg_def frequently_elim1 not_eventually that by fastforce
from tendsto_cong[OF this] have "fg \<midarrow>z\<rightarrow>0" by auto
then show ?thesis unfolding not_essential_def fg_def by auto
qed
@@ -787,9 +782,8 @@
proof -
have "\<forall>\<^sub>Fw in (at z). f w=0"
using that[unfolded frequently_def, simplified] by (auto elim: eventually_rev_mp)
- then have "\<forall>\<^sub>Fw in (at z). vf w=0"
- unfolding vf_def by auto
- from tendsto_cong[OF this] have "vf \<midarrow>z\<rightarrow>0" unfolding vf_def by auto
+ then have "vf \<midarrow>z\<rightarrow>0"
+ unfolding vf_def by (simp add: tendsto_eventually)
then show ?thesis unfolding not_essential_def vf_def by auto
qed
moreover have ?thesis when "is_pole f z"
@@ -802,22 +796,18 @@
proof -
from that obtain fz where fz:"f\<midarrow>z\<rightarrow>fz" by auto
have ?thesis when "fz=0"
+
proof -
have "(\<lambda>w. inverse (vf w)) \<midarrow>z\<rightarrow>0"
using fz that unfolding vf_def by auto
moreover have "\<forall>\<^sub>F w in at z. inverse (vf w) \<noteq> 0"
using non_zero_neighbour[OF f_iso f_ness f_nconst]
unfolding vf_def by auto
- ultimately have "is_pole vf z"
- using filterlim_inverse_at_iff[of vf "at z"] unfolding filterlim_at is_pole_def by auto
- then show ?thesis unfolding not_essential_def vf_def by auto
+ ultimately show ?thesis unfolding not_essential_def vf_def
+ using filterlim_atI filterlim_inverse_at_iff is_pole_def by blast
qed
moreover have ?thesis when "fz\<noteq>0"
- proof -
- have "vf \<midarrow>z\<rightarrow>inverse fz"
- using fz that unfolding vf_def by (auto intro:tendsto_eq_intros)
- then show ?thesis unfolding not_essential_def vf_def by auto
- qed
+ using fz not_essential_def tendsto_inverse that by blast
ultimately show ?thesis by auto
qed
ultimately show ?thesis using f_ness unfolding not_essential_def by auto
@@ -856,7 +846,7 @@
moreover
have "f analytic_on ball z d3 - {z}"
by (smt (verit, best) Diff_iff analytic_on_analytic_at d2 d3_def mem_ball)
- then have "vf analytic_on ball z d3 - {z}"
+ then have "vf analytic_on ball z d3 - {z}"
unfolding vf_def
by (intro analytic_on_inverse; simp add: d1(2) d3_def dist_commute)
ultimately show ?thesis unfolding isolated_singularity_at_def vf_def by auto
@@ -878,8 +868,8 @@
assumes f_iso:"isolated_singularity_at f z"
and g_iso:"isolated_singularity_at g z"
shows isolated_singularity_at_times[singularity_intros]:
- "isolated_singularity_at (\<lambda>w. f w * g w) z" and
- isolated_singularity_at_add[singularity_intros]:
+ "isolated_singularity_at (\<lambda>w. f w * g w) z"
+ and isolated_singularity_at_add[singularity_intros]:
"isolated_singularity_at (\<lambda>w. f w + g w) z"
proof -
obtain d1 d2 where "d1>0" "d2>0"
@@ -912,19 +902,18 @@
unfolding isolated_singularity_at_def by (simp add: gt_ex)
lemma isolated_singularity_at_minus[singularity_intros]:
- assumes f_iso:"isolated_singularity_at f z"
- and g_iso:"isolated_singularity_at g z"
- shows "isolated_singularity_at (\<lambda>w. f w - g w) z"
- using isolated_singularity_at_uminus[THEN isolated_singularity_at_add[OF f_iso,of "\<lambda>w. - g w"]
- ,OF g_iso] by simp
+ assumes "isolated_singularity_at f z" and "isolated_singularity_at g z"
+ shows "isolated_singularity_at (\<lambda>w. f w - g w) z"
+ unfolding diff_conv_add_uminus
+ using assms isolated_singularity_at_add isolated_singularity_at_uminus by blast
lemma isolated_singularity_at_divide[singularity_intros]:
- assumes f_iso:"isolated_singularity_at f z"
- and g_iso:"isolated_singularity_at g z"
- and g_ness:"not_essential g z"
+ assumes "isolated_singularity_at f z"
+ and "isolated_singularity_at g z"
+ and "not_essential g z"
shows "isolated_singularity_at (\<lambda>w. f w / g w) z"
- using isolated_singularity_at_inverse[THEN isolated_singularity_at_times[OF f_iso,
- of "\<lambda>w. inverse (g w)"],OF g_iso g_ness] by (simp add:field_simps)
+ unfolding divide_inverse
+ by (simp add: assms isolated_singularity_at_inverse isolated_singularity_at_times)
lemma isolated_singularity_at_const[singularity_intros]:
"isolated_singularity_at (\<lambda>w. c) z"
@@ -1013,14 +1002,7 @@
lemma not_essential_holomorphic:
assumes "f holomorphic_on A" "x \<in> A" "open A"
shows "not_essential f x"
-proof -
- have "continuous_on A f"
- using assms holomorphic_on_imp_continuous_on by blast
- hence "f \<midarrow>x\<rightarrow> f x"
- using assms continuous_on_eq_continuous_at isContD by blast
- thus ?thesis
- by (auto simp: not_essential_def)
-qed
+ by (metis assms at_within_open continuous_on holomorphic_on_imp_continuous_on not_essential_def)
lemma not_essential_analytic:
assumes "f analytic_on {z}"
@@ -1045,11 +1027,7 @@
then have "eventually (\<lambda>w. w \<in> ball z r - {z}) (at z)"
by (intro eventually_at_in_open) auto
thus "eventually (\<lambda>w. \<not>is_pole f w) (at z)"
- proof eventually_elim
- case (elim w)
- with r show ?case
- using analytic_imp_holomorphic not_is_pole_holomorphic open_delete by blast
- qed
+ by (metis (no_types, lifting) analytic_at analytic_on_analytic_at eventually_mono not_is_pole_holomorphic r)
qed
lemma not_islimpt_poles:
@@ -1077,13 +1055,7 @@
lemma isolated_singularity_at_analytic:
assumes "f analytic_on {z}"
shows "isolated_singularity_at f z"
-proof -
- from assms obtain r where r: "r > 0" "f holomorphic_on ball z r"
- by (auto simp: analytic_on_def)
- show ?thesis
- by (rule isolated_singularity_at_holomorphic[of f "ball z r"])
- (use \<open>r > 0\<close> in \<open>auto intro!: holomorphic_on_subset[OF r(2)]\<close>)
-qed
+ by (meson Diff_subset analytic_at assms holomorphic_on_subset isolated_singularity_at_holomorphic)
subsection \<open>The order of non-essential singularities (i.e. removable singularities or poles)\<close>
@@ -1100,7 +1072,7 @@
lemma zorder_exist:
fixes f::"complex \<Rightarrow> complex" and z::complex
- defines "n\<equiv>zorder f z" and "g\<equiv>zor_poly f z"
+ defines "n \<equiv> zorder f z" and "g \<equiv> zor_poly f z"
assumes f_iso:"isolated_singularity_at f z"
and f_ness:"not_essential f z"
and f_nconst:"\<exists>\<^sub>Fw in (at z). f w\<noteq>0"
@@ -1109,7 +1081,7 @@
proof -
define P where "P = (\<lambda>n g r. 0 < r \<and> g holomorphic_on cball z r \<and> g z\<noteq>0
\<and> (\<forall>w\<in>cball z r - {z}. f w = g w * (w-z) powi n \<and> g w\<noteq>0))"
- have "\<exists>!n. \<exists>g r. P n g r"
+ have "\<exists>!k. \<exists>g r. P k g r"
using holomorphic_factor_puncture[OF assms(3-)] unfolding P_def by auto
then have "\<exists>g r. P n g r"
unfolding n_def P_def zorder_def
@@ -1168,8 +1140,8 @@
and fr_nz: "inverse (fp w) \<noteq> 0"
when "w\<in>ball z fr - {z}" for w
proof -
- have "f w = fp w * (w - z) powi fn" "fp w\<noteq>0"
- using fr(2)[rule_format,of w] that by auto
+ have "f w = fp w * (w - z) powi fn" "fp w \<noteq> 0"
+ using fr(2) that by auto
then show "vf w = (inverse (fp w)) * (w - z) powi (-fn)" "inverse (fp w)\<noteq>0"
by (simp_all add: power_int_minus vf_def)
qed
@@ -1256,13 +1228,7 @@
define n where "n \<equiv> zorder f z"
have "f w = zor_poly f z w * (w - z) powi n"
- proof -
- have "w\<in>cball z r1 - {z}"
- using r_def that by auto
- from rball1[rule_format, OF this]
- show ?thesis unfolding n_def by auto
- qed
-
+ using n_def r_def rball1 that by auto
moreover have "f w = zor_poly ff 0 (w - z) * (w - z) powi n"
proof -
have "w-z\<in>cball 0 r2 - {0}"
@@ -1286,23 +1252,16 @@
then have "\<forall>\<^sub>F w in at z. zor_poly f z w
= zor_poly ff 0 (w - z)"
unfolding eventually_at
- apply (rule_tac x=r in exI)
- using \<open>r>0\<close> by (auto simp:dist_commute)
+ by (metis DiffI \<open>0 < r\<close> dist_commute mem_ball singletonD)
moreover have "isCont (zor_poly f z) z"
using holo1[THEN holomorphic_on_imp_continuous_on]
- apply (elim continuous_on_interior)
- using \<open>r1>0\<close> by auto
- moreover have "isCont (\<lambda>w. zor_poly ff 0 (w - z)) z"
- proof -
- have "isCont (zor_poly ff 0) 0"
- using holo2[THEN holomorphic_on_imp_continuous_on]
- apply (elim continuous_on_interior)
- using \<open>r2>0\<close> by auto
- then show ?thesis
+ by (simp add: \<open>0 < r1\<close> continuous_on_interior)
+ moreover
+ have "isCont (zor_poly ff 0) 0"
+ using \<open>0 < r2\<close> centre_in_ball continuous_on_interior holo2 holomorphic_on_imp_continuous_on interior_cball by blast
+ then have "isCont (\<lambda>w. zor_poly ff 0 (w - z)) z"
unfolding isCont_iff by simp
- qed
- ultimately show "\<forall>\<^sub>F w in nhds z. zor_poly f z w
- = zor_poly ff 0 (w - z)"
+ ultimately show "\<forall>\<^sub>F w in nhds z. zor_poly f z w = zor_poly ff 0 (w - z)"
by (elim at_within_isCont_imp_nhds;auto)
qed
@@ -1335,27 +1294,26 @@
have fg_times:"fg w = (fp w * gp w) * (w - z) powi (fn+gn)" and fgp_nz:"fp w*gp w\<noteq>0"
when "w\<in>ball z r1 - {z}" for w
proof -
- have "f w = fp w * (w - z) powi fn" "fp w\<noteq>0"
+ have "f w = fp w * (w - z) powi fn" "fp w \<noteq> 0"
using fr(2)[rule_format,of w] that unfolding r1_def by auto
moreover have "g w = gp w * (w - z) powi gn" "gp w \<noteq> 0"
- using gr(2)[rule_format, of w] that unfolding r1_def by auto
+ using gr(2) that unfolding r1_def by auto
ultimately show "fg w = (fp w * gp w) * (w - z) powi (fn+gn)" "fp w*gp w\<noteq>0"
- using that
- unfolding fg_def by (auto simp add:power_int_add)
+ using that unfolding fg_def by (auto simp add:power_int_add)
qed
obtain fgr where [simp]:"fgp z \<noteq> 0" and "fgr > 0"
and fgr: "fgp holomorphic_on cball z fgr"
"\<forall>w\<in>cball z fgr - {z}. fg w = fgp w * (w - z) powi fgn \<and> fgp w \<noteq> 0"
proof -
- have "fgp z \<noteq> 0 \<and> (\<exists>r>0. fgp holomorphic_on cball z r
- \<and> (\<forall>w\<in>cball z r - {z}. fg w = fgp w * (w - z) powi fgn \<and> fgp w \<noteq> 0))"
- apply (rule zorder_exist[of fg z, folded fgn_def fgp_def])
- subgoal unfolding fg_def using isolated_singularity_at_times[OF f_iso g_iso] .
- subgoal unfolding fg_def using not_essential_times[OF f_ness g_ness f_iso g_iso] .
- subgoal unfolding fg_def using fg_nconst .
- done
- then show ?thesis using that by blast
+ have "isolated_singularity_at fg z"
+ unfolding fg_def using isolated_singularity_at_times[OF f_iso g_iso] .
+ moreover have "not_essential fg z"
+ by (simp add: f_iso f_ness fg_def g_iso g_ness not_essential_times)
+ moreover have "\<exists>\<^sub>F w in at z. fg w \<noteq> 0"
+ using fg_def fg_nconst by blast
+ ultimately show ?thesis
+ using that zorder_exist[of fg z] fgn_def fgp_def by fastforce
qed
define r2 where "r2 = min fgr r1"
have "r2>0" using \<open>r1>0\<close> \<open>fgr>0\<close> unfolding r2_def by simp
@@ -1368,9 +1326,9 @@
proof (rule ballI)
fix w assume "w \<in> ball z r2 - {z}"
then have "w \<in> ball z r1 - {z}" "w \<in> cball z fgr - {z}" unfolding r2_def by auto
- from fg_times[OF this(1)] fgp_nz[OF this(1)] fgr(2)[rule_format,OF this(2)]
- show "fg w = fgp w * (w - z) powi fgn \<and> fgp w \<noteq> 0
- \<and> fg w = fp w * gp w * (w - z) powi (fn + gn) \<and> fp w * gp w \<noteq> 0" by auto
+ then show "fg w = fgp w * (w - z) powi fgn \<and> fgp w \<noteq> 0
+ \<and> fg w = fp w * gp w * (w - z) powi (fn + gn) \<and> fp w * gp w \<noteq> 0"
+ using fg_times fgp_nz fgr(2) by blast
qed
subgoal using fgr(1) unfolding r2_def r1_def by (auto intro!:holomorphic_intros)
subgoal using fr(1) gr(1) unfolding r2_def r1_def by (auto intro!:holomorphic_intros)
@@ -1398,22 +1356,20 @@
have f_nconst:"\<exists>\<^sub>Fw in (at z). f w \<noteq> 0" and g_nconst:"\<exists>\<^sub>Fw in (at z).g w\<noteq> 0"
using fg_nconst by (auto elim!:frequently_elim1)
define vg where "vg=(\<lambda>w. inverse (g w))"
- have "zorder (\<lambda>w. f w * vg w) z = zorder f z + zorder vg z"
- apply (rule zorder_times[OF f_iso _ f_ness,of vg])
- subgoal unfolding vg_def using isolated_singularity_at_inverse[OF g_iso g_ness] .
- subgoal unfolding vg_def using not_essential_inverse[OF g_ness g_iso] .
- subgoal unfolding vg_def using fg_nconst by (auto elim!:frequently_elim1)
- done
+ have 1: "isolated_singularity_at vg z"
+ by (simp add: g_iso g_ness isolated_singularity_at_inverse vg_def)
+ moreover have 2: "not_essential vg z"
+ by (simp add: g_iso g_ness not_essential_inverse vg_def)
+ moreover have 3: "\<exists>\<^sub>F w in at z. f w * vg w \<noteq> 0"
+ using fg_nconst vg_def by auto
+ ultimately have "zorder (\<lambda>w. f w * vg w) z = zorder f z + zorder vg z"
+ using zorder_times[OF f_iso _ f_ness] by blast
then show "zorder (\<lambda>w. f w / g w) z = zorder f z - zorder g z"
using zorder_inverse[OF g_iso g_ness g_nconst,folded vg_def] unfolding vg_def
by (auto simp add:field_simps)
have "\<forall>\<^sub>F w in at z. zor_poly (\<lambda>w. f w * vg w) z w = zor_poly f z w * zor_poly vg z w"
- apply (rule zor_poly_times[OF f_iso _ f_ness,of vg])
- subgoal unfolding vg_def using isolated_singularity_at_inverse[OF g_iso g_ness] .
- subgoal unfolding vg_def using not_essential_inverse[OF g_ness g_iso] .
- subgoal unfolding vg_def using fg_nconst by (auto elim!:frequently_elim1)
- done
+ using zor_poly_times[OF f_iso _ f_ness,of vg] 1 2 3 by blast
then show "\<forall>\<^sub>Fw in (at z). zor_poly (\<lambda>w. f w / g w) z w = zor_poly f z w / zor_poly g z w"
using zor_poly_inverse[OF g_iso g_ness g_nconst,folded vg_def] unfolding vg_def
by eventually_elim (auto simp add:field_simps)
@@ -1447,15 +1403,14 @@
by (rule non_zero_neighbour_alt[OF holo \<open>open s\<close> \<open>connected s\<close> \<open>z\<in>s\<close>])
qed
then show "\<exists>\<^sub>F w in at z. f w \<noteq> 0"
- apply (elim eventually_frequentlyE)
- by auto
+ by (auto elim: eventually_frequentlyE)
qed
then obtain r1 where "g z \<noteq> 0" "r1>0" and r1:"g holomorphic_on cball z r1"
"(\<forall>w\<in>cball z r1 - {z}. f w = g w * (w - z) powi n \<and> g w \<noteq> 0)"
by auto
obtain r2 where r2: "r2>0" "cball z r2 \<subseteq> s"
using assms(4,6) open_contains_cball_eq by blast
- define r3 where "r3=min r1 r2"
+ define r3 where "r3 \<equiv> min r1 r2"
have "r3>0" "cball z r3 \<subseteq> s" using \<open>r1>0\<close> r2 unfolding r3_def by auto
moreover have "g holomorphic_on cball z r3"
using r1(1) unfolding r3_def by auto
@@ -1517,7 +1472,7 @@
have "(\<lambda>x. inverse ((x - z) ^ nat (- n)) * (x - z) ^ nat (- n)) \<midarrow>z\<rightarrow> 0"
using tendsto_mult by fastforce
then have "(\<lambda>x. 1::complex) \<midarrow>z\<rightarrow> 0"
- by (elim Lim_transform_within_open[where s=UNIV],auto)
+ using Lim_transform_within_open by fastforce
then show False using LIM_const_eq by fastforce
qed
ultimately show ?thesis by fastforce
@@ -1555,13 +1510,11 @@
lemma zorder_exist_pole:
fixes f::"complex \<Rightarrow> complex" and z::complex
defines "n\<equiv>zorder f z" and "g\<equiv>zor_poly f z"
- assumes holo: "f holomorphic_on s-{z}" and
- "open s" "z\<in>s"
- and "is_pole f z"
- shows "n < 0 \<and> g z\<noteq>0 \<and> (\<exists>r. r>0 \<and> cball z r \<subseteq> s \<and> g holomorphic_on cball z r
+ assumes holo: "f holomorphic_on S-{z}" and "open S" "z\<in>S" and "is_pole f z"
+ shows "n < 0 \<and> g z\<noteq>0 \<and> (\<exists>r. r>0 \<and> cball z r \<subseteq> S \<and> g holomorphic_on cball z r
\<and> (\<forall>w\<in>cball z r - {z}. f w = g w / (w-z) ^ nat (- n) \<and> g w \<noteq>0))"
proof -
- obtain r where "g z \<noteq> 0" and r: "r>0" "cball z r \<subseteq> s" "g holomorphic_on cball z r"
+ obtain r where "g z \<noteq> 0" and r: "r>0" "cball z r \<subseteq> S" "g holomorphic_on cball z r"
"(\<forall>w\<in>cball z r - {z}. f w = g w * (w - z) powi n \<and> g w \<noteq> 0)"
proof -
have "g z \<noteq> 0 \<and> (\<exists>r>0. g holomorphic_on cball z r
@@ -1574,16 +1527,15 @@
using assms(4,6) at_within_open continuous_on holo holomorphic_on_imp_continuous_on
by fastforce
from non_zero_neighbour_pole[OF \<open>is_pole f z\<close>] show "\<exists>\<^sub>F w in at z. f w \<noteq> 0"
- apply (elim eventually_frequentlyE)
- by auto
+ by (auto elim: eventually_frequentlyE)
qed
then obtain r1 where "g z \<noteq> 0" "r1>0" and r1:"g holomorphic_on cball z r1"
"(\<forall>w\<in>cball z r1 - {z}. f w = g w * (w - z) powi n \<and> g w \<noteq> 0)"
by auto
- obtain r2 where r2: "r2>0" "cball z r2 \<subseteq> s"
+ obtain r2 where r2: "r2>0" "cball z r2 \<subseteq> S"
using assms(4,5) open_contains_cball_eq by metis
define r3 where "r3=min r1 r2"
- have "r3>0" "cball z r3 \<subseteq> s" using \<open>r1>0\<close> r2 unfolding r3_def by auto
+ have "r3>0" "cball z r3 \<subseteq> S" using \<open>r1>0\<close> r2 unfolding r3_def by auto
moreover have "g holomorphic_on cball z r3"
using r1(1) unfolding r3_def by auto
moreover have "(\<forall>w\<in>cball z r3 - {z}. f w = g w * (w - z) powi n \<and> g w \<noteq> 0)"
@@ -1624,16 +1576,16 @@
qed
lemma zorder_eqI:
- assumes "open s" "z \<in> s" "g holomorphic_on s" "g z \<noteq> 0"
- assumes fg_eq:"\<And>w. \<lbrakk>w \<in> s;w\<noteq>z\<rbrakk> \<Longrightarrow> f w = g w * (w - z) powi n"
+ assumes "open S" "z \<in> S" "g holomorphic_on S" "g z \<noteq> 0"
+ assumes fg_eq:"\<And>w. \<lbrakk>w \<in> S;w\<noteq>z\<rbrakk> \<Longrightarrow> f w = g w * (w - z) powi n"
shows "zorder f z = n"
proof -
- have "continuous_on s g" by (rule holomorphic_on_imp_continuous_on) fact
+ have "continuous_on S g" by (rule holomorphic_on_imp_continuous_on) fact
moreover have "open (-{0::complex})" by auto
- ultimately have "open ((g -` (-{0})) \<inter> s)"
- unfolding continuous_on_open_vimage[OF \<open>open s\<close>] by blast
- moreover from assms have "z \<in> (g -` (-{0})) \<inter> s" by auto
- ultimately obtain r where r: "r > 0" "cball z r \<subseteq> s \<inter> (g -` (-{0}))"
+ ultimately have "open ((g -` (-{0})) \<inter> S)"
+ unfolding continuous_on_open_vimage[OF \<open>open S\<close>] by blast
+ moreover from assms have "z \<in> (g -` (-{0})) \<inter> S" by auto
+ ultimately obtain r where r: "r > 0" "cball z r \<subseteq> S \<inter> (g -` (-{0}))"
unfolding open_contains_cball by blast
let ?gg= "(\<lambda>w. g w * (w - z) powi n)"
@@ -1644,18 +1596,18 @@
then have "\<exists>g r. P n g r" by auto
moreover have unique: "\<exists>!n. \<exists>g r. P n g r" unfolding P_def
proof (rule holomorphic_factor_puncture)
- have "ball z r-{z} \<subseteq> s" using r using ball_subset_cball by blast
+ have "ball z r-{z} \<subseteq> S" using r using ball_subset_cball by blast
then have "?gg holomorphic_on ball z r-{z}"
- using \<open>g holomorphic_on s\<close> r by (auto intro!: holomorphic_intros)
+ using \<open>g holomorphic_on S\<close> r by (auto intro!: holomorphic_intros)
then have "f holomorphic_on ball z r - {z}"
- by (smt (verit, best) DiffD2 \<open>ball z r-{z} \<subseteq> s\<close> fg_eq holomorphic_cong singleton_iff subset_iff)
+ by (smt (verit, best) DiffD2 \<open>ball z r-{z} \<subseteq> S\<close> fg_eq holomorphic_cong singleton_iff subset_iff)
then show "isolated_singularity_at f z" unfolding isolated_singularity_at_def
using analytic_on_open open_delete r(1) by blast
next
have "not_essential ?gg z"
proof (intro singularity_intros)
show "not_essential g z"
- by (meson \<open>continuous_on s g\<close> assms continuous_on_eq_continuous_at
+ by (meson \<open>continuous_on S g\<close> assms continuous_on_eq_continuous_at
isCont_def not_essential_def)
show " \<forall>\<^sub>F w in at z. w - z \<noteq> 0" by (simp add: eventually_at_filter)
then show "LIM w at z. w - z :> at 0"
@@ -1679,7 +1631,7 @@
proof (subst fg_eq[OF _ \<open>z'\<noteq>z\<close>])
have "z' \<in> cball z r"
unfolding z'_def using \<open>r>0\<close> \<open>d>0\<close> by (auto simp add:dist_norm)
- then show " z' \<in> s" using r(2) by blast
+ then show " z' \<in> S" using r(2) by blast
show "g z' * (z' - z) powi n \<noteq> 0"
using P_def \<open>P n g r\<close> \<open>z' \<in> cball z r\<close> \<open>z' \<noteq> z\<close> by auto
qed
@@ -1692,8 +1644,8 @@
qed
lemma simple_zeroI:
- assumes "open s" "z \<in> s" "g holomorphic_on s" "g z \<noteq> 0"
- assumes "\<And>w. w \<in> s \<Longrightarrow> f w = g w * (w - z)"
+ assumes "open S" "z \<in> S" "g holomorphic_on S" "g z \<noteq> 0"
+ assumes "\<And>w. w \<in> S \<Longrightarrow> f w = g w * (w - z)"
shows "zorder f z = 1"
using assms zorder_eqI by force
@@ -1726,13 +1678,13 @@
qed
lemma zorder_zero_eqI:
- assumes f_holo:"f holomorphic_on s" and "open s" "z \<in> s"
+ assumes f_holo:"f holomorphic_on S" and "open S" "z \<in> S"
assumes zero: "\<And>i. i < nat n \<Longrightarrow> (deriv ^^ i) f z = 0"
assumes nz: "(deriv ^^ nat n) f z \<noteq> 0" and "n\<ge>0"
shows "zorder f z = n"
proof -
- obtain r where [simp]:"r>0" and "ball z r \<subseteq> s"
- using \<open>open s\<close> \<open>z\<in>s\<close> openE by blast
+ obtain r where [simp]:"r>0" and "ball z r \<subseteq> S"
+ using \<open>open S\<close> \<open>z\<in>S\<close> openE by blast
have nz':"\<exists>w\<in>ball z r. f w \<noteq> 0"
proof (rule ccontr)
assume "\<not> (\<exists>w\<in>ball z r. f w \<noteq> 0)"
@@ -1746,17 +1698,17 @@
qed
define zn g where "zn = zorder f z" and "g = zor_poly f z"
- obtain e where e_if:"if f z = 0 then 0 < zn else zn = 0" and
- [simp]:"e>0" and "cball z e \<subseteq> ball z r" and
- g_holo:"g holomorphic_on cball z e" and
- e_fac:"(\<forall>w\<in>cball z e. f w = g w * (w - z) ^ nat zn \<and> g w \<noteq> 0)"
+ obtain e where e_if: "if f z = 0 then 0 < zn else zn = 0" and
+ [simp]: "e>0" and "cball z e \<subseteq> ball z r" and
+ g_holo: "g holomorphic_on cball z e" and
+ e_fac: "(\<forall>w\<in>cball z e. f w = g w * (w - z) ^ nat zn \<and> g w \<noteq> 0)"
proof -
have "f holomorphic_on ball z r"
- using f_holo \<open>ball z r \<subseteq> s\<close> by auto
+ using f_holo \<open>ball z r \<subseteq> S\<close> by auto
from that zorder_exist_zero[of f "ball z r" z,simplified,OF this nz',folded zn_def g_def]
- show ?thesis by blast
+ show thesis by blast
qed
- then obtain "zn \<ge> 0" "g z\<noteq>0"
+ then obtain "zn \<ge> 0" "g z \<noteq> 0"
by (metis centre_in_cball less_le_not_le order_refl)
define A where "A \<equiv> (\<lambda>i. of_nat (i choose (nat zn)) * fact (nat zn) * (deriv ^^ (i - nat zn)) g z)"
@@ -1850,10 +1802,7 @@
assumes "isolated_singularity_at f z" "not_essential f z"
assumes "g analytic_on {z}" "frequently (\<lambda>z. f z * g z \<noteq> 0) (at z)"
shows "zorder (\<lambda>x. f x * g x) z = zorder f z + zorder g z"
-proof (rule zorder_times)
- show "isolated_singularity_at g z" "not_essential g z"
- by (intro isolated_singularity_at_analytic not_essential_analytic assms)+
-qed (use assms in auto)
+ using assms isolated_singularity_at_analytic not_essential_analytic zorder_times by blast
lemma zorder_cmult:
assumes "c \<noteq> 0"
@@ -1874,7 +1823,7 @@
qed
lemma zorder_nonzero_div_power:
- assumes sz: "open s" "z \<in> s" "f holomorphic_on s" "f z \<noteq> 0" and "n > 0"
+ assumes sz: "open S" "z \<in> S" "f holomorphic_on S" "f z \<noteq> 0" and "n > 0"
shows "zorder (\<lambda>w. f w / (w - z) ^ n) z = - n"
by (intro zorder_eqI [OF sz]) (simp add: inverse_eq_divide power_int_minus)
@@ -1893,7 +1842,7 @@
qed
lemma zor_poly_zero_eq:
- assumes "f holomorphic_on s" "open s" "connected s" "z \<in> s" "\<exists>w\<in>s. f w \<noteq> 0"
+ assumes "f holomorphic_on S" "open S" "connected S" "z \<in> S" "\<exists>w\<in>S. f w \<noteq> 0"
shows "eventually (\<lambda>w. zor_poly f z w = f w / (w - z) ^ nat (zorder f z)) (at z)"
proof -
obtain r where r:"r>0"
@@ -2104,7 +2053,7 @@
have *: "x \<in> ball x r" "open (ball x r)" "open (ball x r - {x})"
using \<open>r > 0\<close> by auto
show "is_pole (deriv f) x" "zorder (deriv f) x = zorder f x - 1"
- by (rule is_pole_deriv' zorder_deriv', (rule assms * holomorphic_derivI holo | assumption)+)+
+ by (meson "*" assms(1) holo holomorphic_derivI is_pole_deriv' zorder_deriv')+
qed
lemma removable_singularity_deriv':
@@ -2271,11 +2220,7 @@
have "eventually (\<lambda>w. w \<in> ball z r - {z}) (at z)"
using r by (intro eventually_at_in_open) auto
thus "eventually (\<lambda>w. f w = 0) (at z)"
- proof eventually_elim
- case (elim w)
- thus ?case using g_eq_0[of w]
- by (auto simp: g_def)
- qed
+ by (metis freq non_zero_neighbour not_eventually not_frequently sing)
qed
lemma pole_imp_not_constant:
@@ -2337,8 +2282,7 @@
qed
moreover have "\<forall>\<^sub>F w in at z. f w = P w * (w - z) powi n"
unfolding eventually_at_le
- apply (rule exI[where x=r])
- using w_Pn \<open>r>0\<close> by (simp add: dist_commute)
+ using w_Pn \<open>r>0\<close> by (force simp add: dist_commute)
ultimately show ?thesis using is_pole_cong by fast
qed
@@ -2387,34 +2331,20 @@
using is_pole_deriv[OF \<open>is_pole f z\<close> f_iso,THEN non_zero_neighbour_pole]
.
ultimately have "\<forall>\<^sub>F w in at z. False"
- apply eventually_elim
- by auto
+ by eventually_elim auto
then show False by auto
qed
lemma isolated_pole_imp_neg_zorder:
- assumes f_iso:"isolated_singularity_at f z"
- and "is_pole f z"
- shows "zorder f z<0"
-proof -
- obtain e where [simp]:"e>0" and f_holo:"f holomorphic_on ball z e - {z}"
- using f_iso analytic_imp_holomorphic unfolding isolated_singularity_at_def by blast
- show ?thesis
- using zorder_exist_pole[OF f_holo,simplified,OF \<open>is_pole f z\<close>]
- by auto
-qed
+ assumes "isolated_singularity_at f z" and "is_pole f z"
+ shows "zorder f z < 0"
+ using analytic_imp_holomorphic assms centre_in_ball isolated_singularity_at_def zorder_exist_pole by blast
+
lemma isolated_singularity_at_deriv[singularity_intros]:
assumes "isolated_singularity_at f x"
shows "isolated_singularity_at (deriv f) x"
-proof -
- obtain r where "r>0" "f analytic_on ball x r - {x}"
- using assms unfolding isolated_singularity_at_def by auto
- from analytic_deriv[OF this(2)]
- have "deriv f analytic_on ball x r - {x}" .
- with \<open>r>0\<close> show ?thesis
- unfolding isolated_singularity_at_def by auto
-qed
+ by (meson analytic_deriv assms isolated_singularity_at_def)
lemma zorder_deriv_minus_1:
fixes f g::"complex \<Rightarrow> complex" and z::complex
@@ -2501,13 +2431,9 @@
have "zorder ff z = zorder (deriv f) z - zorder f z"
unfolding ff_def using f_iso f_ness fg_nconst
- apply (rule_tac zorder_divide)
- by (auto intro:singularity_intros)
+ using isolated_singularity_at_deriv not_essential_deriv zorder_divide by blast
moreover have "zorder (deriv f) z = zorder f z - 1"
- proof (rule zorder_deriv_minus_1)
- show " \<exists>\<^sub>F w in at z. f w \<noteq> 0"
- using fg_nconst frequently_elim1 by fastforce
- qed (use f_iso f_ness f_ord in auto)
+ using f_iso f_ness f_ord fg_nconst frequently_elim1 zorder_deriv_minus_1 by fastforce
ultimately show "zorder ff z < 0" by auto
show "\<exists>\<^sub>F w in at z. ff w \<noteq> 0"
@@ -2523,8 +2449,7 @@
show "not_essential f z"
using \<open>is_pole f z\<close> unfolding not_essential_def by auto
show "\<exists>\<^sub>F w in at z. deriv f w * f w \<noteq> 0"
- apply (rule isolated_pole_imp_nzero_times)
- using assms by auto
+ using assms f_iso isolated_pole_imp_nzero_times by blast
show "zorder f z \<noteq> 0"
using isolated_pole_imp_neg_zorder assms by fastforce
qed
@@ -2541,7 +2466,7 @@
assumes "isolated_zero f x" "isolated_zero g x"
shows "isolated_zero (\<lambda>x. f x * g x) x"
proof -
- have "eventually (\<lambda>x. f x \<noteq> 0) (at x)" "eventually (\<lambda>x. g x \<noteq> 0) (at x)"
+ have "\<forall>\<^sub>F x in at x. f x \<noteq> 0" "\<forall>\<^sub>F x in at x. g x \<noteq> 0"
using assms unfolding isolated_zero_def by auto
hence "eventually (\<lambda>x. f x * g x \<noteq> 0) (at x)"
by eventually_elim auto
@@ -2576,10 +2501,7 @@
lemma non_isolated_zero':
assumes "isolated_singularity_at f z" "not_essential f z" "f z = 0" "\<not>isolated_zero f z"
shows "eventually (\<lambda>z. f z = 0) (at z)"
-proof (rule not_essential_frequently_0_imp_eventually_0)
- from assms show "frequently (\<lambda>z. f z = 0) (at z)"
- by (auto simp: frequently_def isolated_zero_def)
-qed fact+
+ by (metis assms isolated_zero_def non_zero_neighbour not_eventually)
lemma non_isolated_zero:
assumes "\<not>isolated_zero f z" "f analytic_on {z}" "f z = 0"
--- a/src/HOL/Complex_Analysis/Conformal_Mappings.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Conformal_Mappings.thy Mon Aug 21 18:38:25 2023 +0100
@@ -30,8 +30,7 @@
by (metis \<open>m \<noteq> 0\<close> dist_norm mem_ball norm_minus_commute not_gr_zero)
have "0 < min r s" by (simp add: \<open>0 < r\<close> \<open>0 < s\<close>)
then show thesis
- apply (rule that)
- using r s by auto
+ proof qed (use r s in auto)
qed
proposition analytic_continuation:
@@ -166,7 +165,7 @@
then have "0 < norm (f \<xi>)"
by (simp add: \<open>0 < r\<close>)
have fnz': "\<And>w. w \<in> cball \<xi> r \<Longrightarrow> f w \<noteq> 0"
- by (metis norm_less dist_norm fnz less_eq_real_def mem_ball mem_cball norm_not_less_zero norm_zero)
+ using dist_complex_def fnz norm_less order_le_less by fastforce
have "frontier(cball \<xi> r) \<noteq> {}"
using \<open>0 < r\<close> by simp
define g where [abs_def]: "g z = inverse (f z)" for z
@@ -204,7 +203,7 @@
by (metis (no_types) dist_norm frontier_cball mem_sphere w)
ultimately obtain wr: "norm (\<xi> - w) = r" and nfw: "norm (f w) \<le> norm (f \<xi>)"
unfolding g_def
- by (metis (no_types) \<open>0 < cmod (f \<xi>)\<close> less_imp_inverse_less norm_inverse not_le now order_trans v)
+ by (smt (verit, del_insts) \<open>0 < cmod (f \<xi>)\<close> inverse_le_imp_le norm_inverse now v)
with fw have False
using norm_less by force
}
@@ -339,13 +338,10 @@
qed
corollary\<^marker>\<open>tag unimportant\<close> open_mapping_thm3:
- assumes holf: "f holomorphic_on S"
- and "open S" and injf: "inj_on f S"
+ assumes "f holomorphic_on S"
+ and "open S" and "inj_on f S"
shows "open (f ` S)"
-proof (rule open_mapping_thm2 [OF holf])
- show "\<And>X. \<lbrakk>open X; X \<subseteq> S; X \<noteq> {}\<rbrakk> \<Longrightarrow> \<not> f constant_on X"
- using inj_on_subset injective_not_constant injf by blast
-qed (use assms in auto)
+ by (meson assms inj_on_subset injective_not_constant open_mapping_thm2 order.refl)
subsection\<open>Maximum modulus principle\<close>
@@ -423,7 +419,7 @@
then obtain w where w: "w \<in> frontier(connected_component_set (interior S) z)"
by auto
then have "norm (f z) = norm (f w)" by (simp add: "2" c cc frontier_def)
- also have "... \<le> B"
+ also have "\<dots> \<le> B"
using w frontier_interior_subset frontier_of_connected_component_subset
by (blast intro: leB)
finally show ?thesis .
@@ -434,14 +430,14 @@
corollary\<^marker>\<open>tag unimportant\<close> maximum_real_frontier:
assumes holf: "f holomorphic_on (interior S)"
- and contf: "continuous_on (closure S) f"
- and bos: "bounded S"
- and leB: "\<And>z. z \<in> frontier S \<Longrightarrow> Re(f z) \<le> B"
- and "\<xi> \<in> S"
- shows "Re(f \<xi>) \<le> B"
-using maximum_modulus_frontier [of "exp o f" S "exp B"]
- Transcendental.continuous_on_exp holomorphic_on_compose holomorphic_on_exp assms
-by auto
+ and contf: "continuous_on (closure S) f"
+ and bos: "bounded S"
+ and leB: "\<And>z. z \<in> frontier S \<Longrightarrow> Re(f z) \<le> B"
+ and "\<xi> \<in> S"
+ shows "Re(f \<xi>) \<le> B"
+ using maximum_modulus_frontier [of "exp o f" S "exp B"]
+ Transcendental.continuous_on_exp holomorphic_on_compose holomorphic_on_exp assms
+ by auto
subsection\<^marker>\<open>tag unimportant\<close> \<open>Factoring out a zero according to its order\<close>
@@ -541,9 +537,10 @@
by (metis open_ball holomorphic_on_imp_continuous_on holomorphic_on_open)
then have con: "continuous_on (ball \<xi> r) (\<lambda>x. exp (h x) / g x)"
by (auto intro!: continuous_intros simp add: holg holomorphic_on_imp_continuous_on gne)
+ have gfd: "dist \<xi> x < r \<Longrightarrow> g field_differentiable at x" if "dist \<xi> x < r" for x
+ using holg holomorphic_on_imp_differentiable_at by auto
have 0: "dist \<xi> x < r \<Longrightarrow> ((\<lambda>x. exp (h x) / g x) has_field_derivative 0) (at x)" for x
- apply (rule h derivative_eq_intros DERIV_deriv_iff_field_differentiable [THEN iffD2] | simp)+
- using holg by (auto simp: holomorphic_on_imp_differentiable_at gne h)
+ by (rule gfd h derivative_eq_intros DERIV_deriv_iff_field_differentiable [THEN iffD2] | simp add: gne)+
obtain c where c: "\<And>x. x \<in> ball \<xi> r \<Longrightarrow> exp (h x) / g x = c"
by (rule DERIV_zero_connected_constant [of "ball \<xi> r" "{}" "\<lambda>x. exp(h x) / g x"]) (auto simp: con 0)
have hol: "(\<lambda>z. exp ((Ln (inverse c) + h z) / of_nat n)) holomorphic_on ball \<xi> r"
@@ -564,8 +561,8 @@
fixes k :: "'a::wellorder"
assumes a_def: "a == LEAST x. P x" and P: "P k"
shows def_LeastI: "P a" and def_Least_le: "a \<le> k"
-unfolding a_def
-by (rule LeastI Least_le; rule P)+
+ unfolding a_def
+ by (rule LeastI Least_le; rule P)+
lemma holomorphic_factor_zero_nonconstant:
assumes holf: "f holomorphic_on S" and S: "open S" "connected S"
@@ -646,8 +643,8 @@
then have leg: "\<And>w. w \<in> cball \<xi> d \<Longrightarrow> norm x \<le> norm (g w)"
by auto
have "ball \<xi> d \<subseteq> cball \<xi> d" by auto
- also have "... \<subseteq> ball \<xi> e" using \<open>0 < d\<close> d_def by auto
- also have "... \<subseteq> S" by (rule e)
+ also have "\<dots> \<subseteq> ball \<xi> e" using \<open>0 < d\<close> d_def by auto
+ also have "\<dots> \<subseteq> S" by (rule e)
finally have dS: "ball \<xi> d \<subseteq> S" .
have "x \<noteq> 0" using gnz x \<open>d < r\<close> by auto
show thesis
@@ -687,20 +684,20 @@
using continuous_on_interior continuous_within holg holomorphic_on_imp_continuous_on by blast
then have "(g \<longlongrightarrow> g \<xi>) (at \<xi>)"
by (simp add: \<xi>)
+ then have "\<forall>\<^sub>F z in at \<xi>. cmod (f z) \<le> cmod (g \<xi>) + 1"
+ by (rule eventually_mp [OF * tendstoD [where e=1]], auto)
then show ?thesis
- apply (rule_tac x="norm(g \<xi>) + 1" in exI)
- apply (rule eventually_mp [OF * tendstoD [where e=1]], auto)
- done
+ by blast
qed
moreover have "?Q" if "\<forall>\<^sub>F z in at \<xi>. cmod (f z) \<le> B" for B
by (rule lim_null_mult_right_bounded [OF _ that]) (simp add: LIM_zero)
moreover have "?P" if "(\<lambda>z. (z - \<xi>) * f z) \<midarrow>\<xi>\<rightarrow> 0"
proof -
define h where [abs_def]: "h z = (z - \<xi>)^2 * f z" for z
- have h0: "(h has_field_derivative 0) (at \<xi>)"
- apply (simp add: h_def has_field_derivative_iff)
- apply (auto simp: field_split_simps power2_eq_square Lim_transform_within [OF that, of 1])
- done
+ have "(\<lambda>y. (y - \<xi>)\<^sup>2 * f y / (y - \<xi>)) \<midarrow>\<xi>\<rightarrow> 0"
+ by (simp add: LIM_cong power2_eq_square that)
+ then have h0: "(h has_field_derivative 0) (at \<xi>)"
+ by (simp add: h_def has_field_derivative_iff)
have holh: "h holomorphic_on S"
proof (simp add: holomorphic_on_def, clarify)
fix z assume "z \<in> S"
@@ -755,22 +752,20 @@
by (rule holomorphic_on_compose holomorphic_intros holomorphic_on_subset [OF holf] | force simp: r)+
have 2: "0 \<in> interior (ball 0 r)"
using \<open>0 < r\<close> by simp
- have "\<exists>B. 0<B \<and> eventually (\<lambda>z. cmod ((inverse \<circ> f \<circ> inverse) z) \<le> B) (at 0)"
- apply (rule exI [where x=1])
- using tendstoD [OF lim [unfolded lim_at_infinity_0] zero_less_one]
- by (simp add: eventually_mono)
- with holomorphic_on_extend_bounded [OF 1 2]
obtain g where holg: "g holomorphic_on ball 0 r"
and geq: "\<And>z. z \<in> ball 0 r - {0} \<Longrightarrow> g z = (inverse \<circ> f \<circ> inverse) z"
- by meson
+ using tendstoD [OF lim [unfolded lim_at_infinity_0] zero_less_one] holomorphic_on_extend_bounded [OF 1 2]
+ by (smt (verit, del_insts) \<open>l = 0\<close> eventually_mono norm_conv_dist)
have ifi0: "(inverse \<circ> f \<circ> inverse) \<midarrow>0\<rightarrow> 0"
using \<open>l = 0\<close> lim lim_at_infinity_0 by blast
have g2g0: "g \<midarrow>0\<rightarrow> g 0"
using \<open>0 < r\<close> centre_in_ball continuous_at continuous_on_eq_continuous_at holg
by (blast intro: holomorphic_on_imp_continuous_on)
have g2g1: "g \<midarrow>0\<rightarrow> 0"
- apply (rule Lim_transform_within_open [OF ifi0 open_ball [of 0 r]])
- using \<open>0 < r\<close> by (auto simp: geq)
+ proof (rule Lim_transform_within_open [OF ifi0 open_ball])
+ show "\<And>x. \<lbrakk>x \<in> ball 0 r; x \<noteq> 0\<rbrakk> \<Longrightarrow> (inverse \<circ> f \<circ> inverse) x = g x"
+ by (auto simp: geq)
+ qed (auto simp: \<open>0 < r\<close>)
have [simp]: "g 0 = 0"
by (rule tendsto_unique [OF _ g2g0 g2g1]) simp
have "ball 0 r - {0::complex} \<noteq> {}"
@@ -831,7 +826,7 @@
using **[of w] fi0 \<open>0 < r\<close> that by force
then show ?thesis
unfolding lim_at_infinity_0
- using eventually_at \<open>r > 0\<close> by (force simp add: intro: tendsto_eventually)
+ using eventually_at \<open>r > 0\<close> by (force simp: intro: tendsto_eventually)
qed
obtain w where "w \<in> ball 0 r - {0}" and "f (inverse w) = 0"
using False \<open>0 < r\<close> by blast
@@ -916,7 +911,7 @@
with k m show ?thesis
by (rule_tac x=m in exI) (auto simp: that comm_monoid_add_class.sum.mono_neutral_right)
qed
- have \<section>: "((inverse \<circ> f) \<longlongrightarrow> 0) at_infinity"
+ have *: "((inverse \<circ> f) \<longlongrightarrow> 0) at_infinity"
proof (rule Lim_at_infinityI)
fix e::real assume "0 < e"
with compf [of "cball 0 (inverse e)"]
@@ -927,7 +922,7 @@
qed
then obtain a n where "\<And>z. f z = (\<Sum>i\<le>n. a i * z^i)"
using assms pole_at_infinity by blast
- with \<section> 2 show ?rhs by blast
+ with * 2 show ?rhs by blast
next
assume ?rhs
then obtain c n where "0 < n" "c n \<noteq> 0" "f = (\<lambda>z. \<Sum>i\<le>n. c i * z ^ i)" by blast
@@ -967,11 +962,12 @@
using dnz by simp
then obtain g' where g': "linear g'" "g' \<circ> (*) (deriv f \<xi>) = id"
using linear_injective_left_inverse [of "(*) (deriv f \<xi>)"] by auto
+
+ have fder: "\<And>x. x \<in> S \<Longrightarrow> (f has_derivative (*) (deriv f x)) (at x)"
+ using \<open>open S\<close> has_field_derivative_imp_has_derivative holf holomorphic_derivI by blast
show ?thesis
apply (rule has_derivative_locally_injective [OF S, where f=f and f' = "\<lambda>z h. deriv f z * h" and g' = g'])
- using g' *
- apply (simp_all add: linear_conv_bounded_linear that)
- using \<open>open S\<close> has_field_derivative_imp_has_derivative holf holomorphic_derivI by blast
+ using g' * by (simp_all add: fder linear_conv_bounded_linear that)
qed
lemma has_complex_derivative_locally_invertible:
@@ -1175,7 +1171,7 @@
using continuous_openin_preimage [OF contg gim]
by (meson \<open>open V\<close> contg continuous_openin_preimage_eq)
ultimately obtain \<epsilon> where "\<epsilon>>0" and e: "ball z \<epsilon> \<inter> U \<subseteq> g -` V"
- by (force simp add: openin_contains_ball)
+ by (force simp: openin_contains_ball)
show "g field_differentiable at z within U"
proof (rule field_differentiable_transform_within)
show "(0::real) < \<epsilon>"
@@ -1398,7 +1394,7 @@
show "convex (S \<inter> {x. d \<bullet> x \<le> k})"
by (rule convex_Int [OF \<open>convex S\<close> convex_halfspace_le])
qed
- also have "... \<subseteq> {z \<in> S. d \<bullet> z < k}"
+ also have "\<dots> \<subseteq> {z \<in> S. d \<bullet> z < k}"
by (force simp: interior_open [OF \<open>open S\<close>] \<open>d \<noteq> 0\<close>)
finally have *: "interior (convex hull {a, b, c}) \<subseteq> {z \<in> S. d \<bullet> z < k}" .
have "continuous_on (convex hull {a,b,c}) f"
@@ -1584,16 +1580,17 @@
using \<open>p \<in> S\<close> openE S by blast
then have "continuous_on (ball p e) f"
using contf continuous_on_subset by blast
- moreover have "f holomorphic_on {z. dist p z < e \<and> d \<bullet> z < k}"
- apply (rule holomorphic_on_subset [OF holf1])
+ moreover
+ have "{z. dist p z < e \<and> d \<bullet> z < k} \<subseteq> S \<inter> {z. d \<bullet> z < k}"
+ "{z. dist p z < e \<and> k < d \<bullet> z} \<subseteq> S \<inter> {z. k < d \<bullet> z}"
using e by auto
- moreover have "f holomorphic_on {z. dist p z < e \<and> k < d \<bullet> z}"
- apply (rule holomorphic_on_subset [OF holf2])
- using e by auto
+ then have "f holomorphic_on {z. dist p z < e \<and> d \<bullet> z < k}"
+ "f holomorphic_on {z. dist p z < e \<and> k < d \<bullet> z}"
+ using holomorphic_on_subset holf1 holf2 by presburger+
ultimately show ?thesis
apply (rule_tac x="ball p e" in exI)
- using \<open>e > 0\<close> e \<open>d \<noteq> 0\<close> hol_pal_lem4 [of "ball p e" _ _ _ d _ k]
- by (force simp add: subset_hull)
+ using \<open>e > 0\<close> e \<open>d \<noteq> 0\<close> hol_pal_lem4 [of "ball p e" _ _ _ d _ k]
+ by (force simp: subset_hull)
qed
show ?thesis
by (blast intro: * Morera_local_triangle analytic_imp_holomorphic)
@@ -1730,12 +1727,12 @@
proof -
have [simp]: "x * norm z < r"
using r x by (meson le_less_trans mult_le_cancel_right2 norm_not_less_zero)
- have "norm (deriv f (x *\<^sub>R z) - deriv f 0) \<le> norm (x *\<^sub>R z) / (r - norm (x *\<^sub>R z)) * C"
- apply (rule Le1) using r x \<open>0 < r\<close> by simp
- also have "... \<le> norm (x *\<^sub>R z) / (r - norm z) * C"
- using r x \<open>0 < r\<close>
- apply (simp add: field_split_simps)
- by (simp add: \<open>0 < C\<close> mult.assoc mult_left_le_one_le ordered_comm_semiring_class.comm_mult_left_mono)
+ then have "cmod (x *\<^sub>R z) < r"
+ by (simp add: x)
+ then have "norm (deriv f (x *\<^sub>R z) - deriv f 0) \<le> norm (x *\<^sub>R z) / (r - norm (x *\<^sub>R z)) * C"
+ by (metis Le1)
+ also have "\<dots> \<le> norm (x *\<^sub>R z) / (r - norm z) * C"
+ using r x \<open>0 < r\<close> \<open>0 < C\<close> by (simp add: frac_le mult_left_le_one_le)
finally have "norm (deriv f (x *\<^sub>R z) - deriv f 0) * norm z \<le> norm (x *\<^sub>R z) / (r - norm z) * C * norm z"
by (rule mult_right_mono) simp
with x show ?thesis by (simp add: algebra_simps)
@@ -1762,9 +1759,8 @@
then have \<section>: "(norm z * (r - norm z) - norm z * norm z) * norm (deriv f 0) \<le> norm (deriv f 0) * norm z * (r - norm z) - norm z * norm z * norm (deriv f 0)"
by (simp add: algebra_simps)
show ?thesis
- apply (rule le_norm [OF _ int_le])
- using \<open>norm z < r\<close>
- by (simp add: power2_eq_square divide_simps C_def norm_mult \<section>)
+ using \<open>norm z < r\<close>
+ by (force simp add: power2_eq_square divide_simps C_def norm_mult \<section> intro!: le_norm [OF _ int_le])
qed
have sq201 [simp]: "0 < (1 - sqrt 2 / 2)" "(1 - sqrt 2 / 2) < 1"
by (auto simp: sqrt2_less_2)
@@ -1788,20 +1784,20 @@
have "ball 0 ((3 - 2 * sqrt 2) * r * norm (deriv f 0)) =
ball (f 0) ((3 - 2 * sqrt 2) * r * norm (deriv f 0))"
by simp
- also have "... \<subseteq> f ` ball 0 ((1 - sqrt 2 / 2) * r)"
+ also have "\<dots> \<subseteq> f ` ball 0 ((1 - sqrt 2 / 2) * r)"
proof -
have 3: "(3 - 2 * sqrt 2) * r * norm (deriv f 0) \<le> norm (f z)"
if "norm z = (1 - sqrt 2 / 2) * r" for z
- apply (rule order_trans [OF _ *])
- using \<open>0 < r\<close>
- apply (simp_all add: field_simps power2_eq_square that)
- apply (simp add: mult.assoc [symmetric])
- done
+ proof (rule order_trans [OF _ *])
+ show "(3 - 2 * sqrt 2) * r * cmod (deriv f 0)
+ \<le> (cmod z - (cmod z)\<^sup>2 / (r - cmod z)) * cmod (deriv f 0)"
+ by (simp add: le_less algebra_simps divide_simps power2_eq_square that)
+ qed (use \<open>0 < r\<close> that in auto)
show ?thesis
- apply (rule ball_subset_open_map_image [OF 1 2 _ bounded_ball])
- using \<open>0 < r\<close> sq201 3 C_def \<open>0 < C\<close> sq3 by auto
+ using \<open>0 < r\<close> sq201 3 C_def \<open>0 < C\<close> sq3
+ by (intro ball_subset_open_map_image [OF 1 2 _ bounded_ball]) auto
qed
- also have "... \<subseteq> f ` ball 0 r"
+ also have "\<dots> \<subseteq> f ` ball 0 r"
proof -
have "\<And>x. (1 - sqrt 2 / 2) * r \<le> r"
using \<open>0 < r\<close> by (auto simp: field_simps)
@@ -1833,7 +1829,7 @@
\<subseteq> (\<lambda>z. f (a + z) - f a) ` ball 0 r"
apply (rule Bloch_lemma_0)
using \<open>0 < r\<close>
- apply (simp_all add: \<open>0 < r\<close>)
+ apply (simp_all add: \<open>0 < r\<close> )
apply (simp add: fz deriv_chain dist_norm le)
done
show ?thesis
@@ -1892,7 +1888,7 @@
using gen_le_dfp [of a] \<open>r > 0\<close> by auto
have 1: "f holomorphic_on cball p t"
using cpt \<open>r < 1\<close> order_subst1 subset_ball
- by (force simp add: intro!: holomorphic_on_subset [OF holf])
+ by (force simp: intro!: holomorphic_on_subset [OF holf])
have 2: "norm (deriv f z) \<le> 2 * norm (deriv f p)" if "z \<in> ball p t" for z
proof -
have z: "z \<in> cball a r"
@@ -1904,7 +1900,7 @@
with \<open>norm (z - a) < r\<close> \<open>norm (p - a) < r\<close>
have "norm (deriv f z) \<le> (r - norm (p - a)) / (r - norm (z - a)) * norm (deriv f p)"
by (simp add: field_simps)
- also have "... \<le> 2 * norm (deriv f p)"
+ also have "\<dots> \<le> 2 * norm (deriv f p)"
proof (rule mult_right_mono)
show "(r - cmod (p - a)) / (r - cmod (z - a)) \<le> 2"
using that \<open>norm (p - a) < r\<close> \<open>norm(z - a) < r\<close> dist_triangle3 [of z a p]
@@ -1917,7 +1913,7 @@
then have sq3: "0 < 3 - 2 * sqrt 2" by simp
have "1 / 12 / ((3 - 2 * sqrt 2) / 2) < r"
using sq3 sqrt2 by (auto simp: field_simps r_def)
- also have "... \<le> cmod (deriv f p) * (r - cmod (p - a))"
+ also have "\<dots> \<le> cmod (deriv f p) * (r - cmod (p - a))"
using \<open>norm (p - a) < r\<close> le_norm_dfp by (simp add: pos_divide_le_eq)
finally have "1 / 12 < cmod (deriv f p) * (r - cmod (p - a)) * ((3 - 2 * sqrt 2) / 2)"
using pos_divide_less_eq half_gt_zero_iff sq3 by blast
@@ -1925,13 +1921,8 @@
using sq3 by (simp add: mult.commute t_def)
have "ball (f p) ((3 - 2 * sqrt 2) * t * norm (deriv f p)) \<subseteq> f ` ball p t"
by (rule Bloch_lemma [OF 1 \<open>0 < t\<close> 2])
- also have "... \<subseteq> f ` ball a 1"
- proof -
- have "ball a r \<subseteq> ball a 1"
- using \<open>0 < t\<close> \<open>r < 1\<close> by (simp add: ball_subset_ball_iff dist_norm)
- then show ?thesis
- using ball_subset_cball cpt by blast
- qed
+ also have "\<dots> \<subseteq> f ` ball a 1"
+ by (meson \<open>r < 1\<close> ball_subset_cball cpt dual_order.trans image_mono less_le_not_le subset_ball)
finally have "ball (f p) ((3 - 2 * sqrt 2) * t * norm (deriv f p)) \<subseteq> f ` ball a 1" .
with ** show ?thesis
by (rule that)
@@ -1970,11 +1961,17 @@
apply (rule derivative_eq_intros * | simp)+
using \<open>0 < r\<close> by (auto simp: C_def False)
qed
- have "deriv (\<lambda>z. f (a + of_real r * z) / (C * of_real r)) 0 = deriv (\<lambda>z. f (a + complex_of_real r * z)) 0 /
- (C * complex_of_real r)"
- apply (rule deriv_cdivide_right)
- by (metis (no_types) DERIV_chain2 add.right_neutral dfa field_differentiable_add_const field_differentiable_def field_differentiable_linear fo mult_zero_right)
- also have "... = 1"
+ obtain f' where "(f has_field_derivative f') (at a)"
+ using dfa field_differentiable_def by blast
+ then have "\<exists>c. ((\<lambda>c. f (a + complex_of_real r * c)) has_field_derivative c) (at 0)"
+ by (metis (no_types) DERIV_chain2 add_cancel_left_right field_differentiable_add_const
+ field_differentiable_def field_differentiable_linear mult_eq_0_iff)
+ then have "(\<lambda>w. f (a + complex_of_real r * w)) field_differentiable at 0"
+ by (simp add: field_differentiable_def)
+ then have "deriv (\<lambda>z. f (a + of_real r * z) / (C * of_real r)) 0
+ = deriv (\<lambda>z. f (a + of_real r * z)) 0 / (C * of_real r)"
+ by (rule deriv_cdivide_right)
+ also have "\<dots> = 1"
using \<open>0 < r\<close> by (simp add: C_def False fo derivative_intros dfa deriv_chain)
finally have 2: "deriv (\<lambda>z. f (a + of_real r * z) / (C * of_real r)) 0 = 1" .
have sb1: "(*) (C * r) ` (\<lambda>z. f (a + of_real r * z) / (C * r)) ` ball 0 1
--- a/src/HOL/Complex_Analysis/Contour_Integration.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Contour_Integration.thy Mon Aug 21 18:38:25 2023 +0100
@@ -44,14 +44,14 @@
unfolding contour_integrable_on_def contour_integral_def by blast
lemma contour_integral_unique: "(f has_contour_integral i) g \<Longrightarrow> contour_integral g f = i"
- apply (simp add: contour_integral_def has_contour_integral_def contour_integrable_on_def)
+ unfolding contour_integral_def has_contour_integral_def contour_integrable_on_def
using has_integral_unique by blast
lemma has_contour_integral_eqpath:
- "\<lbrakk>(f has_contour_integral y) p; f contour_integrable_on \<gamma>;
+ "\<lbrakk>(f has_contour_integral y) p; f contour_integrable_on \<gamma>;
contour_integral p f = contour_integral \<gamma> f\<rbrakk>
\<Longrightarrow> (f has_contour_integral y) \<gamma>"
-using contour_integrable_on_def contour_integral_unique by auto
+ using contour_integrable_on_def contour_integral_unique by auto
lemma has_contour_integral_integral:
"f contour_integrable_on i \<Longrightarrow> (f has_contour_integral (contour_integral i f)) i"
@@ -329,12 +329,12 @@
qed
lemma contour_integrable_join [simp]:
- "\<lbrakk>valid_path g1; valid_path g2\<rbrakk>
+ "\<lbrakk>valid_path g1; valid_path g2\<rbrakk>
\<Longrightarrow> f contour_integrable_on (g1 +++ g2) \<longleftrightarrow> f contour_integrable_on g1 \<and> f contour_integrable_on g2"
-using contour_integrable_joinD1 contour_integrable_joinD2 contour_integrable_joinI by blast
+ using contour_integrable_joinD1 contour_integrable_joinD2 contour_integrable_joinI by blast
lemma contour_integral_join [simp]:
- "\<lbrakk>f contour_integrable_on g1; f contour_integrable_on g2; valid_path g1; valid_path g2\<rbrakk>
+ "\<lbrakk>f contour_integrable_on g1; f contour_integrable_on g2; valid_path g1; valid_path g2\<rbrakk>
\<Longrightarrow> contour_integral (g1 +++ g2) f = contour_integral g1 f + contour_integral g2 f"
by (simp add: has_contour_integral_integral has_contour_integral_join contour_integral_unique)
@@ -353,11 +353,7 @@
using assms by (auto simp: has_contour_integral)
then have i: "i = integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)) +
integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x))"
- apply (rule has_integral_unique)
- apply (subst add.commute)
- apply (subst Henstock_Kurzweil_Integration.integral_combine)
- using assms * integral_unique by auto
-
+ by (smt (verit, ccfv_threshold) Henstock_Kurzweil_Integration.integral_combine a add.commute atLeastAtMost_iff has_integral_iff)
have vd1: "vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a))"
if "0 \<le> x" "x + a < 1" "x \<notin> (\<lambda>x. x - a) ` S" for x
unfolding shiftpath_def
@@ -371,8 +367,7 @@
then show "(g has_vector_derivative vector_derivative g (at (a + x))) (at (x + a))"
by (metis add.commute vector_derivative_works)
qed
- then
- show "((\<lambda>x. g (a + x)) has_vector_derivative vector_derivative g (at (x + a))) (at x)"
+ then show "((\<lambda>x. g (a + x)) has_vector_derivative vector_derivative g (at (x + a))) (at x)"
by (auto simp: field_simps)
show "0 < dist (1 - a) x"
using that by auto
@@ -474,8 +469,8 @@
lemma contour_integrable_on_shiftpath_eq:
assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
- shows "f contour_integrable_on (shiftpath a g) \<longleftrightarrow> f contour_integrable_on g"
-using assms contour_integrable_on_def has_contour_integral_shiftpath_eq by auto
+ shows "f contour_integrable_on (shiftpath a g) \<longleftrightarrow> f contour_integrable_on g"
+ using assms contour_integrable_on_def has_contour_integral_shiftpath_eq by auto
lemma contour_integral_shiftpath:
assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
@@ -556,26 +551,17 @@
lemma contour_integrable_subpath:
assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
shows "f contour_integrable_on (subpath u v g)"
-proof (cases u v rule: linorder_class.le_cases)
- case le
- then show ?thesis
- by (metis contour_integrable_on_def has_contour_integral_subpath [OF assms])
-next
- case ge
- with assms show ?thesis
- by (metis (no_types, lifting) contour_integrable_on_def contour_integrable_reversepath_eq has_contour_integral_subpath reversepath_subpath valid_path_subpath)
-qed
+ by (smt (verit, ccfv_threshold) assms contour_integrable_on_def contour_integrable_reversepath_eq
+ has_contour_integral_subpath reversepath_subpath valid_path_subpath)
lemma has_integral_contour_integral_subpath:
assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
- shows "(((\<lambda>x. f(g x) * vector_derivative g (at x)))
+ shows "((\<lambda>x. f(g x) * vector_derivative g (at x))
has_integral contour_integral (subpath u v g) f) {u..v}"
- using assms
+ (is "(?fg has_integral _)_")
proof -
- have "(\<lambda>r. f (g r) * vector_derivative g (at r)) integrable_on {u..v}"
- by (metis (full_types) assms(1) assms(3) assms(4) atLeastAtMost_iff atLeastatMost_subset_iff contour_integrable_on integrable_on_subinterval)
- then have "((\<lambda>r. f (g r) * vector_derivative g (at r)) has_integral integral {u..v} (\<lambda>r. f (g r) * vector_derivative g (at r))) {u..v}"
- by blast
+ have "(?fg has_integral integral {u..v} ?fg) {u..v}"
+ using assms contour_integrable_on integrable_on_subinterval by fastforce
then show ?thesis
by (metis (full_types) assms contour_integral_unique has_contour_integral_subpath)
qed
@@ -653,9 +639,9 @@
next
fix x assume "x \<in> {0..1} - ({0, 1} \<union> g -` A \<inter> {0<..<1})"
hence "g x \<in> path_image g - A" by (auto simp: path_image_def)
- from assms(4)[OF this] and assms(3)
- show "f' (g' x) * vector_derivative g' (at x) = f (g x) * vector_derivative g (at x)" by simp
- qed
+ with assms show "f' (g' x) * vector_derivative g' (at x) = f (g x) * vector_derivative g (at x)"
+ by simp
+qed
text \<open>Contour integral along a segment on the real axis\<close>
@@ -664,7 +650,7 @@
fixes a b :: complex and f :: "complex \<Rightarrow> complex"
assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
shows "(f has_contour_integral I) (linepath a b) \<longleftrightarrow>
- ((\<lambda>x. f (of_real x)) has_integral I) {Re a..Re b}"
+ ((\<lambda>x. f (of_real x)) has_integral I) {Re a..Re b}"
proof -
from assms have [simp]: "of_real (Re a) = a" "of_real (Re b) = b"
by (simp_all add: complex_eq_iff)
@@ -738,9 +724,8 @@
have "((\<lambda>x. f (g x)) has_vector_derivative f' (g x) * vector_derivative g (at x within {a..b})) (at x within {a..b})"
using diff_chain_within [OF gdiff fdiff]
by (simp add: has_vector_derivative_def scaleR_conv_of_real o_def mult_ac)
- } note * = this
- show ?thesis
- using assms cfg *
+ } then show ?thesis
+ using assms cfg
by (force simp: at_within_Icc_at intro: fundamental_theorem_of_calculus_interior_strong [OF \<open>finite K\<close>])
qed
@@ -759,7 +744,7 @@
shows "(f' has_contour_integral 0) g"
using assms by (metis diff_self contour_integral_primitive)
-text\<open>Existence of path integral for continuous function\<close>
+
lemma contour_integrable_continuous_linepath:
assumes "continuous_on (closed_segment a b) f"
shows "f contour_integrable_on (linepath a b)"
@@ -951,10 +936,9 @@
by fastforce
lemma contour_integrable_sum:
- "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
+ "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
\<Longrightarrow> (\<lambda>x. sum (\<lambda>a. f a x) s) contour_integrable_on p"
- unfolding contour_integrable_on_def
- by (metis has_contour_integral_sum)
+ unfolding contour_integrable_on_def by (metis has_contour_integral_sum)
lemma contour_integrable_neg_iff:
"(\<lambda>x. -f x) contour_integrable_on g \<longleftrightarrow> f contour_integrable_on g"
@@ -1027,10 +1011,10 @@
apply (simp add: divide_simps mult.commute [of _ "1-k"] image_affinity_atLeastAtMost ** bc)
apply (auto dest: has_integral_cmul [where k = "(1 - k) *\<^sub>R j" and c = "inverse (1 - k)"])
done
- } note fj = this
- show ?thesis
+ }
+ then show ?thesis
using f k unfolding has_contour_integral_linepath
- by (simp add: linepath_def has_integral_combine [OF _ _ fi fj])
+ by (simp add: linepath_def has_integral_combine [OF _ _ fi])
qed
lemma continuous_on_closed_segment_transform:
@@ -1107,10 +1091,10 @@
then have gvcon': "continuous_on (cbox (0, 0) (1, 1::real)) (\<lambda>z. vector_derivative g (at (fst z)))"
and hvcon': "continuous_on (cbox (0, 0) (1::real, 1)) (\<lambda>x. vector_derivative h (at (snd x)))"
by auto
- have "continuous_on (cbox (0, 0) (1, 1)) ((\<lambda>(y1, y2). f y1 y2) \<circ> (\<lambda>w. ((g \<circ> fst) w, (h \<circ> snd) w)))"
- apply (intro gcon hcon continuous_intros | simp)+
- apply (auto simp: path_image_def intro: continuous_on_subset [OF fcon])
- done
+ have "continuous_on ((\<lambda>x. (g (fst x), h (snd x))) ` cbox (0,0) (1,1)) (\<lambda>(y1, y2). f y1 y2)"
+ by (auto simp: path_image_def intro: continuous_on_subset [OF fcon])
+ then have "continuous_on (cbox (0, 0) (1, 1)) ((\<lambda>(y1, y2). f y1 y2) \<circ> (\<lambda>w. ((g \<circ> fst) w, (h \<circ> snd) w)))"
+ by (intro gcon hcon continuous_intros | simp)+
then have fgh: "continuous_on (cbox (0, 0) (1, 1)) (\<lambda>x. f (g (fst x)) (h (snd x)))"
by auto
have "integral {0..1} (\<lambda>x. contour_integral h (f (g x)) * vector_derivative g (at x)) =
@@ -1186,7 +1170,7 @@
lemma valid_path_polynomial_function:
fixes p :: "real \<Rightarrow> 'a::euclidean_space"
shows "polynomial_function p \<Longrightarrow> valid_path p"
-by (force simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_polymonial_function C1_differentiable_polynomial_function)
+ by (force simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_polymonial_function C1_differentiable_polynomial_function)
lemma valid_path_subpath_trivial [simp]:
fixes g :: "real \<Rightarrow> 'a::euclidean_space"
@@ -1199,15 +1183,15 @@
where "part_circlepath z r s t \<equiv> \<lambda>x. z + of_real r * exp (\<i> * of_real (linepath s t x))"
lemma pathstart_part_circlepath [simp]:
- "pathstart(part_circlepath z r s t) = z + r*exp(\<i> * s)"
-by (metis part_circlepath_def pathstart_def pathstart_linepath)
+ "pathstart(part_circlepath z r s t) = z + r*exp(\<i> * s)"
+ by (metis part_circlepath_def pathstart_def pathstart_linepath)
lemma pathfinish_part_circlepath [simp]:
- "pathfinish(part_circlepath z r s t) = z + r*exp(\<i>*t)"
-by (metis part_circlepath_def pathfinish_def pathfinish_linepath)
+ "pathfinish(part_circlepath z r s t) = z + r*exp(\<i>*t)"
+ by (metis part_circlepath_def pathfinish_def pathfinish_linepath)
lemma reversepath_part_circlepath[simp]:
- "reversepath (part_circlepath z r s t) = part_circlepath z r t s"
+ "reversepath (part_circlepath z r s t) = part_circlepath z r t s"
unfolding part_circlepath_def reversepath_def linepath_def
by (auto simp:algebra_simps)
@@ -1284,24 +1268,12 @@
lemma in_path_image_part_circlepath:
assumes "w \<in> path_image(part_circlepath z r s t)" "s \<le> t" "0 \<le> r"
shows "norm(w - z) = r"
-proof -
- have "w \<in> {c. dist z c = r}"
- by (metis (no_types) path_image_part_circlepath_subset sphere_def subset_eq assms)
- thus ?thesis
- by (simp add: dist_norm norm_minus_commute)
-qed
+ by (smt (verit) assms dist_norm mem_Collect_eq norm_minus_commute path_image_part_circlepath_subset sphere_def subsetD)
lemma path_image_part_circlepath_subset':
assumes "r \<ge> 0"
shows "path_image (part_circlepath z r s t) \<subseteq> sphere z r"
-proof (cases "s \<le> t")
- case True
- thus ?thesis using path_image_part_circlepath_subset[of s t r z] assms by simp
-next
- case False
- thus ?thesis using path_image_part_circlepath_subset[of t s r z] assms
- by (subst reversepath_part_circlepath [symmetric], subst path_image_reversepath) simp_all
-qed
+ by (smt (verit) assms path_image_part_circlepath_subset reversepath_part_circlepath reversepath_simps(2))
lemma part_circlepath_cnj: "cnj (part_circlepath c r a b x) = part_circlepath (cnj c) r (-a) (-b) x"
by (simp add: part_circlepath_def exp_cnj linepath_def algebra_simps)
@@ -1458,7 +1430,7 @@
have *: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1; part_circlepath z r s t x \<notin> k\<rbrakk> \<Longrightarrow> cmod (f (part_circlepath z r s t x)) \<le> B"
by (auto intro!: B [unfolded path_image_def image_def])
show ?thesis
- apply (rule has_integral_bound [where 'a=real, simplified, OF _ **, simplified])
+ using has_integral_bound [where 'a=real, simplified, OF _ **]
using assms le * "2" \<open>r > 0\<close> by (auto simp add: norm_mult vector_derivative_part_circlepath)
qed
qed
@@ -1520,13 +1492,16 @@
qed
have abs_away: "\<And>P. (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. P \<bar>x - y\<bar>) \<longleftrightarrow> (\<forall>x::real. 0 \<le> x \<and> x \<le> 1 \<longrightarrow> P x)"
by force
+ have "\<And>x n. \<lbrakk>s \<noteq> t; \<bar>s - t\<bar> \<le> 2 * pi; 0 \<le> x; x < 1;
+ x * (t - s) = 2 * (real_of_int n * pi)\<rbrakk>
+ \<Longrightarrow> x = 0"
+ by (rule ccontr) (auto simp: 2 field_split_simps abs_mult dest: of_int_leD)
+ then
show ?thesis using False
apply (simp add: simple_path_def loop_free_def)
apply (simp add: part_circlepath_def linepath_def exp_eq * ** abs01 del: Set.insert_iff)
apply (subst abs_away)
apply (auto simp: 1)
- apply (rule ccontr)
- apply (auto simp: 2 field_split_simps abs_mult dest: of_int_leD)
done
qed
@@ -1719,16 +1694,18 @@
and inta: "(\<lambda>t. f a (\<gamma> t) * vector_derivative \<gamma> (at t)) integrable_on {0..1}"
using eventually_happens [OF eventually_conj]
by (fastforce simp: contour_integrable_on path_image_def)
- have Ble: "B * e / (\<bar>B\<bar> + 1) \<le> e"
- using \<open>0 \<le> B\<close> \<open>0 < e\<close> by (simp add: field_split_simps)
have "\<exists>h. (\<forall>x\<in>{0..1}. cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - h x) \<le> e) \<and> h integrable_on {0..1}"
proof (intro exI conjI ballI)
show "cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - f a (\<gamma> x) * vector_derivative \<gamma> (at x)) \<le> e"
if "x \<in> {0..1}" for x
- apply (rule order_trans [OF _ Ble])
- using noleB [OF that] fga [OF that] \<open>0 \<le> B\<close> \<open>0 < e\<close>
- apply (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le] simp add: norm_mult left_diff_distrib [symmetric] norm_minus_commute divide_simps)
- done
+ proof -
+ have "cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - f a (\<gamma> x) * vector_derivative \<gamma> (at x)) \<le> B * e / (\<bar>B\<bar> + 1)"
+ using noleB [OF that] fga [OF that] \<open>0 \<le> B\<close> \<open>0 < e\<close>
+ by (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le] simp add: norm_mult left_diff_distrib [symmetric] norm_minus_commute divide_simps)
+ also have "\<dots> \<le> e"
+ using \<open>0 \<le> B\<close> \<open>0 < e\<close> by (simp add: field_split_simps)
+ finally show ?thesis .
+ qed
qed (rule inta)
}
then show lintg: "l contour_integrable_on \<gamma>"
--- a/src/HOL/Complex_Analysis/Laurent_Convergence.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Laurent_Convergence.thy Mon Aug 21 18:38:25 2023 +0100
@@ -7,17 +7,17 @@
(* TODO: Move *)
text \<open>TODO: Better than @{thm deriv_compose_linear}?\<close>
lemma deriv_compose_linear':
- assumes "f field_differentiable at (c * z+a)"
- shows "deriv (\<lambda>w. f (c * w+a)) z = c * deriv f (c * z+a)"
- apply (subst deriv_chain[where f="\<lambda>w. c * w+a",unfolded comp_def])
+ assumes "f field_differentiable at (c*z + a)"
+ shows "deriv (\<lambda>w. f (c*w + a)) z = c * deriv f (c*z + a)"
+ apply (subst deriv_chain[where f="\<lambda>w. c*w + a",unfolded comp_def])
using assms by (auto intro:derivative_intros)
text \<open>TODO: Better than @{thm higher_deriv_compose_linear}?\<close>
lemma higher_deriv_compose_linear':
fixes z::complex
assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
- and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w+c \<in> T"
- shows "(deriv ^^ n) (\<lambda>w. f (u * w+c)) z = u^n * (deriv ^^ n) f (u * z+c)"
+ and fg: "\<And>w. w \<in> S \<Longrightarrow> u*w + c \<in> T"
+ shows "(deriv ^^ n) (\<lambda>w. f (u*w + c)) z = u^n * (deriv ^^ n) f (u*z + c)"
using z
proof (induction n arbitrary: z)
case 0 then show ?case by simp
@@ -116,14 +116,7 @@
instance fls :: (semiring_char_0) semiring_char_0
proof
show "inj (of_nat :: nat \<Rightarrow> 'a fls)"
- proof
- fix m n :: nat
- assume "of_nat m = (of_nat n :: 'a fls)"
- hence "fls_nth (of_nat m) 0 = (fls_nth (of_nat n) 0 :: 'a)"
- by (simp only: )
- thus "m = n"
- by (simp add: fls_of_nat_nth)
- qed
+ by (metis fls_regpart_of_nat injI of_nat_eq_iff)
qed
lemma fls_const_eq_0_iff [simp]: "fls_const c = 0 \<longleftrightarrow> c = 0"
@@ -547,20 +540,14 @@
assumes "g holomorphic_on A"
assumes "g ` A \<subseteq> eball 0 (fls_conv_radius f) - (if fls_subdegree f \<ge> 0 then {} else {0})"
shows "(\<lambda>x. eval_fls f (g x)) holomorphic_on A"
-proof -
- have "eval_fls f \<circ> g holomorphic_on A"
- by (intro holomorphic_on_compose[OF assms(1) holomorphic_on_eval_fls]) (use assms in auto)
- thus ?thesis
- by (simp add: o_def)
-qed
+ by (meson assms holomorphic_on_compose holomorphic_on_eval_fls holomorphic_transform o_def)
lemma continuous_on_eval_fls:
fixes f
defines "n \<equiv> fls_subdegree f"
assumes "A \<subseteq> eball 0 (fls_conv_radius f) - (if n \<ge> 0 then {} else {0})"
shows "continuous_on A (eval_fls f)"
- by (intro holomorphic_on_imp_continuous_on holomorphic_on_eval_fls)
- (use assms in auto)
+ using assms holomorphic_on_eval_fls holomorphic_on_imp_continuous_on by blast
lemma continuous_on_eval_fls' [continuous_intros]:
fixes f
@@ -568,9 +555,7 @@
assumes "g ` A \<subseteq> eball 0 (fls_conv_radius f) - (if n \<ge> 0 then {} else {0})"
assumes "continuous_on A g"
shows "continuous_on A (\<lambda>x. eval_fls f (g x))"
- using assms(3)
- by (intro continuous_on_compose2[OF continuous_on_eval_fls _ assms(2)])
- (auto simp: n_def)
+ by (metis assms continuous_on_compose2 continuous_on_eval_fls order.refl)
lemmas has_field_derivative_eval_fps' [derivative_intros] =
DERIV_chain2[OF has_field_derivative_eval_fps]
@@ -621,7 +606,7 @@
lemma eval_fls_deriv:
assumes "z \<in> eball 0 (fls_conv_radius F) - {0}"
shows "eval_fls (fls_deriv F) z = deriv (eval_fls F) z"
- by (rule sym, rule DERIV_imp_deriv, rule has_field_derivative_eval_fls, rule assms)
+ by (metis DERIV_imp_deriv assms has_field_derivative_eval_fls)
lemma analytic_on_eval_fls:
assumes "A \<subseteq> eball 0 (fls_conv_radius f) - (if fls_subdegree f \<ge> 0 then {} else {0})"
@@ -781,8 +766,12 @@
lemma is_pole_imp_neg_fls_subdegree:
assumes F: "(\<lambda>x. f (z + x)) has_laurent_expansion F" and "is_pole f z"
shows "fls_subdegree F < 0"
- apply (rule is_pole_0_imp_neg_fls_subdegree[OF F])
- using assms(2) is_pole_shift_0 by blast
+proof -
+ have "is_pole (\<lambda>x. f (z + x)) 0"
+ using assms(2) is_pole_shift_0 by blast
+ then show ?thesis
+ using F is_pole_0_imp_neg_fls_subdegree by blast
+qed
lemma is_pole_fls_subdegree_iff:
assumes "(\<lambda>x. f (z + x)) has_laurent_expansion F"
@@ -2587,13 +2576,8 @@
by auto
qed
-lemma analytic_on_prod [analytic_intros]:
- assumes "\<And>x. x \<in> A \<Longrightarrow> f x analytic_on B"
- shows "(\<lambda>z. \<Prod>x\<in>A. f x z) analytic_on B"
- using assms by (induction A rule: infinite_finite_induct) (auto intro!: analytic_intros)
-
lemma zorder_const [simp]: "c \<noteq> 0 \<Longrightarrow> zorder (\<lambda>_. c) z = 0"
- by (intro zorder_eqI[where s = UNIV]) auto
+ by (intro zorder_eqI[where S = UNIV]) auto
lemma zorder_prod_analytic:
assumes "\<And>x. x \<in> A \<Longrightarrow> f x analytic_on {z}"
@@ -2613,12 +2597,7 @@
lemma zorder_eq_0I:
assumes "g analytic_on {z}" "g z \<noteq> 0"
shows "zorder g z = 0"
-proof -
- from assms obtain r where r: "r > 0" "g holomorphic_on ball z r"
- unfolding analytic_on_def by blast
- thus ?thesis using assms
- by (intro zorder_eqI[of "ball z r" _ g]) auto
-qed
+ using analytic_at assms zorder_eqI by fastforce
lemma zorder_pos_iff:
assumes "f holomorphic_on A" "open A" "z \<in> A" "frequently (\<lambda>z. f z \<noteq> 0) (at z)"
@@ -2651,12 +2630,7 @@
lemma zorder_pos_iff':
assumes "f analytic_on {z}" "frequently (\<lambda>z. f z \<noteq> 0) (at z)"
shows "zorder f z > 0 \<longleftrightarrow> f z = 0"
-proof -
- from assms(1) obtain A where A: "open A" "{z} \<subseteq> A" "f holomorphic_on A"
- unfolding analytic_on_holomorphic by auto
- with zorder_pos_iff [OF A(3,1), of z] assms show ?thesis
- by auto
-qed
+ using analytic_at assms zorder_pos_iff by blast
lemma zorder_ge_0:
assumes "f analytic_on {z}" "frequently (\<lambda>z. f z \<noteq> 0) (at z)"
@@ -2673,15 +2647,7 @@
lemma zorder_eq_0_iff:
assumes "f analytic_on {z}" "frequently (\<lambda>w. f w \<noteq> 0) (at z)"
shows "zorder f z = 0 \<longleftrightarrow> f z \<noteq> 0"
-proof
- assume "f z \<noteq> 0"
- thus "zorder f z = 0"
- using assms zorder_eq_0I by blast
-next
- assume "zorder f z = 0"
- thus "f z \<noteq> 0"
- using assms zorder_pos_iff' by fastforce
-qed
+ using assms zorder_eq_0I zorder_pos_iff' by fastforce
lemma dist_mult_left:
"dist (a * b) (a * c :: 'a :: real_normed_field) = norm a * dist b c"
@@ -2835,15 +2801,7 @@
qed
lemma fps_to_fls_eq_fls_const_iff [simp]: "fps_to_fls F = fls_const c \<longleftrightarrow> F = fps_const c"
-proof
- assume "F = fps_const c"
- thus "fps_to_fls F = fls_const c"
- by simp
-next
- assume "fps_to_fls F = fls_const c"
- thus "F = fps_const c"
- by (metis fls_regpart_const fls_regpart_fps_trivial)
-qed
+ using fps_to_fls_eq_iff by fastforce
lemma zorder_compose':
assumes "isolated_singularity_at f (g z)" "not_essential f (g z)"
--- a/src/HOL/Complex_Analysis/Residue_Theorem.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Residue_Theorem.thy Mon Aug 21 18:38:25 2023 +0100
@@ -10,19 +10,16 @@
fixes f :: "real \<Rightarrow> 'a :: real_normed_field"
assumes "f \<in> O[at_bot](\<lambda>_. 1)"
assumes "f \<in> O[at_top](\<lambda>_. 1)"
- assumes "continuous_on UNIV f"
+ assumes cf: "continuous_on UNIV f"
shows "bounded (range f)"
proof -
- from assms(1) obtain c1 where "eventually (\<lambda>x. norm (f x) \<le> c1) at_bot"
- by (auto elim!: landau_o.bigE)
- then obtain x1 where x1: "\<And>x. x \<le> x1 \<Longrightarrow> norm (f x) \<le> c1"
- by (auto simp: eventually_at_bot_linorder)
- from assms(2) obtain c2 where "eventually (\<lambda>x. norm (f x) \<le> c2) at_top"
- by (auto elim!: landau_o.bigE)
- then obtain x2 where x2: "\<And>x. x \<ge> x2 \<Longrightarrow> norm (f x) \<le> c2"
- by (auto simp: eventually_at_top_linorder)
+ obtain c1 c2
+ where "eventually (\<lambda>x. norm (f x) \<le> c1) at_bot" "eventually (\<lambda>x. norm (f x) \<le> c2) at_top"
+ using assms by (auto elim!: landau_o.bigE)
+ then obtain x1 x2 where x1: "\<And>x. x \<le> x1 \<Longrightarrow> norm (f x) \<le> c1" and x2: "\<And>x. x \<ge> x2 \<Longrightarrow> norm (f x) \<le> c2"
+ by (auto simp: eventually_at_bot_linorder eventually_at_top_linorder)
have "compact (f ` {x1..x2})"
- by (intro compact_continuous_image continuous_on_subset[OF assms(3)]) auto
+ by (intro compact_continuous_image continuous_on_subset[OF cf]) auto
hence "bounded (f ` {x1..x2})"
by (rule compact_imp_bounded)
then obtain c3 where c3: "\<And>x. x \<in> {x1..x2} \<Longrightarrow> norm (f x) \<le> c3"
@@ -67,7 +64,7 @@
also have "f \<in> O[at z0'](\<lambda>_. 1)"
using z0' by (intro insert.prems) auto
finally show "g \<in> \<dots>" .
- qed (insert insert.prems g, auto)
+ qed (use insert.prems g in auto)
then obtain h where "h holomorphic_on S" "\<forall>z\<in>S - X. h z = g z" by blast
with g have "h holomorphic_on S" "\<forall>z\<in>S - insert z0 X. h z = f z" by auto
thus ?case by blast
@@ -96,96 +93,94 @@
subsection \<open>Cauchy's residue theorem\<close>
lemma get_integrable_path:
- assumes "open s" "connected (s-pts)" "finite pts" "f holomorphic_on (s-pts) " "a\<in>s-pts" "b\<in>s-pts"
+ assumes "open S" "connected (S-pts)" "finite pts" "f holomorphic_on (S-pts) " "a\<in>S-pts" "b\<in>S-pts"
obtains g where "valid_path g" "pathstart g = a" "pathfinish g = b"
- "path_image g \<subseteq> s-pts" "f contour_integrable_on g" using assms
-proof (induct arbitrary:s thesis a rule:finite_induct[OF \<open>finite pts\<close>])
+ "path_image g \<subseteq> S-pts" "f contour_integrable_on g" using assms
+proof (induct arbitrary:S thesis a rule:finite_induct[OF \<open>finite pts\<close>])
case 1
- obtain g where "valid_path g" "path_image g \<subseteq> s" "pathstart g = a" "pathfinish g = b"
- using connected_open_polynomial_connected[OF \<open>open s\<close>,of a b ] \<open>connected (s - {})\<close>
+ obtain g where "valid_path g" "path_image g \<subseteq> S" "pathstart g = a" "pathfinish g = b"
+ using connected_open_polynomial_connected[OF \<open>open S\<close>,of a b ] \<open>connected (S - {})\<close>
valid_path_polynomial_function "1.prems"(6) "1.prems"(7) by auto
moreover have "f contour_integrable_on g"
- using contour_integrable_holomorphic_simple[OF _ \<open>open s\<close> \<open>valid_path g\<close> \<open>path_image g \<subseteq> s\<close>,of f]
- \<open>f holomorphic_on s - {}\<close>
+ using contour_integrable_holomorphic_simple[OF _ \<open>open S\<close> \<open>valid_path g\<close> \<open>path_image g \<subseteq> S\<close>,of f]
+ \<open>f holomorphic_on S - {}\<close>
by auto
ultimately show ?case using "1"(1)[of g] by auto
next
case idt:(2 p pts)
- obtain e where "e>0" and e:"\<forall>w\<in>ball a e. w \<in> s \<and> (w \<noteq> a \<longrightarrow> w \<notin> insert p pts)"
- using finite_ball_avoid[OF \<open>open s\<close> \<open>finite (insert p pts)\<close>, of a]
- \<open>a \<in> s - insert p pts\<close>
+ obtain e where "e>0" and e:"\<forall>w\<in>ball a e. w \<in> S \<and> (w \<noteq> a \<longrightarrow> w \<notin> insert p pts)"
+ using finite_ball_avoid[OF \<open>open S\<close> \<open>finite (insert p pts)\<close>, of a]
+ \<open>a \<in> S - insert p pts\<close>
by auto
define a' where "a' \<equiv> a+e/2"
- have "a'\<in>s-{p} -pts" using e[rule_format,of "a+e/2"] \<open>e>0\<close>
+ have "a'\<in>S-{p} -pts" using e[rule_format,of "a+e/2"] \<open>e>0\<close>
by (auto simp add:dist_complex_def a'_def)
then obtain g' where g'[simp]:"valid_path g'" "pathstart g' = a'" "pathfinish g' = b"
- "path_image g' \<subseteq> s - {p} - pts" "f contour_integrable_on g'"
- using idt.hyps(3)[of a' "s-{p}"] idt.prems idt.hyps(1)
+ "path_image g' \<subseteq> S - {p} - pts" "f contour_integrable_on g'"
+ using idt.hyps(3)[of a' "S-{p}"] idt.prems idt.hyps(1)
by (metis Diff_insert2 open_delete)
define g where "g \<equiv> linepath a a' +++ g'"
have "valid_path g" unfolding g_def by (auto intro: valid_path_join)
moreover have "pathstart g = a" and "pathfinish g = b" unfolding g_def by auto
- moreover have "path_image g \<subseteq> s - insert p pts" unfolding g_def
- proof (rule subset_path_image_join)
- have "closed_segment a a' \<subseteq> ball a e" using \<open>e>0\<close>
- by (auto dest!:segment_bound1 simp:a'_def dist_complex_def norm_minus_commute)
- then show "path_image (linepath a a') \<subseteq> s - insert p pts" using e idt(9)
- by auto
- next
- show "path_image g' \<subseteq> s - insert p pts" using g'(4) by blast
- qed
+ moreover have "path_image g \<subseteq> S - insert p pts"
+ unfolding g_def
+ proof (rule subset_path_image_join)
+ have "closed_segment a a' \<subseteq> ball a e" using \<open>e>0\<close>
+ by (auto dest!:segment_bound1 simp:a'_def dist_complex_def norm_minus_commute)
+ then show "path_image (linepath a a') \<subseteq> S - insert p pts" using e idt(9)
+ by auto
+ next
+ show "path_image g' \<subseteq> S - insert p pts" using g'(4) by blast
+ qed
moreover have "f contour_integrable_on g"
- proof -
- have "closed_segment a a' \<subseteq> ball a e" using \<open>e>0\<close>
- by (auto dest!:segment_bound1 simp:a'_def dist_complex_def norm_minus_commute)
- then have "continuous_on (closed_segment a a') f"
- using e idt.prems(6) holomorphic_on_imp_continuous_on[OF idt.prems(5)]
- apply (elim continuous_on_subset)
- by auto
- then have "f contour_integrable_on linepath a a'"
- using contour_integrable_continuous_linepath by auto
- then show ?thesis unfolding g_def
- apply (rule contour_integrable_joinI)
- by (auto simp add: \<open>e>0\<close>)
- qed
+ proof -
+ have "closed_segment a a' \<subseteq> ball a e" using \<open>e>0\<close>
+ by (auto dest!:segment_bound1 simp:a'_def dist_complex_def norm_minus_commute)
+ then have "closed_segment a a' \<subseteq> S - insert p pts"
+ using e idt.prems(6) by auto
+ then have "continuous_on (closed_segment a a') f"
+ using holomorphic_on_imp_continuous_on holomorphic_on_subset idt.prems(5) by presburger
+ then show ?thesis
+ using contour_integrable_continuous_linepath by (simp add: g_def)
+ qed
ultimately show ?case using idt.prems(1)[of g] by auto
qed
lemma Cauchy_theorem_aux:
- assumes "open s" "connected (s-pts)" "finite pts" "pts \<subseteq> s" "f holomorphic_on s-pts"
- "valid_path g" "pathfinish g = pathstart g" "path_image g \<subseteq> s-pts"
- "\<forall>z. (z \<notin> s) \<longrightarrow> winding_number g z = 0"
- "\<forall>p\<in>s. h p>0 \<and> (\<forall>w\<in>cball p (h p). w\<in>s \<and> (w\<noteq>p \<longrightarrow> w \<notin> pts))"
+ assumes "open S" "connected (S-pts)" "finite pts" "pts \<subseteq> S" "f holomorphic_on S-pts"
+ "valid_path g" "pathfinish g = pathstart g" "path_image g \<subseteq> S-pts"
+ "\<forall>z. (z \<notin> S) \<longrightarrow> winding_number g z = 0"
+ "\<forall>p\<in>S. h p>0 \<and> (\<forall>w\<in>cball p (h p). w\<in>S \<and> (w\<noteq>p \<longrightarrow> w \<notin> pts))"
shows "contour_integral g f = (\<Sum>p\<in>pts. winding_number g p * contour_integral (circlepath p (h p)) f)"
using assms
-proof (induct arbitrary:s g rule:finite_induct[OF \<open>finite pts\<close>])
+proof (induct arbitrary:S g rule:finite_induct[OF \<open>finite pts\<close>])
case 1
then show ?case by (simp add: Cauchy_theorem_global contour_integral_unique)
next
case (2 p pts)
note fin[simp] = \<open>finite (insert p pts)\<close>
- and connected = \<open>connected (s - insert p pts)\<close>
+ and connected = \<open>connected (S - insert p pts)\<close>
and valid[simp] = \<open>valid_path g\<close>
and g_loop[simp] = \<open>pathfinish g = pathstart g\<close>
- and holo[simp]= \<open>f holomorphic_on s - insert p pts\<close>
- and path_img = \<open>path_image g \<subseteq> s - insert p pts\<close>
- and winding = \<open>\<forall>z. z \<notin> s \<longrightarrow> winding_number g z = 0\<close>
- and h = \<open>\<forall>pa\<in>s. 0 < h pa \<and> (\<forall>w\<in>cball pa (h pa). w \<in> s \<and> (w \<noteq> pa \<longrightarrow> w \<notin> insert p pts))\<close>
- have "h p>0" and "p\<in>s"
- and h_p: "\<forall>w\<in>cball p (h p). w \<in> s \<and> (w \<noteq> p \<longrightarrow> w \<notin> insert p pts)"
- using h \<open>insert p pts \<subseteq> s\<close> by auto
+ and holo[simp]= \<open>f holomorphic_on S - insert p pts\<close>
+ and path_img = \<open>path_image g \<subseteq> S - insert p pts\<close>
+ and winding = \<open>\<forall>z. z \<notin> S \<longrightarrow> winding_number g z = 0\<close>
+ and h = \<open>\<forall>pa\<in>S. 0 < h pa \<and> (\<forall>w\<in>cball pa (h pa). w \<in> S \<and> (w \<noteq> pa \<longrightarrow> w \<notin> insert p pts))\<close>
+ have "h p>0" and "p\<in>S"
+ and h_p: "\<forall>w\<in>cball p (h p). w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> insert p pts)"
+ using h \<open>insert p pts \<subseteq> S\<close> by auto
obtain pg where pg[simp]: "valid_path pg" "pathstart pg = pathstart g" "pathfinish pg=p+h p"
- "path_image pg \<subseteq> s-insert p pts" "f contour_integrable_on pg"
- proof -
- have "p + h p\<in>cball p (h p)" using h[rule_format,of p]
- by (simp add: \<open>p \<in> s\<close> dist_norm)
- then have "p + h p \<in> s - insert p pts" using h[rule_format,of p] \<open>insert p pts \<subseteq> s\<close>
- by fastforce
- moreover have "pathstart g \<in> s - insert p pts " using path_img by auto
- ultimately show ?thesis
- using get_integrable_path[OF \<open>open s\<close> connected fin holo,of "pathstart g" "p+h p"] that
- by blast
- qed
+ "path_image pg \<subseteq> S-insert p pts" "f contour_integrable_on pg"
+ proof -
+ have "p + h p\<in>cball p (h p)" using h[rule_format,of p]
+ by (simp add: \<open>p \<in> S\<close> dist_norm)
+ then have "p + h p \<in> S - insert p pts" using h[rule_format,of p] \<open>insert p pts \<subseteq> S\<close>
+ by fastforce
+ moreover have "pathstart g \<in> S - insert p pts " using path_img by auto
+ ultimately show ?thesis
+ using get_integrable_path[OF \<open>open S\<close> connected fin holo,of "pathstart g" "p+h p"] that
+ by blast
+ qed
obtain n::int where "n=winding_number g p"
using integer_winding_number[OF _ g_loop,of p] valid path_img
by (metis DiffD2 Ints_cases insertI1 subset_eq valid_path_imp_path)
@@ -193,12 +188,13 @@
define p_circ_pt where "p_circ_pt \<equiv> linepath (p+h p) (p+h p)"
define n_circ where "n_circ \<equiv> \<lambda>n. ((+++) p_circ ^^ n) p_circ_pt"
define cp where "cp \<equiv> if n\<ge>0 then reversepath (n_circ (nat n)) else n_circ (nat (- n))"
+
have n_circ:"valid_path (n_circ k)"
"winding_number (n_circ k) p = k"
"pathstart (n_circ k) = p + h p" "pathfinish (n_circ k) = p + h p"
"path_image (n_circ k) = (if k=0 then {p + h p} else sphere p (h p))"
"p \<notin> path_image (n_circ k)"
- "\<And>p'. p'\<notin>s - pts \<Longrightarrow> winding_number (n_circ k) p'=0 \<and> p'\<notin>path_image (n_circ k)"
+ "\<And>p'. p'\<notin>S - pts \<Longrightarrow> winding_number (n_circ k) p'=0 \<and> p'\<notin>path_image (n_circ k)"
"f contour_integrable_on (n_circ k)"
"contour_integral (n_circ k) f = k * contour_integral p_circ f"
for k
@@ -212,7 +208,7 @@
and "p \<notin> path_image (n_circ 0)"
unfolding n_circ_def p_circ_pt_def using \<open>h p > 0\<close>
by (auto simp add: dist_norm)
- show "winding_number (n_circ 0) p'=0 \<and> p'\<notin>path_image (n_circ 0)" when "p'\<notin>s- pts" for p'
+ show "winding_number (n_circ 0) p'=0 \<and> p'\<notin>path_image (n_circ 0)" when "p'\<notin>S- pts" for p'
unfolding n_circ_def p_circ_pt_def
apply (auto intro!:winding_number_trivial)
by (metis Diff_iff pathfinish_in_path_image pg(3) pg(4) subsetCE subset_insertI that)+
@@ -226,7 +222,7 @@
have n_Suc:"n_circ (Suc k) = p_circ +++ n_circ k" unfolding n_circ_def by auto
have pcirc:"p \<notin> path_image p_circ" "valid_path p_circ" "pathfinish p_circ = pathstart (n_circ k)"
using Suc(3) unfolding p_circ_def using \<open>h p > 0\<close> by (auto simp add: p_circ_def)
- have pcirc_image:"path_image p_circ \<subseteq> s - insert p pts"
+ have pcirc_image:"path_image p_circ \<subseteq> S - insert p pts"
proof -
have "path_image p_circ \<subseteq> cball p (h p)" using \<open>0 < h p\<close> p_circ_def by auto
then show ?thesis using h_p pcirc(1) by auto
@@ -263,59 +259,59 @@
by (simp add: n_circ_def p_circ_def)
show "pathfinish (n_circ (Suc k)) = p + h p"
using Suc(4) unfolding n_circ_def by auto
- show "winding_number (n_circ (Suc k)) p'=0 \<and> p'\<notin>path_image (n_circ (Suc k))" when "p'\<notin>s-pts" for p'
+ show "winding_number (n_circ (Suc k)) p'=0 \<and> p'\<notin>path_image (n_circ (Suc k))" when "p'\<notin>S-pts" for p'
proof -
- have " p' \<notin> path_image p_circ" using \<open>p \<in> s\<close> h p_circ_def that using pcirc_image by blast
+ have " p' \<notin> path_image p_circ" using \<open>p \<in> S\<close> h p_circ_def that using pcirc_image by blast
moreover have "p' \<notin> path_image (n_circ k)"
using Suc.hyps(7) that by blast
moreover have "winding_number p_circ p' = 0"
proof -
have "path_image p_circ \<subseteq> cball p (h p)"
- using h unfolding p_circ_def using \<open>p \<in> s\<close> by fastforce
- moreover have "p'\<notin>cball p (h p)" using \<open>p \<in> s\<close> h that "2.hyps"(2) by fastforce
- ultimately show ?thesis unfolding p_circ_def
- apply (intro winding_number_zero_outside)
- by auto
+ using h unfolding p_circ_def using \<open>p \<in> S\<close> by fastforce
+ moreover have "p'\<notin>cball p (h p)" using \<open>p \<in> S\<close> h that "2.hyps"(2) by fastforce
+ ultimately show ?thesis
+ unfolding p_circ_def
+ by (intro winding_number_zero_outside) auto
qed
ultimately show ?thesis
- unfolding n_Suc
- apply (subst winding_number_join)
- by (auto simp: valid_path_imp_path pcirc Suc that not_in_path_image_join Suc.hyps(7)[OF that])
+ unfolding n_Suc using Suc.hyps pcirc
+ by (metis add.right_neutral not_in_path_image_join that valid_path_imp_path winding_number_join)
qed
show "f contour_integrable_on (n_circ (Suc k))"
unfolding n_Suc
by (rule contour_integrable_joinI[OF pcirc_integrable Suc(8) pcirc(2) Suc(1)])
show "contour_integral (n_circ (Suc k)) f = (Suc k) * contour_integral p_circ f"
- unfolding n_Suc
- by (auto simp add:contour_integral_join[OF pcirc_integrable Suc(8) pcirc(2) Suc(1)]
- Suc(9) algebra_simps)
+ by (simp add: Rings.ring_distribs(2) Suc.hyps n_Suc pcirc pcirc_integrable)
qed
have cp[simp]:"pathstart cp = p + h p" "pathfinish cp = p + h p"
- "valid_path cp" "path_image cp \<subseteq> s - insert p pts"
+ "valid_path cp" "path_image cp \<subseteq> S - insert p pts"
"winding_number cp p = - n"
- "\<And>p'. p'\<notin>s - pts \<Longrightarrow> winding_number cp p'=0 \<and> p' \<notin> path_image cp"
+ "\<And>p'. p'\<notin>S - pts \<Longrightarrow> winding_number cp p'=0 \<and> p' \<notin> path_image cp"
"f contour_integrable_on cp"
"contour_integral cp f = - n * contour_integral p_circ f"
proof -
show "pathstart cp = p + h p" and "pathfinish cp = p + h p" and "valid_path cp"
using n_circ unfolding cp_def by auto
next
- have "sphere p (h p) \<subseteq> s - insert p pts"
- using h[rule_format,of p] \<open>insert p pts \<subseteq> s\<close> by force
- moreover have "p + complex_of_real (h p) \<in> s - insert p pts"
+ have "sphere p (h p) \<subseteq> S - insert p pts"
+ using h[rule_format,of p] \<open>insert p pts \<subseteq> S\<close> by force
+ moreover have "p + complex_of_real (h p) \<in> S - insert p pts"
using pg(3) pg(4) by (metis pathfinish_in_path_image subsetCE)
- ultimately show "path_image cp \<subseteq> s - insert p pts" unfolding cp_def
+ ultimately show "path_image cp \<subseteq> S - insert p pts" unfolding cp_def
using n_circ(5) by auto
next
show "winding_number cp p = - n"
unfolding cp_def using winding_number_reversepath n_circ \<open>h p>0\<close>
by (auto simp: valid_path_imp_path)
next
- show "winding_number cp p'=0 \<and> p' \<notin> path_image cp" when "p'\<notin>s - pts" for p'
- unfolding cp_def
- apply (auto)
- apply (subst winding_number_reversepath)
- by (auto simp add: valid_path_imp_path n_circ(7)[OF that] n_circ(1))
+ show "winding_number cp p'=0 \<and> p' \<notin> path_image cp" when "p'\<notin>S - pts" for p'
+ proof -
+ have "winding_number (reversepath (n_circ (nat n))) p' = 0"
+ using n_circ that
+ by (metis add.inverse_neutral valid_path_imp_path winding_number_reversepath)
+ then show ?thesis
+ using cp_def n_circ(7) that by force
+ qed
next
show "f contour_integrable_on cp" unfolding cp_def
using contour_integrable_reversepath_eq n_circ(1,8) by auto
@@ -326,30 +322,31 @@
qed
define g' where "g' \<equiv> g +++ pg +++ cp +++ (reversepath pg)"
have "contour_integral g' f = (\<Sum>p\<in>pts. winding_number g' p * contour_integral (circlepath p (h p)) f)"
- proof (rule "2.hyps"(3)[of "s-{p}" "g'",OF _ _ \<open>finite pts\<close> ])
- show "connected (s - {p} - pts)" using connected by (metis Diff_insert2)
- show "open (s - {p})" using \<open>open s\<close> by auto
- show " pts \<subseteq> s - {p}" using \<open>insert p pts \<subseteq> s\<close> \<open> p \<notin> pts\<close> by blast
- show "f holomorphic_on s - {p} - pts" using holo \<open>p \<notin> pts\<close> by (metis Diff_insert2)
+ proof (rule "2.hyps"(3)[of "S-{p}" "g'",OF _ _ \<open>finite pts\<close> ])
+ show "connected (S - {p} - pts)" using connected by (metis Diff_insert2)
+ show "open (S - {p})" using \<open>open S\<close> by auto
+ show " pts \<subseteq> S - {p}" using \<open>insert p pts \<subseteq> S\<close> \<open> p \<notin> pts\<close> by blast
+ show "f holomorphic_on S - {p} - pts" using holo \<open>p \<notin> pts\<close> by (metis Diff_insert2)
show "valid_path g'"
unfolding g'_def cp_def using n_circ valid pg g_loop
- by (auto intro!:valid_path_join )
+ by (auto intro!:valid_path_join)
show "pathfinish g' = pathstart g'"
unfolding g'_def cp_def using pg(2) by simp
- show "path_image g' \<subseteq> s - {p} - pts"
+ show "path_image g' \<subseteq> S - {p} - pts"
proof -
- define s' where "s' \<equiv> s - {p} - pts"
- have s':"s' = s-insert p pts " unfolding s'_def by auto
+ define s' where "s' \<equiv> S - {p} - pts"
+ have s':"s' = S-insert p pts " unfolding s'_def by auto
then show ?thesis using path_img pg(4) cp(4)
- unfolding g'_def
- apply (fold s'_def s')
- apply (intro subset_path_image_join)
- by auto
+ by (simp add: g'_def s'_def subset_path_image_join)
qed
note path_join_imp[simp]
- show "\<forall>z. z \<notin> s - {p} \<longrightarrow> winding_number g' z = 0"
+ show "\<forall>z. z \<notin> S - {p} \<longrightarrow> winding_number g' z = 0"
proof clarify
- fix z assume z:"z\<notin>s - {p}"
+ fix z assume z:"z\<notin>S - {p}"
+ have z_notin_cp: "z \<notin> path_image cp"
+ using cp(6) cp_def n_circ(6) z by auto
+ have z_notin_pg: "z \<notin> path_image pg"
+ by (metis Diff_iff Diff_insert2 pg(4) subsetD z)
have "winding_number (g +++ pg +++ cp +++ reversepath pg) z = winding_number g z
+ winding_number (pg +++ cp +++ (reversepath pg)) z"
proof (rule winding_number_join)
@@ -358,13 +355,13 @@
show "path (pg +++ cp +++ reversepath pg)" using pg(3) cp
by (simp add: valid_path_imp_path)
next
- have "path_image (pg +++ cp +++ reversepath pg) \<subseteq> s - insert p pts"
+ have "path_image (pg +++ cp +++ reversepath pg) \<subseteq> S - insert p pts"
using pg(4) cp(4) by (auto simp:subset_path_image_join)
then show "z \<notin> path_image (pg +++ cp +++ reversepath pg)" using z by auto
next
show "pathfinish g = pathstart (pg +++ cp +++ reversepath pg)" using g_loop by auto
qed
- also have "... = winding_number g z + (winding_number pg z
+ also have "\<dots> = winding_number g z + (winding_number pg z
+ winding_number (cp +++ (reversepath pg)) z)"
proof (subst add_left_cancel,rule winding_number_join)
show "path pg" and "path (cp +++ reversepath pg)"
@@ -375,167 +372,129 @@
by (metis Diff_iff \<open>z \<notin> path_image pg\<close> contra_subsetD cp(4) insertI1
not_in_path_image_join path_image_reversepath singletonD)
qed
- also have "... = winding_number g z + (winding_number pg z
+ also have "\<dots> = winding_number g z + (winding_number pg z
+ (winding_number cp z + winding_number (reversepath pg) z))"
- apply (auto intro!:winding_number_join simp: valid_path_imp_path)
- apply (metis Diff_iff contra_subsetD cp(4) insertI1 singletonD z)
- by (metis Diff_insert2 Diff_subset contra_subsetD pg(4) z)
- also have "... = winding_number g z + winding_number cp z"
- apply (subst winding_number_reversepath)
- apply (auto simp: valid_path_imp_path)
- by (metis Diff_iff contra_subsetD insertI1 pg(4) singletonD z)
+ by (simp add: valid_path_imp_path winding_number_join z_notin_cp z_notin_pg)
+ also have "\<dots> = winding_number g z + winding_number cp z"
+ by (simp add: valid_path_imp_path winding_number_reversepath z_notin_pg)
finally have "winding_number g' z = winding_number g z + winding_number cp z"
unfolding g'_def .
moreover have "winding_number g z + winding_number cp z = 0"
using winding z \<open>n=winding_number g p\<close> by auto
ultimately show "winding_number g' z = 0" unfolding g'_def by auto
qed
- show "\<forall>pa\<in>s - {p}. 0 < h pa \<and> (\<forall>w\<in>cball pa (h pa). w \<in> s - {p} \<and> (w \<noteq> pa \<longrightarrow> w \<notin> pts))"
+ show "\<forall>pa \<in> S - {p}. 0 < h pa \<and> (\<forall>w\<in>cball pa (h pa). w \<in> S - {p} \<and> (w \<noteq> pa \<longrightarrow> w \<notin> pts))"
using h by fastforce
qed
moreover have "contour_integral g' f = contour_integral g f
- winding_number g p * contour_integral p_circ f"
- proof -
- have "contour_integral g' f = contour_integral g f
- + contour_integral (pg +++ cp +++ reversepath pg) f"
- unfolding g'_def
- apply (subst contour_integral_join)
- by (auto simp add:open_Diff[OF \<open>open s\<close>,OF finite_imp_closed[OF fin]]
- intro!: contour_integrable_holomorphic_simple[OF holo _ _ path_img]
- contour_integrable_reversepath)
- also have "... = contour_integral g f + contour_integral pg f
- + contour_integral (cp +++ reversepath pg) f"
- apply (subst contour_integral_join)
- by (auto simp add:contour_integrable_reversepath)
- also have "... = contour_integral g f + contour_integral pg f
+ proof -
+ have *: "f contour_integrable_on g" "f contour_integrable_on pg" "f contour_integrable_on cp"
+ by (auto simp add: open_Diff[OF \<open>open S\<close>,OF finite_imp_closed[OF fin]]
+ intro!: contour_integrable_holomorphic_simple[OF holo _ _ path_img])
+ have "contour_integral g' f = contour_integral g f + contour_integral pg f
+ contour_integral cp f + contour_integral (reversepath pg) f"
- apply (subst contour_integral_join)
- by (auto simp add:contour_integrable_reversepath)
- also have "... = contour_integral g f + contour_integral cp f"
+ using * by (simp add: g'_def contour_integrable_reversepath_eq)
+ also have "\<dots> = contour_integral g f + contour_integral cp f"
using contour_integral_reversepath
by (auto simp add:contour_integrable_reversepath)
- also have "... = contour_integral g f - winding_number g p * contour_integral p_circ f"
+ also have "\<dots> = contour_integral g f - winding_number g p * contour_integral p_circ f"
using \<open>n=winding_number g p\<close> by auto
finally show ?thesis .
qed
moreover have "winding_number g' p' = winding_number g p'" when "p'\<in>pts" for p'
proof -
- have [simp]: "p' \<notin> path_image g" "p' \<notin> path_image pg" "p'\<notin>path_image cp"
- using "2.prems"(8) that
- apply blast
- apply (metis Diff_iff Diff_insert2 contra_subsetD pg(4) that)
- by (meson DiffD2 cp(4) rev_subsetD subset_insertI that)
- have "winding_number g' p' = winding_number g p'
- + winding_number (pg +++ cp +++ reversepath pg) p'" unfolding g'_def
- apply (subst winding_number_join)
- apply (simp_all add: valid_path_imp_path)
- apply (intro not_in_path_image_join)
- by auto
- also have "... = winding_number g p' + winding_number pg p'
+ obtain [simp]: "p' \<notin> path_image g" "p' \<notin> path_image pg" "p'\<notin>path_image cp"
+ using "2.prems"(8) that by (metis Diff_iff Diff_insert2 \<open>p' \<in> pts\<close> cp(4) pg(4) subsetD)
+ have "winding_number g' p' = winding_number g p' + winding_number pg p'
+ winding_number (cp +++ reversepath pg) p'"
- apply (subst winding_number_join)
- apply (simp_all add: valid_path_imp_path)
- apply (intro not_in_path_image_join)
- by auto
- also have "... = winding_number g p' + winding_number pg p'+ winding_number cp p'
- + winding_number (reversepath pg) p'"
- apply (subst winding_number_join)
- by (simp_all add: valid_path_imp_path)
- also have "... = winding_number g p' + winding_number cp p'"
- apply (subst winding_number_reversepath)
- by (simp_all add: valid_path_imp_path)
- also have "... = winding_number g p'" using that by auto
+ by (simp add: g'_def not_in_path_image_join valid_path_imp_path winding_number_join)
+ also have "\<dots> = winding_number g p'" using that
+ by (simp add: valid_path_imp_path winding_number_join winding_number_reversepath)
finally show ?thesis .
qed
ultimately show ?case unfolding p_circ_def
apply (subst (asm) sum.cong[OF refl,
of pts _ "\<lambda>p. winding_number g p * contour_integral (circlepath p (h p)) f"])
- by (auto simp add:sum.insert[OF \<open>finite pts\<close> \<open>p\<notin>pts\<close>] algebra_simps)
+ by (auto simp: sum.insert[OF \<open>finite pts\<close> \<open>p\<notin>pts\<close>] algebra_simps)
qed
lemma Cauchy_theorem_singularities:
- assumes "open s" "connected s" "finite pts" and
- holo:"f holomorphic_on s-pts" and
+ assumes "open S" "connected S" "finite pts" and
+ holo: "f holomorphic_on S-pts" and
"valid_path g" and
loop:"pathfinish g = pathstart g" and
- "path_image g \<subseteq> s-pts" and
- homo:"\<forall>z. (z \<notin> s) \<longrightarrow> winding_number g z = 0" and
- avoid:"\<forall>p\<in>s. h p>0 \<and> (\<forall>w\<in>cball p (h p). w\<in>s \<and> (w\<noteq>p \<longrightarrow> w \<notin> pts))"
+ "path_image g \<subseteq> S-pts" and
+ homo:"\<forall>z. (z \<notin> S) \<longrightarrow> winding_number g z = 0" and
+ avoid:"\<forall>p\<in>S. h p>0 \<and> (\<forall>w\<in>cball p (h p). w\<in>S \<and> (w\<noteq>p \<longrightarrow> w \<notin> pts))"
shows "contour_integral g f = (\<Sum>p\<in>pts. winding_number g p * contour_integral (circlepath p (h p)) f)"
(is "?L=?R")
proof -
define circ where "circ \<equiv> \<lambda>p. winding_number g p * contour_integral (circlepath p (h p)) f"
- define pts1 where "pts1 \<equiv> pts \<inter> s"
+ define pts1 where "pts1 \<equiv> pts \<inter> S"
define pts2 where "pts2 \<equiv> pts - pts1"
- have "pts=pts1 \<union> pts2" "pts1 \<inter> pts2 = {}" "pts2 \<inter> s={}" "pts1\<subseteq>s"
+ have "pts=pts1 \<union> pts2" "pts1 \<inter> pts2 = {}" "pts2 \<inter> S={}" "pts1\<subseteq>S"
unfolding pts1_def pts2_def by auto
have "contour_integral g f = (\<Sum>p\<in>pts1. circ p)" unfolding circ_def
- proof (rule Cauchy_theorem_aux[OF \<open>open s\<close> _ _ \<open>pts1\<subseteq>s\<close> _ \<open>valid_path g\<close> loop _ homo])
+ proof (rule Cauchy_theorem_aux[OF \<open>open S\<close> _ _ \<open>pts1\<subseteq>S\<close> _ \<open>valid_path g\<close> loop _ homo])
have "finite pts1" unfolding pts1_def using \<open>finite pts\<close> by auto
- then show "connected (s - pts1)"
- using \<open>open s\<close> \<open>connected s\<close> connected_open_delete_finite[of s] by auto
+ then show "connected (S - pts1)"
+ using \<open>open S\<close> \<open>connected S\<close> connected_open_delete_finite[of S] by auto
next
show "finite pts1" using \<open>pts = pts1 \<union> pts2\<close> assms(3) by auto
- show "f holomorphic_on s - pts1" by (metis Diff_Int2 Int_absorb holo pts1_def)
- show "path_image g \<subseteq> s - pts1" using assms(7) pts1_def by auto
- show "\<forall>p\<in>s. 0 < h p \<and> (\<forall>w\<in>cball p (h p). w \<in> s \<and> (w \<noteq> p \<longrightarrow> w \<notin> pts1))"
+ show "f holomorphic_on S - pts1" by (metis Diff_Int2 Int_absorb holo pts1_def)
+ show "path_image g \<subseteq> S - pts1" using assms(7) pts1_def by auto
+ show "\<forall>p\<in>S. 0 < h p \<and> (\<forall>w\<in>cball p (h p). w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> pts1))"
by (simp add: avoid pts1_def)
qed
- moreover have "sum circ pts2=0"
- proof -
- have "winding_number g p=0" when "p\<in>pts2" for p
- using \<open>pts2 \<inter> s={}\<close> that homo[rule_format,of p] by auto
- thus ?thesis unfolding circ_def
- apply (intro sum.neutral)
- by auto
- qed
+ moreover have "sum circ pts2 = 0"
+ by (metis \<open>pts2 \<inter> S = {}\<close> circ_def disjoint_iff_not_equal homo mult_zero_left sum.neutral)
moreover have "?R=sum circ pts1 + sum circ pts2"
unfolding circ_def
using sum.union_disjoint[OF _ _ \<open>pts1 \<inter> pts2 = {}\<close>] \<open>finite pts\<close> \<open>pts=pts1 \<union> pts2\<close>
by blast
ultimately show ?thesis
- apply (fold circ_def)
- by auto
+ by simp
qed
theorem Residue_theorem:
- fixes s pts::"complex set" and f::"complex \<Rightarrow> complex"
+ fixes S pts::"complex set" and f::"complex \<Rightarrow> complex"
and g::"real \<Rightarrow> complex"
- assumes "open s" "connected s" "finite pts" and
- holo:"f holomorphic_on s-pts" and
+ assumes "open S" "connected S" "finite pts" and
+ holo:"f holomorphic_on S-pts" and
"valid_path g" and
loop:"pathfinish g = pathstart g" and
- "path_image g \<subseteq> s-pts" and
- homo:"\<forall>z. (z \<notin> s) \<longrightarrow> winding_number g z = 0"
+ "path_image g \<subseteq> S-pts" and
+ homo:"\<forall>z. (z \<notin> S) \<longrightarrow> winding_number g z = 0"
shows "contour_integral g f = 2 * pi * \<i> *(\<Sum>p\<in>pts. winding_number g p * residue f p)"
proof -
define c where "c \<equiv> 2 * pi * \<i>"
- obtain h where avoid:"\<forall>p\<in>s. h p>0 \<and> (\<forall>w\<in>cball p (h p). w\<in>s \<and> (w\<noteq>p \<longrightarrow> w \<notin> pts))"
- using finite_cball_avoid[OF \<open>open s\<close> \<open>finite pts\<close>] by metis
+ obtain h where avoid:"\<forall>p\<in>S. h p>0 \<and> (\<forall>w\<in>cball p (h p). w\<in>S \<and> (w\<noteq>p \<longrightarrow> w \<notin> pts))"
+ using finite_cball_avoid[OF \<open>open S\<close> \<open>finite pts\<close>] by metis
have "contour_integral g f
= (\<Sum>p\<in>pts. winding_number g p * contour_integral (circlepath p (h p)) f)"
using Cauchy_theorem_singularities[OF assms avoid] .
- also have "... = (\<Sum>p\<in>pts. c * winding_number g p * residue f p)"
+ also have "\<dots> = (\<Sum>p\<in>pts. c * winding_number g p * residue f p)"
proof (intro sum.cong)
show "pts = pts" by simp
next
fix x assume "x \<in> pts"
show "winding_number g x * contour_integral (circlepath x (h x)) f
= c * winding_number g x * residue f x"
- proof (cases "x\<in>s")
+ proof (cases "x\<in>S")
case False
then have "winding_number g x=0" using homo by auto
thus ?thesis by auto
next
case True
have "contour_integral (circlepath x (h x)) f = c* residue f x"
- using \<open>x\<in>pts\<close> \<open>finite pts\<close> avoid[rule_format,OF True]
- apply (intro base_residue[of "s-(pts-{x})",THEN contour_integral_unique,folded c_def])
- by (auto intro:holomorphic_on_subset[OF holo] open_Diff[OF \<open>open s\<close> finite_imp_closed])
+ using \<open>x\<in>pts\<close> \<open>finite pts\<close> avoid[rule_format, OF True]
+ apply (intro base_residue[of "S-(pts-{x})",THEN contour_integral_unique,folded c_def])
+ by (auto intro:holomorphic_on_subset[OF holo] open_Diff[OF \<open>open S\<close> finite_imp_closed])
then show ?thesis by auto
qed
qed
- also have "... = c * (\<Sum>p\<in>pts. winding_number g p * residue f p)"
+ also have "\<dots> = c * (\<Sum>p\<in>pts. winding_number g p * residue f p)"
by (simp add: sum_distrib_left algebra_simps)
finally show ?thesis unfolding c_def .
qed
@@ -543,17 +502,17 @@
subsection \<open>The argument principle\<close>
theorem argument_principle:
- fixes f::"complex \<Rightarrow> complex" and poles s:: "complex set"
- defines "pz \<equiv> {w\<in>s. f w = 0 \<or> w \<in> poles}" \<comment> \<open>\<^term>\<open>pz\<close> is the set of poles and zeros\<close>
- assumes "open s" "connected s" and
- f_holo:"f holomorphic_on s-poles" and
- h_holo:"h holomorphic_on s" and
+ fixes f::"complex \<Rightarrow> complex" and poles S:: "complex set"
+ defines "pz \<equiv> {w\<in>S. f w = 0 \<or> w \<in> poles}" \<comment> \<open>\<^term>\<open>pz\<close> is the set of poles and zeros\<close>
+ assumes "open S" "connected S" and
+ f_holo:"f holomorphic_on S-poles" and
+ h_holo:"h holomorphic_on S" and
"valid_path g" and
loop:"pathfinish g = pathstart g" and
- path_img:"path_image g \<subseteq> s - pz" and
- homo:"\<forall>z. (z \<notin> s) \<longrightarrow> winding_number g z = 0" and
+ path_img:"path_image g \<subseteq> S - pz" and
+ homo:"\<forall>z. (z \<notin> S) \<longrightarrow> winding_number g z = 0" and
finite:"finite pz" and
- poles:"\<forall>p\<in>s\<inter>poles. is_pole f p"
+ poles:"\<forall>p\<in>S\<inter>poles. is_pole f p"
shows "contour_integral g (\<lambda>x. deriv f x * h x / f x) = 2 * pi * \<i> *
(\<Sum>p\<in>pz. winding_number g p * h p * zorder f p)"
(is "?L=?R")
@@ -561,12 +520,12 @@
define c where "c \<equiv> 2 * complex_of_real pi * \<i> "
define ff where "ff \<equiv> (\<lambda>x. deriv f x * h x / f x)"
define cont where "cont \<equiv> \<lambda>ff p e. (ff has_contour_integral c * zorder f p * h p ) (circlepath p e)"
- define avoid where "avoid \<equiv> \<lambda>p e. \<forall>w\<in>cball p e. w \<in> s \<and> (w \<noteq> p \<longrightarrow> w \<notin> pz)"
+ define avoid where "avoid \<equiv> \<lambda>p e. \<forall>w\<in>cball p e. w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> pz)"
- have "\<exists>e>0. avoid p e \<and> (p\<in>pz \<longrightarrow> cont ff p e)" when "p\<in>s" for p
+ have "\<exists>e>0. avoid p e \<and> (p\<in>pz \<longrightarrow> cont ff p e)" when "p\<in>S" for p
proof -
obtain e1 where "e1>0" and e1_avoid:"avoid p e1"
- using finite_cball_avoid[OF \<open>open s\<close> finite] \<open>p\<in>s\<close> unfolding avoid_def by auto
+ using finite_cball_avoid[OF \<open>open S\<close> finite] \<open>p\<in>S\<close> unfolding avoid_def by auto
have "\<exists>e2>0. cball p e2 \<subseteq> ball p e1 \<and> cont ff p e2" when "p\<in>pz"
proof -
define po where "po \<equiv> zorder f p"
@@ -580,9 +539,10 @@
proof -
have "isolated_singularity_at f p"
proof -
- have "f holomorphic_on ball p e1 - {p}"
- apply (intro holomorphic_on_subset[OF f_holo])
- using e1_avoid \<open>p\<in>pz\<close> unfolding avoid_def pz_def by force
+ have "ball p e1 - {p} \<subseteq> S - poles"
+ using avoid_def e1_avoid pz_def by fastforce
+ then have "f holomorphic_on ball p e1 - {p}"
+ by (intro holomorphic_on_subset[OF f_holo])
then show ?thesis unfolding isolated_singularity_at_def
using \<open>e1>0\<close> analytic_on_open open_delete by blast
qed
@@ -592,13 +552,13 @@
then show ?thesis unfolding not_essential_def by auto
next
case False
- then have "p\<in>s-poles" using \<open>p\<in>s\<close> poles unfolding pz_def by auto
- moreover have "open (s-poles)"
+ then have "p\<in>S-poles" using \<open>p\<in>S\<close> poles unfolding pz_def by auto
+ moreover have "open (S-poles)"
proof -
- have "closed (s \<inter> poles)"
+ have "closed (S \<inter> poles)"
using finite by (simp add: pz_def finite_imp_closed rev_finite_subset subset_eq)
then show ?thesis
- by (metis Diff_Compl Diff_Diff_Int Diff_eq \<open>open s\<close> open_Diff)
+ by (metis Diff_Compl Diff_Diff_Int Diff_eq \<open>open S\<close> open_Diff)
qed
ultimately have "isCont f p"
using holomorphic_on_imp_continuous_on[OF f_holo] continuous_on_eq_continuous_at
@@ -611,17 +571,17 @@
then have "\<forall>\<^sub>F w in at p. f w= 0" unfolding frequently_def by auto
then obtain r1 where "r1>0" and r1:"\<forall>w\<in>ball p r1 - {p}. f w =0"
unfolding eventually_at by (auto simp add:dist_commute)
- obtain r2 where "r2>0" and r2: "ball p r2 \<subseteq> s"
- using \<open>p\<in>s\<close> \<open>open s\<close> openE by blast
+ obtain r2 where "r2>0" and r2: "ball p r2 \<subseteq> S"
+ using \<open>p\<in>S\<close> \<open>open S\<close> openE by blast
define rr where "rr=min r1 r2"
from r1 r2
- have "ball p rr - {p} \<subseteq> {w\<in> s \<inter> ball p rr-{p}. f w=0}"
+ have "ball p rr - {p} \<subseteq> {w\<in> S \<inter> ball p rr-{p}. f w=0}"
unfolding rr_def by auto
moreover have "infinite (ball p rr - {p})"
using \<open>r1>0\<close> \<open>r2>0\<close> finite_imp_not_open
unfolding rr_def by fastforce
- ultimately have "infinite {w\<in>s \<inter> ball p rr-{p}. f w=0}" using infinite_super by blast
+ ultimately have "infinite {w\<in>S \<inter> ball p rr-{p}. f w=0}" using infinite_super by blast
then have "infinite pz"
unfolding pz_def by (smt (verit) infinite_super Collect_mono_iff DiffE Int_iff)
then show False using \<open>finite pz\<close> by auto
@@ -643,9 +603,9 @@
define prin where "prin \<equiv> \<lambda>w. po * h w / (w - p)"
have "((\<lambda>w. prin w + anal w) has_contour_integral c * po * h p) (circlepath p e2)"
proof (rule has_contour_integral_add[of _ _ _ _ 0,simplified])
- have "ball p r \<subseteq> s"
+ have "ball p r \<subseteq> S"
using \<open>r<e1\<close> avoid_def ball_subset_cball e1_avoid by (simp add: subset_eq)
- then have "cball p e2 \<subseteq> s"
+ then have "cball p e2 \<subseteq> S"
using \<open>r>0\<close> unfolding e2_def by auto
then have "(\<lambda>w. po * h w) holomorphic_on cball p e2"
using h_holo by (auto intro!: holomorphic_intros)
@@ -653,7 +613,7 @@
using Cauchy_integral_circlepath_simple[folded c_def, of "\<lambda>w. po * h w"] \<open>e2>0\<close>
unfolding prin_def by (auto simp add: mult.assoc)
have "anal holomorphic_on ball p r" unfolding anal_def
- using pp_holo h_holo pp_po \<open>ball p r \<subseteq> s\<close> \<open>pp p\<noteq>0\<close>
+ using pp_holo h_holo pp_po \<open>ball p r \<subseteq> S\<close> \<open>pp p\<noteq>0\<close>
by (auto intro!: holomorphic_intros)
then show "(anal has_contour_integral 0) (circlepath p e2)"
using e2_def \<open>r>0\<close>
@@ -677,11 +637,8 @@
by (auto intro!: derivative_eq_intros DERIV_cong[OF has_field_derivative_powr_of_int])
qed
ultimately show "prin w + anal w = ff' w"
- unfolding ff'_def prin_def anal_def
- apply simp
- apply (unfold f'_def)
- apply (fold wp_def)
- apply (auto simp add:field_simps)
+ unfolding f'_def ff'_def prin_def anal_def
+ apply (simp add: field_simps flip: wp_def)
by (metis (no_types, lifting) mult.commute power_int_minus_mult)
qed
then have "cont ff p e2" unfolding cont_def
@@ -693,12 +650,11 @@
show "f' holomorphic_on ball p r - {p}" unfolding f'_def using pp_holo
by (auto intro!: holomorphic_intros)
next
- have "ball p e1 - {p} \<subseteq> s - poles"
+ have "ball p e1 - {p} \<subseteq> S - poles"
using ball_subset_cball e1_avoid[unfolded avoid_def] unfolding pz_def
by auto
- then have "ball p r - {p} \<subseteq> s - poles"
- apply (elim dual_order.trans)
- using \<open>r<e1\<close> by auto
+ then have "ball p r - {p} \<subseteq> S - poles"
+ using \<open>r<e1\<close> by force
then show "f holomorphic_on ball p r - {p}" using f_holo
by auto
next
@@ -728,38 +684,38 @@
by (auto simp add: e2 e4_def)
ultimately show ?thesis by auto
qed
- then obtain get_e where get_e:"\<forall>p\<in>s. get_e p>0 \<and> avoid p (get_e p)
+ then obtain get_e where get_e:"\<forall>p\<in>S. get_e p>0 \<and> avoid p (get_e p)
\<and> (p\<in>pz \<longrightarrow> cont ff p (get_e p))"
by metis
define ci where "ci \<equiv> \<lambda>p. contour_integral (circlepath p (get_e p)) ff"
define w where "w \<equiv> \<lambda>p. winding_number g p"
have "contour_integral g ff = (\<Sum>p\<in>pz. w p * ci p)" unfolding ci_def w_def
- proof (rule Cauchy_theorem_singularities[OF \<open>open s\<close> \<open>connected s\<close> finite _ \<open>valid_path g\<close> loop
+ proof (rule Cauchy_theorem_singularities[OF \<open>open S\<close> \<open>connected S\<close> finite _ \<open>valid_path g\<close> loop
path_img homo])
- have "open (s - pz)" using open_Diff[OF _ finite_imp_closed[OF finite]] \<open>open s\<close> by auto
- then show "ff holomorphic_on s - pz" unfolding ff_def using f_holo h_holo
+ have "open (S - pz)" using open_Diff[OF _ finite_imp_closed[OF finite]] \<open>open S\<close> by auto
+ then show "ff holomorphic_on S - pz" unfolding ff_def using f_holo h_holo
by (auto intro!: holomorphic_intros simp add:pz_def)
next
- show "\<forall>p\<in>s. 0 < get_e p \<and> (\<forall>w\<in>cball p (get_e p). w \<in> s \<and> (w \<noteq> p \<longrightarrow> w \<notin> pz))"
+ show "\<forall>p\<in>S. 0 < get_e p \<and> (\<forall>w\<in>cball p (get_e p). w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> pz))"
using get_e using avoid_def by blast
qed
- also have "... = (\<Sum>p\<in>pz. c * w p * h p * zorder f p)"
+ also have "\<dots> = (\<Sum>p\<in>pz. c * w p * h p * zorder f p)"
proof (rule sum.cong[of pz pz,simplified])
fix p assume "p \<in> pz"
show "w p * ci p = c * w p * h p * (zorder f p)"
- proof (cases "p\<in>s")
- assume "p \<in> s"
- have "ci p = c * h p * (zorder f p)" unfolding ci_def
- apply (rule contour_integral_unique)
- using get_e \<open>p\<in>s\<close> \<open>p\<in>pz\<close> unfolding cont_def by (metis mult.assoc mult.commute)
+ proof (cases "p\<in>S")
+ assume "p \<in> S"
+ have "ci p = c * h p * (zorder f p)"
+ unfolding ci_def
+ using \<open>p \<in> S\<close> \<open>p \<in> pz\<close> cont_def contour_integral_unique get_e by fastforce
thus ?thesis by auto
next
- assume "p\<notin>s"
+ assume "p\<notin>S"
then have "w p=0" using homo unfolding w_def by auto
then show ?thesis by auto
qed
qed
- also have "... = c*(\<Sum>p\<in>pz. w p * h p * zorder f p)"
+ also have "\<dots> = c*(\<Sum>p\<in>pz. w p * h p * zorder f p)"
unfolding sum_distrib_left by (simp add:algebra_simps)
finally have "contour_integral g ff = c * (\<Sum>p\<in>pz. w p * h p * of_int (zorder f p))" .
then show ?thesis unfolding ff_def c_def w_def by simp
@@ -945,7 +901,8 @@
proof -
have "cmod (g p/f p) <1"
by (smt (verit) divide_less_eq_1_pos norm_divide norm_ge_zero path_less that)
- then show ?thesis unfolding h_def by (auto simp add:dist_complex_def)
+ then show ?thesis
+ unfolding h_def by (auto simp add:dist_complex_def)
qed
then have "path_image (h o \<gamma>) \<subseteq> ball 1 1"
by (simp add: image_subset_iff path_image_compose)
@@ -999,8 +956,7 @@
then have " ((/) 1 has_contour_integral 0) (h \<circ> \<gamma>)
= ((\<lambda>x. deriv h x / h x) has_contour_integral 0) \<gamma>"
unfolding has_contour_integral
- apply (intro has_integral_spike_eq[OF negligible_finite, OF \<open>finite spikes\<close>])
- by auto
+ by (force intro!: has_integral_spike_eq[OF negligible_finite, OF \<open>finite spikes\<close>])
ultimately show ?thesis by auto
qed
then have "contour_integral \<gamma> (\<lambda>x. deriv h x / h x) = 0"
@@ -1010,8 +966,8 @@
proof -
have "(\<lambda>p. deriv f p / f p) contour_integrable_on \<gamma>"
proof (rule contour_integrable_holomorphic_simple[OF _ _ \<open>valid_path \<gamma>\<close> path_f])
- show "open (s - zeros_f)" using finite_imp_closed[OF \<open>finite zeros_f\<close>] \<open>open s\<close>
- by auto
+ show "open (s - zeros_f)"
+ using finite_imp_closed[OF \<open>finite zeros_f\<close>] \<open>open s\<close> by auto
then show "(\<lambda>p. deriv f p / f p) holomorphic_on s - zeros_f"
using f_holo
by (auto intro!: holomorphic_intros simp add:zeros_f_def)
@@ -1026,16 +982,15 @@
moreover have "deriv fg p / fg p = deriv f p / f p + deriv h p / h p"
when "p\<in> path_image \<gamma>" for p
proof -
- have "fg p\<noteq>0" and "f p\<noteq>0" using path_f path_fg that unfolding zeros_f_def zeros_fg_def
- by auto
- have "h p\<noteq>0"
+ have "fg p \<noteq> 0" and "f p \<noteq> 0"
+ using path_f path_fg that unfolding zeros_f_def zeros_fg_def by auto
+ have "h p \<noteq> 0"
proof (rule ccontr)
assume "\<not> h p \<noteq> 0"
- then have "g p / f p= -1" unfolding h_def by (simp add: add_eq_0_iff2)
- then have "cmod (g p/f p) = 1" by auto
- moreover have "cmod (g p/f p) <1"
- by (simp add: \<open>f p \<noteq> 0\<close> norm_divide path_less that)
- ultimately show False by auto
+ then have "cmod (g p/f p) = 1"
+ by (simp add: add_eq_0_iff2 h_def)
+ then show False
+ by (smt (verit) divide_eq_1_iff norm_divide path_less that)
qed
have der_fg:"deriv fg p = deriv f p + deriv g p" unfolding fg_def
using f_holo g_holo holomorphic_on_imp_differentiable_at[OF _ \<open>open s\<close>] path_img that
@@ -1050,9 +1005,10 @@
then show ?thesis unfolding der_def using DERIV_imp_deriv by auto
qed
show ?thesis
- apply (simp only:der_fg der_h)
- apply (auto simp add:field_simps \<open>h p\<noteq>0\<close> \<open>f p\<noteq>0\<close> \<open>fg p\<noteq>0\<close>)
- by (auto simp add:field_simps h_def \<open>f p\<noteq>0\<close> fg_def)
+ using \<open>h p\<noteq>0\<close> \<open>f p\<noteq>0\<close> \<open>fg p\<noteq>0\<close>
+ unfolding der_fg der_h
+ apply (simp add: divide_simps h_def fg_def)
+ by (simp add: mult.commute mult.left_commute ring_class.ring_distribs(1))
qed
then have "contour_integral \<gamma> (\<lambda>p. deriv fg p / fg p)
= contour_integral \<gamma> (\<lambda>p. deriv f p / f p + deriv h p / h p)"
@@ -1061,11 +1017,14 @@
qed
moreover have "contour_integral \<gamma> (\<lambda>x. deriv fg x / fg x) = c * (\<Sum>p\<in>zeros_fg. w p * zorder fg p)"
proof -
- have "fg holomorphic_on s" unfolding fg_def using f_holo g_holo holomorphic_on_add by auto
+ have "fg holomorphic_on s"
+ unfolding fg_def using f_holo g_holo holomorphic_on_add by auto
moreover
- have "path_image \<gamma> \<subseteq> s - {p\<in>s. fg p = 0}" using path_fg unfolding zeros_fg_def .
+ have "path_image \<gamma> \<subseteq> s - {p\<in>s. fg p = 0}"
+ using path_fg unfolding zeros_fg_def .
moreover
- have " finite {p\<in>s. fg p = 0}" using \<open>finite zeros_fg\<close> unfolding zeros_fg_def .
+ have " finite {p\<in>s. fg p = 0}"
+ using \<open>finite zeros_fg\<close> unfolding zeros_fg_def .
ultimately show ?thesis
unfolding c_def zeros_fg_def w_def
using argument_principle[OF \<open>open s\<close> \<open>connected s\<close> _ _ \<open>valid_path \<gamma>\<close> loop _ homo, of _ "{}" "\<lambda>_. 1"]
@@ -1075,9 +1034,12 @@
unfolding c_def zeros_f_def w_def
proof (rule argument_principle[OF \<open>open s\<close> \<open>connected s\<close> _ _ \<open>valid_path \<gamma>\<close> loop _ homo
, of _ "{}" "\<lambda>_. 1",simplified])
- show "f holomorphic_on s" using f_holo g_holo holomorphic_on_add by auto
- show "path_image \<gamma> \<subseteq> s - {p\<in>s. f p = 0}" using path_f unfolding zeros_f_def .
- show " finite {p\<in>s. f p = 0}" using \<open>finite zeros_f\<close> unfolding zeros_f_def .
+ show "f holomorphic_on s"
+ using f_holo g_holo holomorphic_on_add by auto
+ show "path_image \<gamma> \<subseteq> s - {p\<in>s. f p = 0}"
+ using path_f unfolding zeros_f_def .
+ show " finite {p\<in>s. f p = 0}"
+ using \<open>finite zeros_f\<close> unfolding zeros_f_def .
qed
ultimately have " c* (\<Sum>p\<in>zeros_fg. w p * (zorder fg p)) = c* (\<Sum>p\<in>zeros_f. w p * (zorder f p))"
by auto
--- a/src/HOL/Complex_Analysis/Riemann_Mapping.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Complex_Analysis/Riemann_Mapping.thy Mon Aug 21 18:38:25 2023 +0100
@@ -62,10 +62,9 @@
then show ?thesis by auto
qed
show ?thesis
- apply (simp add: Moebius_function_def)
- apply (intro holomorphic_intros)
- using assms *
- by (metis complex_cnj_cnj complex_cnj_mult complex_cnj_one complex_mod_cnj mem_ball_0 mult.commute right_minus_eq)
+ unfolding Moebius_function_def
+ apply (intro holomorphic_intros)
+ by (metis "*" mult.commute complex_cnj_cnj complex_cnj_mult complex_cnj_one complex_mod_cnj mem_ball_0 right_minus_eq)
qed
lemma Moebius_function_compose:
@@ -154,9 +153,7 @@
if "z \<in> ball 0 1" for z::complex
proof (rule DERIV_chain' [where g=f])
show "(f has_field_derivative deriv f (of_real r * z)) (at (of_real r * z))"
- apply (rule holomorphic_derivI [OF holF \<open>open S\<close>])
- apply (rule \<open>f \<in> F\<close>)
- by (meson imageI r01 subset_iff that)
+ by (metis holomorphic_derivI [OF holF \<open>open S\<close>] \<open>f \<in> F\<close> image_subset_iff r01 that)
qed simp
have df0: "((\<lambda>w. f (r * w)) has_field_derivative deriv f 0 * r) (at 0)"
using * [of 0] by simp
@@ -170,16 +167,18 @@
qed
define l where "l \<equiv> SUP h\<in>F. norm (deriv h 0)"
have eql: "norm (deriv f 0) = l" if le: "l \<le> norm (deriv f 0)" and "f \<in> F" for f
- apply (rule order_antisym [OF _ le])
- using \<open>f \<in> F\<close> bdd cSUP_upper by (fastforce simp: l_def)
+ proof (rule order_antisym [OF _ le])
+ show "cmod (deriv f 0) \<le> l"
+ using \<open>f \<in> F\<close> bdd cSUP_upper by (fastforce simp: l_def)
+ qed
obtain \<F> where \<F>in: "\<And>n. \<F> n \<in> F" and \<F>lim: "(\<lambda>n. norm (deriv (\<F> n) 0)) \<longlonglongrightarrow> l"
proof -
have "\<exists>f. f \<in> F \<and> \<bar>norm (deriv f 0) - l\<bar> < 1 / (Suc n)" for n
proof -
obtain f where "f \<in> F" and f: "l < norm (deriv f 0) + 1/(Suc n)"
- using cSup_least [OF imF_ne, of "l - 1/(Suc n)"] by (fastforce simp add: l_def)
+ using cSup_least [OF imF_ne, of "l - 1/(Suc n)"] by (fastforce simp: l_def)
then have "\<bar>norm (deriv f 0) - l\<bar> < 1 / (Suc n)"
- by (fastforce simp add: abs_if not_less eql)
+ by (fastforce simp: abs_if not_less eql)
with \<open>f \<in> F\<close> show ?thesis
by blast
qed
@@ -197,7 +196,7 @@
fix n assume "N \<le> n"
have "dist (norm (deriv (\<F> n) 0)) l < 1 / (Suc n)"
using fless by (simp add: dist_norm)
- also have "... < e"
+ also have "\<dots> < e"
using N \<open>N \<le> n\<close> inverse_of_nat_le le_less_trans by blast
finally show "dist (norm (deriv (\<F> n) 0)) l < e" .
qed
@@ -230,18 +229,8 @@
with LIMSEQ_subseq_LIMSEQ [OF \<F>lim r] have no_df0: "norm(deriv f 0) = l"
by (force simp: o_def intro: tendsto_unique)
have nonconstf: "\<not> f constant_on S"
- proof -
- have False if "\<And>x. x \<in> S \<Longrightarrow> f x = c" for c
- proof -
- have "deriv f 0 = 0"
- by (metis that \<open>open S\<close> \<open>0 \<in> S\<close> DERIV_imp_deriv [OF has_field_derivative_transform_within_open [OF DERIV_const]])
- with no_df0 have "l = 0"
- by auto
- with eql [OF _ idF] show False by auto
- qed
- then show ?thesis
- by (meson constant_on_def)
- qed
+ using \<open>open S\<close> \<open>0 \<in> S\<close> no_df0 holomorphic_nonconstant [OF holf] eql [OF _ idF]
+ by force
show ?thesis
proof
show "f \<in> F"
@@ -316,26 +305,14 @@
show "(\<theta> \<circ> g \<circ> k) holomorphic_on (h \<circ> f) ` S"
proof (intro holomorphic_on_compose)
show "k holomorphic_on (h \<circ> f) ` S"
- apply (rule holomorphic_on_subset [OF holk])
- using f01 h01 by force
+ using holomorphic_on_subset [OF holk] f01 h01 by force
show "g holomorphic_on k ` (h \<circ> f) ` S"
- apply (rule holomorphic_on_subset [OF holg])
- by (auto simp: kh nf1)
+ using holomorphic_on_subset [OF holg] by (force simp: kh nf1)
show "\<theta> holomorphic_on g ` k ` (h \<circ> f) ` S"
- apply (rule holomorphic_on_subset [OF hol\<theta>])
- by (auto simp: gf kh nf1)
+ using holomorphic_on_subset [OF hol\<theta>] by (force simp: gf kh nf1)
qed
show "((\<theta> \<circ> g \<circ> k) (h (f z)))\<^sup>2 = h (f z)" if "z \<in> S" for z
- proof -
- have "f z \<in> ball 0 1"
- by (simp add: nf1 that)
- then have "(\<theta> (g (k (h (f z)))))\<^sup>2 = (\<theta> (g (f z)))\<^sup>2"
- by (metis kh)
- also have "... = h (f z)"
- using \<theta>2 gf that by auto
- finally show ?thesis
- by (simp add: o_def)
- qed
+ using \<theta>2 gf kh nf1 that by fastforce
qed
qed
have norm\<psi>1: "norm(\<psi> (h (f z))) < 1" if "z \<in> S" for z
@@ -359,18 +336,14 @@
show "p \<circ> \<psi> \<circ> h \<circ> f holomorphic_on S"
proof (intro holomorphic_on_compose holf)
show "h holomorphic_on f ` S"
- apply (rule holomorphic_on_subset [OF holh])
- using f01 by force
+ using holomorphic_on_subset [OF holh] f01 by fastforce
show "\<psi> holomorphic_on h ` f ` S"
- apply (rule holomorphic_on_subset [OF hol\<psi>])
- by auto
+ using holomorphic_on_subset [OF hol\<psi>] by fastforce
show "p holomorphic_on \<psi> ` h ` f ` S"
- apply (rule holomorphic_on_subset [OF holp])
- by (auto simp: norm\<psi>1)
+ using holomorphic_on_subset [OF holp] by (simp add: image_subset_iff norm\<psi>1)
qed
show "(p \<circ> \<psi> \<circ> h \<circ> f) ` S \<subseteq> ball 0 1"
- apply clarsimp
- by (meson norm\<psi>1 p01 image_subset_iff mem_ball_0)
+ using norm\<psi>1 p01 by fastforce
show "(p \<circ> \<psi> \<circ> h \<circ> f) 0 = 0"
by (simp add: \<open>p (\<psi> (h (f 0))) = 0\<close>)
show "inj_on (p \<circ> \<psi> \<circ> h \<circ> f) S"
@@ -385,8 +358,8 @@
using holomorphic_on_subset holomorphic_on_power
by (blast intro: holomorphic_on_ident)
show "k holomorphic_on power2 ` q ` ball 0 1"
- apply (rule holomorphic_on_subset [OF holk])
- using q01 by (auto simp: norm_power abs_square_less_1)
+ using q01 holomorphic_on_subset [OF holk]
+ by (force simp: norm_power abs_square_less_1)
qed
have 2: "(k \<circ> power2 \<circ> q) 0 = 0"
using p0 F_def \<open>f \<in> F\<close> \<psi>01 \<psi>2 \<open>0 \<in> S\<close> kh qp by force
@@ -442,12 +415,12 @@
then show "a \<in> f ` S"
by blast
qed
- then have "f ` S = ball 0 1"
+ then have fS: "f ` S = ball 0 1"
using F_def \<open>f \<in> F\<close> by blast
- then show ?thesis
- apply (rule_tac x=f in exI)
- apply (rule_tac x=g in exI)
- using holf holg derg gf by safe force+
+ then have "\<forall>z\<in>ball 0 1. g z \<in> S \<and> f (g z) = z"
+ by (metis gf imageE)
+ with fS show ?thesis
+ by (metis gf holf holg image_eqI)
qed
@@ -526,7 +499,7 @@
qed (use \<open>e > 0\<close> in auto)
with \<open>e > 0\<close> have "inverse (norm (y - x)) * norm (z - f x * (y - x)) \<le> e/2"
by (simp add: field_split_simps)
- also have "... < e"
+ also have "\<dots> < e"
using \<open>e > 0\<close> by simp
finally show ?thesis
by (simp add: contour_integral_unique [OF z])
@@ -593,11 +566,10 @@
by (simp add: openS holf holomorphic_deriv holomorphic_on_divide nz)
then obtain g where g: "\<And>z. z \<in> S \<Longrightarrow> (g has_field_derivative deriv f z / f z) (at z)"
using prev [of "\<lambda>z. deriv f z / f z"] by metis
+ have Df: "\<And>x. x \<in> S \<Longrightarrow> DERIV f x :> deriv f x"
+ using holf holomorphic_derivI openS by force
have hfd: "\<And>x. x \<in> S \<Longrightarrow> ((\<lambda>z. exp (g z) / f z) has_field_derivative 0) (at x)"
- apply (rule derivative_eq_intros g| simp)+
- apply (subst DERIV_deriv_iff_field_differentiable)
- using openS holf holomorphic_on_imp_differentiable_at nz apply auto
- done
+ by (rule derivative_eq_intros Df g nz| simp)+
obtain c where c: "\<And>x. x \<in> S \<Longrightarrow> exp (g x) / f x = c"
proof (rule DERIV_zero_connected_constant[OF \<open>connected S\<close> openS finite.emptyI])
show "continuous_on S (\<lambda>z. exp (g z) / f z)"
@@ -607,9 +579,10 @@
qed auto
show ?thesis
proof (intro exI ballI conjI)
- show "(\<lambda>z. Ln(inverse c) + g z) holomorphic_on S"
- apply (intro holomorphic_intros)
+ have "g holomorphic_on S"
using openS g holomorphic_on_open by blast
+ then show "(\<lambda>z. Ln(inverse c) + g z) holomorphic_on S"
+ by (intro holomorphic_intros)
fix z :: complex
assume "z \<in> S"
then have "exp (g z) / c = f z"
@@ -675,18 +648,14 @@
by blast
then obtain w where w: "- g z = g w" "dist a w < \<delta>"
by auto
- then have "w \<in> ball a \<delta>"
- by simp
- then have "w \<in> S"
- using \<delta> by blast
+ with \<delta> have "w \<in> S"
+ by force
then have "w = z"
by (metis diff_add_cancel eqg power_minus_Bit0 that w(1))
then have "g z = 0"
using \<open>- g z = g w\<close> by auto
- with eqg [OF that] have "z = b"
- by auto
- with that \<open>b \<notin> S\<close> show False
- by simp
+ with eqg that \<open>b \<notin> S\<close> show False
+ by force
qed
then have nz: "\<And>z. z \<in> S \<Longrightarrow> g z + g a \<noteq> 0"
by (metis \<open>0 < r\<close> add.commute add_diff_cancel_left' centre_in_ball diff_0)
@@ -723,23 +692,11 @@
if holf: "f holomorphic_on h ` S" and nz: "\<And>z. z \<in> h ` S \<Longrightarrow> f z \<noteq> 0" "inj_on f (h ` S)" for f
proof -
obtain g where holg: "g holomorphic_on S" and eqg: "\<And>z. z \<in> S \<Longrightarrow> (f \<circ> h) z = (g z)\<^sup>2"
- proof -
- have "f \<circ> h holomorphic_on S"
- by (simp add: holh holomorphic_on_compose holf)
- moreover have "\<forall>z\<in>S. (f \<circ> h) z \<noteq> 0"
- by (simp add: nz)
- ultimately show thesis
- using prev that by blast
- qed
+ by (smt (verit) comp_def holf holh holomorphic_on_compose image_eqI nz(1) prev)
show ?thesis
proof (intro exI conjI)
show "g \<circ> k holomorphic_on h ` S"
- proof -
- have "k ` h ` S \<subseteq> S"
- by (simp add: \<open>\<And>z. z \<in> S \<Longrightarrow> k (h z) = z\<close> image_subset_iff)
- then show ?thesis
- by (meson holg holk holomorphic_on_compose holomorphic_on_subset)
- qed
+ by (smt (verit) holg holk holomorphic_on_compose holomorphic_on_subset imageE image_subset_iff kh)
show "\<forall>z\<in>h ` S. f z = ((g \<circ> k) z)\<^sup>2"
using eqg kh by auto
qed
@@ -845,10 +802,15 @@
corollary contractible_eq_simply_connected_2d:
fixes S :: "complex set"
- shows "open S \<Longrightarrow> (contractible S \<longleftrightarrow> simply_connected S)"
- apply safe
- apply (simp add: contractible_imp_simply_connected)
- using convex_imp_contractible homeomorphic_contractible_eq simply_connected_eq_homeomorphic_to_disc by auto
+ assumes "open S"
+ shows "contractible S \<longleftrightarrow> simply_connected S"
+proof
+ show "contractible S \<Longrightarrow> simply_connected S"
+ by (simp add: contractible_imp_simply_connected)
+ show "simply_connected S \<Longrightarrow> contractible S"
+ using assms convex_imp_contractible homeomorphic_contractible_eq
+ simply_connected_eq_homeomorphic_to_disc by auto
+qed
subsection\<open>A further chain of equivalences about components of the complement of a simply connected set\<close>
@@ -867,9 +829,7 @@
then show ?thesis
proof
assume "S = {}"
- then have "bounded S"
- by simp
- with \<open>S = {}\<close> show ?thesis
+ then show ?thesis
by simp
next
assume S01: "S homeomorphic ball (0::complex) 1"
@@ -889,12 +849,11 @@
by (simp add: X_def)
have Xsubclo: "X n \<subseteq> closure S" for n
unfolding X_def by (metis A01 closure_mono fim image_mono)
- have connX: "connected(X n)" for n
+ have "connected (A n)" for n
+ using connected_annulus [of _ "0::complex"] by (simp add: A_def)
+ then have connX: "connected(X n)" for n
unfolding X_def
- apply (rule connected_imp_connected_closure)
- apply (rule connected_continuous_image)
- apply (simp add: continuous_on_subset [OF contf A01])
- using connected_annulus [of _ "0::complex"] by (simp add: A_def)
+ by (metis A01 connected_continuous_image connected_imp_connected_closure contf continuous_on_subset)
have nestX: "X n \<subseteq> X m" if "m \<le> n" for m n
proof -
have "1 - 1 / (real m + 2) \<le> 1 - 1 / (real n + 2)"
@@ -923,22 +882,13 @@
have *: "(f ` cball 0 (1 - 1 / (real n + 2))) \<subseteq> S"
by (force simp: D_def Seq)
show "x \<in> X n"
- using \<open>x \<in> closure S\<close> unfolding X_def Seq
- using \<open>x \<notin> S\<close> * D_def clo_fim by auto
+ using Seq X_def \<open>x \<in> closure S\<close> \<open>x \<notin> S\<close> clo_fim by fastforce
qed
qed
moreover have "(\<Inter>n. X n) \<subseteq> closure S - S"
proof -
have "(\<Inter>n. X n) \<subseteq> closure S"
- proof -
- have "(\<Inter>n. X n) \<subseteq> X 0"
- by blast
- also have "... \<subseteq> closure S"
- apply (simp add: X_def fim [symmetric])
- apply (rule closure_mono)
- by (auto simp: A_def)
- finally show "(\<Inter>n. X n) \<subseteq> closure S" .
- qed
+ using Xsubclo by blast
moreover have "(\<Inter>n. X n) \<inter> S \<subseteq> {}"
proof (clarify, clarsimp simp: X_def fim [symmetric])
fix x assume x [rule_format]: "\<forall>n. f x \<in> closure (f ` A n)" and "cmod x < 1"
@@ -984,13 +934,9 @@
proof (cases "bounded S")
case True
have bouX: "bounded (X n)" for n
- apply (simp add: X_def)
- apply (rule bounded_closure)
- by (metis A01 fim image_mono bounded_subset [OF True])
+ by (meson True Xsubclo bounded_closure bounded_subset)
have compaX: "compact (X n)" for n
- apply (simp add: compact_eq_bounded_closed bouX)
- apply (auto simp: X_def)
- done
+ by (simp add: bouX cloX compact_eq_bounded_closed)
have "connected (\<Inter>n. X n)"
by (metis nestX compaX connX connected_nest)
then show ?thesis
@@ -1085,10 +1031,8 @@
by (simp add: j_def \<open>finite J\<close>)
have "\<Inter> ((\<lambda>n. X n \<inter> closure U) ` J) = X j \<inter> closure U"
using False jmax nestX \<open>j \<in> J\<close> by auto
- then have "X j \<inter> closure U = X j \<inter> U"
- apply safe
- using DiffI J empty apply auto[1]
- using closure_subset by blast
+ then have XU: "X j \<inter> closure U = X j \<inter> U"
+ using J closure_subset empty by fastforce
then have "openin (top_of_set (X j)) (X j \<inter> closure U)"
by (simp add: openin_open_Int \<open>open U\<close>)
moreover have "closedin (top_of_set (X j)) (X j \<inter> closure U)"
@@ -1096,13 +1040,7 @@
moreover have "X j \<inter> closure U \<noteq> X j"
by (metis unboundedX \<open>compact (closure U)\<close> bounded_subset compact_eq_bounded_closed inf.order_iff)
moreover have "X j \<inter> closure U \<noteq> {}"
- proof -
- have "C \<noteq> {}"
- using C in_components_nonempty by blast
- moreover have "C \<subseteq> X j \<inter> closure U"
- using \<open>C \<subseteq> K\<close> \<open>K \<subseteq> U\<close> Ksub closure_subset by blast
- ultimately show ?thesis by blast
- qed
+ by (metis Cco Ksub UNIV_I \<open>C \<subseteq> K\<close> \<open>K \<subseteq> U\<close> XU bot.extremum_uniqueI in_components_maximal le_INF_iff le_inf_iff)
ultimately show False
using connX [of j] by (force simp: connected_clopen)
qed
@@ -1115,7 +1053,7 @@
have "x \<notin> V"
using \<open>U \<inter> V = {}\<close> \<open>open V\<close> closure_iff_nhds_not_empty that(2) by blast
then show ?thesis
- by (metis (no_types) Diff_iff INT_I V \<open>K \<subseteq> U\<close> contra_subsetD that(1))
+ by (metis (no_types) Diff_iff INT_I V \<open>K \<subseteq> U\<close> subsetD that(1))
qed
ultimately show False
by (auto simp: open_Int_closure_eq_empty [OF \<open>open V\<close>, of U])
@@ -1160,8 +1098,11 @@
proof -
have "C \<inter> frontier S = {}"
using that by (simp add: C_ccsw)
- then show False
- by (metis C_ccsw ComplI Compl_eq_Compl_iff Diff_subset False \<open>w \<notin> S\<close> clo_ccs closure_closed compl_bot_eq connected_component_eq_UNIV connected_component_eq_empty empty_subsetI frontier_complement frontier_def frontier_not_empty frontier_of_connected_component_subset le_inf_iff subset_antisym)
+ moreover have "closed C"
+ using C_ccsw clo_ccs by blast
+ ultimately show False
+ by (metis C False \<open>S \<noteq> UNIV\<close> C_ccsw bot_eq_sup_iff connected_component_eq_UNIV frontier_Int_closed
+ frontier_closed frontier_complement frontier_eq_empty frontier_of_components_subset in_components_maximal inf.orderE)
qed
then show "connected_component_set (- S) w \<inter> frontier S \<noteq> {}"
by auto
@@ -1176,15 +1117,13 @@
have "\<not> bounded (-S)"
by (simp add: True cobounded_imp_unbounded)
then have "connected_component_set (- S) z \<noteq> {}"
- apply (simp only: connected_component_eq_empty)
+ unfolding connected_component_eq_empty
using confr openS \<open>bounded C\<close> \<open>w \<notin> S\<close>
apply (simp add: frontier_def interior_open C_ccsw)
by (metis ComplI Compl_eq_Diff_UNIV connected_UNIV closed_closure closure_subset connected_component_eq_self
connected_diff_open_from_closed subset_UNIV)
then show "frontier (connected_component_set (- S) z) \<noteq> {}"
- apply (simp add: frontier_eq_empty connected_component_eq_UNIV)
- apply (metis False compl_top_eq double_compl)
- done
+ by (metis False \<open>S \<noteq> UNIV\<close> connected_component_eq_UNIV frontier_complement frontier_eq_empty)
qed
then show "connected_component_set (- S) z \<inter> frontier S \<noteq> {}"
by auto
@@ -1205,15 +1144,14 @@
by (metis C C_ccsw False bounded_empty compl_top_eq connected_component_eq_UNIV double_compl frontier_not_empty in_components_nonempty)
ultimately obtain z where zin: "z \<in> frontier S" and z: "z \<in> connected_component_set (- S) w"
by blast
- have *: "connected_component_set (frontier S) z \<in> components(frontier S)"
+ have "connected_component_set (frontier S) z \<in> components(frontier S)"
by (simp add: \<open>z \<in> frontier S\<close> componentsI)
with prev False have "\<not> bounded (connected_component_set (frontier S) z)"
by simp
moreover have "connected_component (- S) w = connected_component (- S) z"
using connected_component_eq [OF z] by force
ultimately show ?thesis
- by (metis C_ccsw * zin bounded_subset closed_Compl closure_closed connected_component_maximal
- connected_component_refl connected_connected_component frontier_closures in_components_subset le_inf_iff mem_Collect_eq openS)
+ by (metis C_ccsw SC_Chain.openS SC_Chain_axioms bounded_subset closed_Compl connected_component_mono frontier_complement frontier_subset_eq)
qed
lemma empty_inside:
@@ -1245,7 +1183,8 @@
interpret SC_Chain
using assms by (simp add: SC_Chain_def)
have "?fp \<and> ?ucc \<and> ?ei"
- using empty_inside empty_inside_imp_simply_connected frontier_properties unbounded_complement_components winding_number_zero by blast
+ using empty_inside empty_inside_imp_simply_connected frontier_properties
+ unbounded_complement_components winding_number_zero by blast
then show ?fp ?ucc ?ei
by blast+
qed
@@ -1253,16 +1192,20 @@
lemma simply_connected_iff_simple:
fixes S :: "complex set"
assumes "open S" "bounded S"
- shows "simply_connected S \<longleftrightarrow> connected S \<and> connected(- S)"
- apply (simp add: simply_connected_eq_unbounded_complement_components assms, safe)
- apply (metis DIM_complex assms(2) cobounded_has_bounded_component double_compl order_refl)
- by (meson assms inside_bounded_complement_connected_empty simply_connected_eq_empty_inside simply_connected_eq_unbounded_complement_components)
+ shows "simply_connected S \<longleftrightarrow> connected S \<and> connected(- S)" (is "?lhs = ?rhs")
+proof
+ show "?lhs \<Longrightarrow> ?rhs"
+ by (metis DIM_complex assms cobounded_has_bounded_component double_complement dual_order.order_iff_strict
+ simply_connected_eq_unbounded_complement_components)
+ show "?rhs \<Longrightarrow> ?lhs"
+ by (simp add: assms connected_frontier_simple simply_connected_eq_frontier_properties)
+qed
lemma subset_simply_connected_imp_inside_subset:
fixes A :: "complex set"
assumes "simply_connected A" "open A" "B \<subseteq> A"
shows "inside B \<subseteq> A"
-by (metis assms Diff_eq_empty_iff inside_mono subset_empty simply_connected_eq_empty_inside)
+ by (metis assms Diff_eq_empty_iff inside_mono subset_empty simply_connected_eq_empty_inside)
subsection\<open>Further equivalences based on continuous logs and sqrts\<close>
@@ -1305,7 +1248,7 @@
lemma continuous_sqrt:
fixes f :: "complex\<Rightarrow>complex"
assumes contf: "continuous_on S f" and nz: "\<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 0"
- and prev: "\<And>f::complex\<Rightarrow>complex.
+ and prev: "\<And>f::complex\<Rightarrow>complex.
\<lbrakk>continuous_on S f; \<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 0\<rbrakk>
\<Longrightarrow> \<exists>g. continuous_on S g \<and> (\<forall>z \<in> S. f z = exp(g z))"
shows "\<exists>g. continuous_on S g \<and> (\<forall>z \<in> S. f z = (g z)\<^sup>2)"
@@ -1313,8 +1256,8 @@
obtain g where contg: "continuous_on S g" and geq: "\<And>z. z \<in> S \<Longrightarrow> f z = exp(g z)"
using contf nz prev by metis
show ?thesis
-proof (intro exI ballI conjI)
- show "continuous_on S (\<lambda>z. exp(g z/2))"
+ proof (intro exI ballI conjI)
+ show "continuous_on S (\<lambda>z. exp(g z/2))"
by (intro continuous_intros) (auto simp: contg)
show "\<And>z. z \<in> S \<Longrightarrow> f z = (exp (g z/2))\<^sup>2"
by (metis (no_types, lifting) divide_inverse exp_double geq mult.left_commute mult.right_neutral right_inverse zero_neq_numeral)
@@ -1343,12 +1286,14 @@
using contg [unfolded continuous_on_iff] by (metis \<open>g z \<noteq> 0\<close> \<open>z \<in> S\<close> zero_less_norm_iff)
then have \<delta>: "\<And>w. \<lbrakk>w \<in> S; w \<in> ball z \<delta>\<rbrakk> \<Longrightarrow> g w + g z \<noteq> 0"
apply (clarsimp simp: dist_norm)
- by (metis \<open>g z \<noteq> 0\<close> add_diff_cancel_left' diff_0_right norm_eq_zero norm_increases_online norm_minus_commute norm_not_less_zero not_less_iff_gr_or_eq)
+ by (metis add_diff_cancel_left' dist_0_norm dist_complex_def less_le_not_le norm_increases_online norm_minus_commute)
have *: "(\<lambda>x. (f x - f z) / (x - z) / (g x + g z)) \<midarrow>z\<rightarrow> deriv f z / (g z + g z)"
- apply (intro tendsto_intros)
- using SC_Chain.openS SC_Chain_axioms \<open>f holomorphic_on S\<close> \<open>z \<in> S\<close> has_field_derivativeD holomorphic_derivI apply fastforce
- using \<open>z \<in> S\<close> contg continuous_on_eq_continuous_at isCont_def openS apply blast
- by (simp add: \<open>g z \<noteq> 0\<close>)
+ proof (intro tendsto_intros)
+ show "(\<lambda>x. (f x - f z) / (x - z)) \<midarrow>z\<rightarrow> deriv f z"
+ using \<open>f holomorphic_on S\<close> \<open>z \<in> S\<close> has_field_derivative_iff holomorphic_derivI openS by blast
+ show "g \<midarrow>z\<rightarrow> g z"
+ using \<open>z \<in> S\<close> contg continuous_on_eq_continuous_at isCont_def openS by blast
+ qed (simp add: \<open>g z \<noteq> 0\<close>)
then have "(g has_field_derivative deriv f z / (g z + g z)) (at z)"
unfolding has_field_derivative_iff
proof (rule Lim_transform_within_open)
@@ -1386,20 +1331,9 @@
proof -
interpret SC_Chain
using assms by (simp add: SC_Chain_def)
- have "?log \<and> ?sqrt"
-proof -
- have *: "\<lbrakk>\<alpha> \<Longrightarrow> \<beta>; \<beta> \<Longrightarrow> \<gamma>; \<gamma> \<Longrightarrow> \<alpha>\<rbrakk>
- \<Longrightarrow> (\<alpha> \<longleftrightarrow> \<beta>) \<and> (\<alpha> \<longleftrightarrow> \<gamma>)" for \<alpha> \<beta> \<gamma>
- by blast
- show ?thesis
- apply (rule *)
- apply (simp add: local.continuous_log winding_number_zero)
- apply (simp add: continuous_sqrt)
- apply (simp add: continuous_sqrt_imp_simply_connected)
- done
-qed
- then show ?log ?sqrt
- by safe
+ show ?log ?sqrt
+ using local.continuous_log winding_number_zero continuous_sqrt continuous_sqrt_imp_simply_connected
+ by auto
qed
@@ -1550,21 +1484,24 @@
apply (clarsimp simp add: path_image_subpath_gen)
by (metis subsetD le_less_trans \<open>dist u t < d\<close> d dist_commute dist_in_closed_segment)
have *: "path (g \<circ> subpath t u p)"
- apply (rule path_continuous_image)
- using \<open>path p\<close> t that apply auto[1]
- using piB contg continuous_on_subset by blast
+ proof (rule path_continuous_image)
+ show "path (subpath t u p)"
+ using \<open>path p\<close> t that by auto
+ show "continuous_on (path_image (subpath t u p)) g"
+ using piB contg continuous_on_subset by blast
+ qed
have "(g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>)
= winding_number (exp \<circ> g \<circ> subpath t u p) 0"
using winding_number_compose_exp [OF *]
by (simp add: pathfinish_def pathstart_def o_assoc)
- also have "... = winding_number (\<lambda>w. subpath t u p w - \<zeta>) 0"
+ also have "\<dots> = winding_number (\<lambda>w. subpath t u p w - \<zeta>) 0"
proof (rule winding_number_cong)
have "exp(g y) = y - \<zeta>" if "y \<in> (subpath t u p) ` {0..1}" for y
by (metis that geq path_image_def piB subset_eq)
then show "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> (exp \<circ> g \<circ> subpath t u p) x = subpath t u p x - \<zeta>"
by auto
qed
- also have "... = winding_number (\<lambda>w. subpath 0 u p w - \<zeta>) 0 -
+ also have "\<dots> = winding_number (\<lambda>w. subpath 0 u p w - \<zeta>) 0 -
winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0"
apply (simp add: winding_number_offset [symmetric])
using winding_number_subpath_combine [OF \<open>path p\<close> \<zeta>, of 0 t u] \<open>t \<in> {0..1}\<close> \<open>u \<in> {0..1}\<close>
@@ -1637,9 +1574,8 @@
then obtain a where "homotopic_loops (-{\<zeta>}) p (\<lambda>t. a)" ..
then have "winding_number p \<zeta> = winding_number (\<lambda>t. a) \<zeta>" "a \<noteq> \<zeta>"
using winding_number_homotopic_loops homotopic_loops_imp_subset by (force simp:)+
- moreover have "winding_number (\<lambda>t. a) \<zeta> = 0"
- by (metis winding_number_zero_const \<open>a \<noteq> \<zeta>\<close>)
- ultimately show ?lhs by metis
+ then show ?lhs
+ using winding_number_zero_const by auto
qed
lemma winding_number_homotopic_paths_null_explicit_eq:
@@ -1650,7 +1586,7 @@
assume ?lhs
then show ?rhs
using homotopic_loops_imp_homotopic_paths_null
- by (force simp add: linepath_refl winding_number_homotopic_loops_null_eq [OF assms])
+ by (force simp: linepath_refl winding_number_homotopic_loops_null_eq [OF assms])
next
assume ?rhs
then show ?lhs
@@ -1688,7 +1624,7 @@
using winding_number_homotopic_paths_null_explicit_eq by blast
then show ?rhs
using homotopic_paths_imp_pathstart assms
- by (fastforce simp add: dest: homotopic_paths_imp_homotopic_loops homotopic_paths_loop_parts)
+ by (fastforce simp: dest: homotopic_paths_imp_homotopic_loops homotopic_paths_loop_parts)
qed (simp add: winding_number_homotopic_paths)
lemma winding_number_homotopic_loops_eq:
--- a/src/HOL/Probability/Giry_Monad.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Probability/Giry_Monad.thy Mon Aug 21 18:38:25 2023 +0100
@@ -31,7 +31,7 @@
qed
lemma (in subprob_space) emeasure_subprob_space_less_top: "emeasure M A \<noteq> top"
- using emeasure_finite[of A] .
+ by simp
lemma prob_space_imp_subprob_space:
"prob_space M \<Longrightarrow> subprob_space M"
@@ -44,10 +44,10 @@
by (rule subprob_spaceI) (simp_all add: emeasure_space_1 not_empty)
lemma subprob_space_sigma [simp]: "\<Omega> \<noteq> {} \<Longrightarrow> subprob_space (sigma \<Omega> X)"
-by(rule subprob_spaceI)(simp_all add: emeasure_sigma space_measure_of_conv)
+ by(rule subprob_spaceI)(simp_all add: emeasure_sigma space_measure_of_conv)
lemma subprob_space_null_measure: "space M \<noteq> {} \<Longrightarrow> subprob_space (null_measure M)"
-by(simp add: null_measure_def)
+ by(simp add: null_measure_def)
lemma (in subprob_space) subprob_space_distr:
assumes f: "f \<in> measurable M M'" and "space M' \<noteq> {}" shows "subprob_space (distr M M' f)"
@@ -343,7 +343,7 @@
assumes [measurable]: "f \<in> measurable M N"
shows "(\<lambda>M'. distr M' N f) \<in> measurable (subprob_algebra M) (subprob_algebra N)"
proof (cases "space N = {}")
- assume not_empty: "space N \<noteq> {}"
+ case False
show ?thesis
proof (rule measurable_subprob_algebra)
fix A assume A: "A \<in> sets N"
@@ -355,8 +355,8 @@
also have "\<dots>"
using A by (intro measurable_emeasure_subprob_algebra) simp
finally show "(\<lambda>M'. emeasure (distr M' N f) A) \<in> borel_measurable (subprob_algebra M)" .
- qed (auto intro!: subprob_space.subprob_space_distr simp: space_subprob_algebra not_empty cong: measurable_cong_sets)
-qed (insert assms, auto simp: measurable_empty_iff space_subprob_algebra_empty_iff)
+ qed (auto intro!: subprob_space.subprob_space_distr simp: space_subprob_algebra False cong: measurable_cong_sets)
+qed (use assms in \<open>auto simp: measurable_empty_iff space_subprob_algebra_empty_iff\<close>)
lemma emeasure_space_subprob_algebra[measurable]:
"(\<lambda>a. emeasure a (space a)) \<in> borel_measurable (subprob_algebra N)"
@@ -565,10 +565,7 @@
lemma subprob_space_return_ne:
assumes "space M \<noteq> {}" shows "subprob_space (return M x)"
-proof
- show "emeasure (return M x) (space (return M x)) \<le> 1"
- by (subst emeasure_return) (auto split: split_indicator)
-qed (simp, fact)
+ by (metis assms emeasure_return indicator_simps(2) sets.top space_return subprob_spaceI subprob_space_return zero_le)
lemma measure_return: assumes X: "X \<in> sets M" shows "measure (return M x) X = indicator X x"
unfolding measure_def emeasure_return[OF X, of x] by (simp split: split_indicator)
@@ -654,8 +651,7 @@
by (auto simp add: emeasure_distr f_M' cong: measurable_cong_sets)
also have "\<dots> = (\<integral>\<^sup>+M''. emeasure (g x) (f M'' -` A \<inter> space M) \<partial>?R)"
apply (subst emeasure_pair_measure_alt)
- apply (rule measurable_sets[OF _ A])
- apply (auto simp add: f_M' cong: measurable_cong_sets)
+ apply (force simp add: f_M' cong: measurable_cong_sets intro!: measurable_sets[OF _ A])
apply (intro nn_integral_cong arg_cong[where f="emeasure (g x)"])
apply (auto simp: space_subprob_algebra space_pair_measure)
done
@@ -668,10 +664,10 @@
qed
qed
also have "\<dots>"
- apply (intro measurable_compose[OF measurable_pair_measure measurable_distr])
- apply (rule return_measurable)
- apply measurable
- done
+ proof (intro measurable_compose[OF measurable_pair_measure measurable_distr])
+ show "return L \<in> L \<rightarrow>\<^sub>M subprob_algebra L"
+ by (rule return_measurable)
+ qed measurable
finally show ?thesis .
qed
@@ -703,19 +699,15 @@
have *: "\<And>x. fst x \<in> space M \<Longrightarrow> snd x \<in> A (fst x) \<longleftrightarrow> x \<in> (SIGMA x:space M. A x)"
by (auto simp: fun_eq_iff)
- have "(\<lambda>(x, y). indicator (A x) y::ennreal) \<in> borel_measurable (M \<Otimes>\<^sub>M N)"
+ have MN: "Measurable.pred (M \<Otimes>\<^sub>M N) (\<lambda>w. w \<in> Sigma (space M) A)"
+ by auto
+ then have "(\<lambda>(x, y). indicator (A x) y::ennreal) \<in> borel_measurable (M \<Otimes>\<^sub>M N)"
apply measurable
- apply (subst measurable_cong)
- apply (rule *)
- apply (auto simp: space_pair_measure)
- done
+ by (smt (verit, best) MN measurable_cong mem_Sigma_iff prod.collapse space_pair_measure)
then have "(\<lambda>x. integral\<^sup>N (L x) (indicator (A x))) \<in> borel_measurable M"
by (intro nn_integral_measurable_subprob_algebra2[where N=N] L)
then show "(\<lambda>x. emeasure (L x) (A x)) \<in> borel_measurable M"
- apply (rule measurable_cong[THEN iffD1, rotated])
- apply (rule nn_integral_indicator)
- apply (simp add: subprob_measurableD[OF L] **)
- done
+ by (smt (verit) "**" L measurable_cong_simp nn_integral_indicator sets_kernel)
qed
lemma measure_measurable_subprob_algebra2:
@@ -751,7 +743,7 @@
next
assume "space (subprob_algebra N) \<noteq> {}"
with eq show ?thesis
- by (fastforce simp add: space_subprob_algebra)
+ by (smt (verit) equals0I mem_Collect_eq space_subprob_algebra)
qed
qed
@@ -807,10 +799,11 @@
assume [simp]: "space N \<noteq> {}"
fix M assume M: "M \<in> space (subprob_algebra (subprob_algebra N))"
then have "(\<integral>\<^sup>+M'. emeasure M' (space N) \<partial>M) \<le> (\<integral>\<^sup>+M'. 1 \<partial>M)"
- apply (intro nn_integral_mono)
- apply (auto simp: space_subprob_algebra
- dest!: sets_eq_imp_space_eq subprob_space.emeasure_space_le_1)
- done
+ proof (intro nn_integral_mono)
+ show "\<And>x. \<lbrakk>M \<in> space (subprob_algebra (subprob_algebra N)); x \<in> space M\<rbrakk>
+ \<Longrightarrow> emeasure x (space N) \<le> 1"
+ by (smt (verit) mem_Collect_eq sets_eq_imp_space_eq space_subprob_algebra subprob_space.subprob_emeasure_le_1)
+ qed
with M show "subprob_space (join M)"
by (intro subprob_spaceI)
(auto simp: emeasure_join space_subprob_algebra M dest: subprob_space.emeasure_space_le_1)
@@ -888,7 +881,7 @@
lemma measurable_join1:
"\<lbrakk> f \<in> measurable N K; sets M = sets (subprob_algebra N) \<rbrakk>
\<Longrightarrow> f \<in> measurable (join M) K"
-by(simp add: measurable_def)
+ by(simp add: measurable_def)
lemma
fixes f :: "_ \<Rightarrow> real"
@@ -1051,12 +1044,15 @@
lemma join_return':
assumes "sets N = sets M"
shows "join (distr M (subprob_algebra N) (return N)) = M"
-apply (rule measure_eqI)
-apply (simp add: assms)
-apply (subgoal_tac "return N \<in> measurable M (subprob_algebra N)")
-apply (simp add: emeasure_join nn_integral_distr measurable_emeasure_subprob_algebra assms)
-apply (subst measurable_cong_sets, rule assms[symmetric], rule refl, rule return_measurable)
-done
+proof (rule measure_eqI)
+ fix A
+ have "return N \<in> measurable M (subprob_algebra N)"
+ using assms by auto
+ moreover
+ assume "A \<in> sets (join (distr M (subprob_algebra N) (return N)))"
+ ultimately show "emeasure (join (distr M (subprob_algebra N) (return N))) A = emeasure M A"
+ by (simp add: emeasure_join nn_integral_distr measurable_emeasure_subprob_algebra assms)
+qed (simp add: assms)
lemma join_distr_distr:
fixes f :: "'a \<Rightarrow> 'b" and M :: "'a measure measure" and N :: "'b measure"
@@ -1107,7 +1103,7 @@
by (simp add: bind_def)
lemma sets_bind_empty: "sets M = {} \<Longrightarrow> sets (bind M f) = {{}}"
- by (auto simp: bind_def)
+ by auto
lemma space_bind_empty: "space M = {} \<Longrightarrow> space (bind M f) = {}"
by (simp add: bind_def)
@@ -1139,11 +1135,12 @@
lemma bind_nonempty':
assumes "f \<in> measurable M (subprob_algebra N)" "x \<in> space M"
shows "bind M f = join (distr M (subprob_algebra N) f)"
- using assms
- apply (subst bind_nonempty, blast)
- apply (subst subprob_algebra_cong[OF sets_kernel[OF assms(1) someI_ex]], blast)
- apply (simp add: subprob_algebra_cong[OF sets_kernel[OF assms]])
- done
+proof -
+ have "join (distr M (subprob_algebra (f (SOME x. x \<in> space M))) f) = join (distr M (subprob_algebra N) f)"
+ by (metis assms someI_ex subprob_algebra_cong subprob_measurableD(2))
+ with assms show ?thesis
+ by (metis bind_nonempty empty_iff)
+qed
lemma bind_nonempty'':
assumes "f \<in> measurable M (subprob_algebra N)" "space M \<noteq> {}"
@@ -1182,14 +1179,15 @@
have "(AE x in M \<bind> N. P x) \<longleftrightarrow> (\<integral>\<^sup>+ x. integral\<^sup>N (N x) (indicator {x \<in> space B. \<not> P x}) \<partial>M) = 0"
by (simp add: AE_iff_nn_integral sets_bind[OF _ M] space_bind[OF _ M] * nn_integral_bind[where B=B]
del: nn_integral_indicator)
- also have "\<dots> = (AE x in M. AE y in N x. P y)"
- apply (subst nn_integral_0_iff_AE)
+ also have "... = (AE x in M. integral\<^sup>N (N x) (indicator {x \<in> space B. \<not> P x}) = 0)"
+ proof (rule nn_integral_0_iff_AE)
+ show "(\<lambda>x. integral\<^sup>N (N x) (indicator {x \<in> space B. \<not> P x})) \<in> borel_measurable M"
apply (rule measurable_compose[OF N nn_integral_measurable_subprob_algebra])
- apply measurable
+ by measurable
+ qed
+ also have "\<dots> = (AE x in M. AE y in N x. P y)"
apply (intro eventually_subst AE_I2)
- apply (auto simp add: subprob_measurableD(1)[OF N]
- intro!: AE_iff_measurable[symmetric])
- done
+ by (auto simp add: subprob_measurableD(1)[OF N] intro!: AE_iff_measurable[symmetric])
finally show ?thesis .
qed
@@ -1351,13 +1349,14 @@
assumes N: "N \<in> measurable M (subprob_algebra K)" "space M \<noteq> {}"
assumes f: "f \<in> measurable K R"
shows "distr (M \<bind> N) R f = (M \<bind> (\<lambda>x. distr (N x) R f))"
- unfolding bind_nonempty''[OF N]
- apply (subst bind_nonempty''[OF measurable_compose[OF N(1) measurable_distr] N(2)])
- apply (rule f)
- apply (simp add: join_distr_distr[OF _ f, symmetric])
- apply (subst distr_distr[OF measurable_distr, OF f N(1)])
- apply (simp add: comp_def)
- done
+proof -
+ have "distr (join (distr M (subprob_algebra K) N)) R f =
+ join (distr M (subprob_algebra R) (\<lambda>x. distr (N x) R f))"
+ by (simp add: assms distr_distr[OF measurable_distr] comp_def flip: join_distr_distr)
+ with assms show ?thesis
+ unfolding bind_nonempty''[OF N]
+ by (smt (verit) bind_nonempty sets_distr subprob_algebra_cong)
+qed
lemma bind_distr:
assumes f[measurable]: "f \<in> measurable M X"
@@ -1393,16 +1392,20 @@
show "sets (restrict_space (bind M N) X) = sets (bind M (\<lambda>x. restrict_space (N x) X))"
by (simp add: sets_restrict_space assms(2) sets_bind[OF sets_kernel[OF restrict_space_measurable[OF assms(4,3,1)]]])
fix A assume "A \<in> sets (restrict_space (M \<bind> N) X)"
- with X have "A \<in> sets K" "A \<subseteq> X"
+ with X have A: "A \<in> sets K" "A \<subseteq> X"
by (auto simp: sets_restrict_space)
- then show "emeasure (restrict_space (M \<bind> N) X) A = emeasure (M \<bind> (\<lambda>x. restrict_space (N x) X)) A"
- using assms
- apply (subst emeasure_restrict_space)
- apply (simp_all add: emeasure_bind[OF assms(2,1)])
- apply (subst emeasure_bind[OF _ restrict_space_measurable[OF _ _ N]])
- apply (auto simp: sets_restrict_space emeasure_restrict_space space_subprob_algebra
- intro!: nn_integral_cong dest!: measurable_space)
+ then have "emeasure (restrict_space (M \<bind> N) X) A = emeasure (M \<bind> N) A"
+ by (simp add: emeasure_restrict_space)
+ also have "\<dots> = \<integral>\<^sup>+ x. emeasure (N x) A \<partial>M"
+ by (metis \<open>A \<in> sets K\<close> N \<open>space M \<noteq> {}\<close> emeasure_bind)
+ also have "... = \<integral>\<^sup>+ x. emeasure (restrict_space (N x) X) A \<partial>M"
+ using A assms by (smt (verit, best) emeasure_restrict_space nn_integral_cong sets.Int_space_eq2 subprob_measurableD(2))
+ also have "\<dots> = emeasure (M \<bind> (\<lambda>x. restrict_space (N x) X)) A"
+ using A assms
+ apply (subst emeasure_bind[OF _ restrict_space_measurable])
+ apply (auto simp: sets_restrict_space)
done
+ finally show "emeasure (restrict_space (M \<bind> N) X) A = emeasure (M \<bind> (\<lambda>x. restrict_space (N x) X)) A" .
qed
lemma bind_restrict_space:
@@ -1442,13 +1445,18 @@
(simp_all add: space_subprob_algebra prob_space.not_empty emeasure_bind_const_prob_space)
lemma bind_return_distr:
- "space M \<noteq> {} \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> bind M (return N \<circ> f) = distr M N f"
- apply (simp add: bind_nonempty)
- apply (subst subprob_algebra_cong)
- apply (rule sets_return)
- apply (subst distr_distr[symmetric])
- apply (auto intro!: return_measurable simp: distr_distr[symmetric] join_return')
- done
+ assumes "space M \<noteq> {}" "f \<in> measurable M N"
+ shows "bind M (return N \<circ> f) = distr M N f"
+proof -
+ have "bind M (return N \<circ> f)
+ = join (distr M (subprob_algebra (return N (f (SOME x. x \<in> space M)))) (return N \<circ> f))"
+ by (simp add: Giry_Monad.bind_def assms)
+ also have "\<dots> = join (distr M (subprob_algebra N) (return N \<circ> f))"
+ by (metis sets_return subprob_algebra_cong)
+ also have "\<dots> = distr M N f"
+ by (metis assms(2) distr_distr join_return' return_measurable sets_distr)
+ finally show ?thesis .
+qed
lemma bind_return_distr':
"space M \<noteq> {} \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> bind M (\<lambda>x. return N (f x)) = distr M N f"
@@ -1469,6 +1477,9 @@
sets_kernel[OF M2 someI_ex[OF ex_in[OF \<open>space N \<noteq> {}\<close>]]]
note space_some[simp] = sets_eq_imp_space_eq[OF this(1)] sets_eq_imp_space_eq[OF this(2)]
+
+ have *: "(\<lambda>x. distr x (subprob_algebra R) g) \<circ> f \<in> M \<rightarrow>\<^sub>M subprob_algebra (subprob_algebra R)"
+ using M1 M2 measurable_comp measurable_distr by blast
have "bind M (\<lambda>x. bind (f x) g) =
join (distr M (subprob_algebra R) (join \<circ> (\<lambda>x. (distr x (subprob_algebra R) g)) \<circ> f))"
by (simp add: sets_eq_imp_space_eq[OF sets_fx] bind_nonempty o_def
@@ -1478,10 +1489,7 @@
(subprob_algebra (subprob_algebra R))
(\<lambda>x. distr x (subprob_algebra R) g))
(subprob_algebra R) join"
- apply (subst distr_distr,
- (blast intro: measurable_comp measurable_distr measurable_join M1 M2)+)+
- apply (simp add: o_assoc)
- done
+ by (simp add: distr_distr M1 M2 measurable_distr measurable_join fun.map_comp *)
also have "join ... = bind (bind M f) g"
by (simp add: join_assoc join_distr_distr M2 bind_nonempty cong: subprob_algebra_cong)
finally show ?thesis ..
@@ -1637,7 +1645,7 @@
using measurable_space[OF g]
by (auto simp: measurable_restrict_space2_iff prob_algebra_def space_pair_measure Pi_iff
intro!: prob_space.prob_space_bind[where S=R] AE_I2)
-qed (insert g, simp)
+qed (use g in simp)
lemma measurable_prob_algebra_generated:
@@ -1659,7 +1667,7 @@
by (intro measurable_cong) auto
then show "(\<lambda>a. emeasure (K a) \<Omega>) \<in> borel_measurable M" by simp
qed
-qed (insert subsp, auto)
+qed (use subsp in auto)
lemma in_space_prob_algebra:
"x \<in> space (prob_algebra M) \<Longrightarrow> emeasure x (space M) = 1"
@@ -1668,13 +1676,7 @@
lemma prob_space_pair:
assumes "prob_space M" "prob_space N" shows "prob_space (M \<Otimes>\<^sub>M N)"
-proof -
- interpret M: prob_space M by fact
- interpret N: prob_space N by fact
- interpret P: pair_prob_space M N proof qed
- show ?thesis
- by unfold_locales
-qed
+ by (metis assms measurable_fst prob_space.distr_pair_fst prob_space_distrD)
lemma measurable_pair_prob[measurable]:
"f \<in> M \<rightarrow>\<^sub>M prob_algebra N \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M prob_algebra L \<Longrightarrow> (\<lambda>x. f x \<Otimes>\<^sub>M g x) \<in> M \<rightarrow>\<^sub>M prob_algebra (N \<Otimes>\<^sub>M L)"
@@ -1738,7 +1740,7 @@
also from assms(3) x have "... = emeasure (distr (density M f') (count_space A) g) {x}"
by (subst emeasure_distr) simp_all
finally show "f x = emeasure (distr (density M f') (count_space A) g) {x}" .
-qed (insert assms, auto)
+qed (use assms in auto)
lemma bind_cong_AE:
assumes "M = N"
@@ -1796,7 +1798,6 @@
by eventually_elim auto
thus "y \<in> space M"
by simp
-
show "M = return M y"
proof (rule measure_eqI)
fix X assume X: "X \<in> sets M"
--- a/src/HOL/Probability/Information.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Probability/Information.thy Mon Aug 21 18:38:25 2023 +0100
@@ -11,10 +11,10 @@
begin
lemma log_le: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y"
- by (subst log_le_cancel_iff) auto
+ by simp
lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y"
- by (subst log_less_cancel_iff) auto
+ by simp
lemma sum_cartesian_product':
"(\<Sum>x\<in>A \<times> B. f x) = (\<Sum>x\<in>A. sum (\<lambda>y. f (x, y)) B)"
@@ -94,13 +94,11 @@
using f nn by (intro density_RN_deriv_density) auto
then have eq: "AE x in M. RN_deriv M (density M f) x = f x"
using f nn by (intro density_unique) auto
- show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)"
- apply (intro integral_cong_AE)
- apply measurable
- using eq nn
- apply eventually_elim
- apply (auto simp: entropy_density_def)
- done
+ have "AE x in M. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x =
+ f x * log b (f x)"
+ using eq nn by (auto simp: entropy_density_def)
+ then show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)"
+ by (intro integral_cong_AE) measurable
qed fact+
lemma (in sigma_finite_measure) KL_density_density:
@@ -240,10 +238,7 @@
have "AE x in M. 1 = RN_deriv M M x"
proof (rule RN_deriv_unique)
show "density M (\<lambda>x. 1) = M"
- apply (auto intro!: measure_eqI emeasure_density)
- apply (subst emeasure_density)
- apply auto
- done
+ by (simp add: density_1)
qed auto
then have "AE x in M. log b (enn2real (RN_deriv M M x)) = 0"
by (elim AE_mp) simp
@@ -373,9 +368,7 @@
by (simp add: emeasure_pair_measure_Times) }
then show ?thesis
unfolding absolutely_continuous_def
- apply (auto simp: null_sets_distr_iff)
- apply (auto simp: null_sets_def intro!: measurable_sets)
- done
+ by (metis emeasure_distr measurable_fst null_setsD1 null_setsD2 null_setsI sets_distr subsetI)
qed
lemma ac_snd:
@@ -390,9 +383,7 @@
by (simp add: emeasure_pair_measure_Times) }
then show ?thesis
unfolding absolutely_continuous_def
- apply (auto simp: null_sets_distr_iff)
- apply (auto simp: null_sets_def intro!: measurable_sets)
- done
+ by (metis emeasure_distr measurable_snd null_setsD1 null_setsD2 null_setsI sets_distr subsetI)
qed
lemma (in information_space) finite_entropy_integrable:
@@ -473,7 +464,7 @@
unfolding \<open>Q = P\<close> by (intro measure_eqI) (auto simp: emeasure_density)
qed auto
then have ae_0: "AE x in P. entropy_density b P Q x = 0"
- by eventually_elim (auto simp: entropy_density_def)
+ by (auto simp: entropy_density_def)
then have "integrable P (entropy_density b P Q) \<longleftrightarrow> integrable Q (\<lambda>x. 0::real)"
using ed unfolding \<open>Q = P\<close> by (intro integrable_cong_AE) auto
then show "integrable Q (entropy_density b P Q)" by simp
@@ -579,7 +570,7 @@
have B: "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)"
by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure)
ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
- by eventually_elim auto
+ by auto
show "?M = ?R"
unfolding M f_def using Pxy_nn Px_nn Py_nn
@@ -599,9 +590,8 @@
intro!: borel_measurable_times borel_measurable_log borel_measurable_divide)
ultimately have int: "integrable (S \<Otimes>\<^sub>M T) f"
apply (rule integrable_cong_AE_imp)
- using A B AE_space
- by eventually_elim
- (auto simp: f_def log_divide_eq log_mult_eq field_simps space_pair_measure Px_nn Py_nn Pxy_nn
+ using A B
+ by (auto simp: f_def log_divide_eq log_mult_eq field_simps space_pair_measure Px_nn Py_nn Pxy_nn
less_le)
show "0 \<le> ?M" unfolding M
@@ -683,7 +673,7 @@
have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)"
by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure)
ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
- by eventually_elim auto
+ by auto
show "?M = ?R"
unfolding M f_def
@@ -784,17 +774,10 @@
assumes X: "distributed M S X Px"
shows "AE x in S. RN_deriv S (density S Px) x = Px x"
proof -
- note D = distributed_measurable[OF X] distributed_borel_measurable[OF X]
- interpret X: prob_space "distr M S X"
- using D(1) by (rule prob_space_distr)
-
- have sf: "sigma_finite_measure (distr M S X)" by standard
- show ?thesis
- using D
- apply (subst eq_commute)
- apply (intro RN_deriv_unique_sigma_finite)
- apply (auto simp: distributed_distr_eq_density[symmetric, OF X] sf)
- done
+ have "distributed M S X (RN_deriv S (density S Px))"
+ by (metis RN_derivI assms borel_measurable_RN_deriv distributed_def)
+ then show ?thesis
+ using assms distributed_unique by blast
qed
lemma (in information_space)
@@ -806,14 +789,9 @@
note ae = distributed_RN_deriv[OF X]
note distributed_real_measurable[OF nn X, measurable]
- have ae_eq: "AE x in distr M MX X. log b (enn2real (RN_deriv MX (distr M MX X) x)) =
- log b (f x)"
+ have ae_eq: "AE x in distr M MX X. log b (enn2real (RN_deriv MX (distr M MX X) x)) = log b (f x)"
unfolding distributed_distr_eq_density[OF X]
- apply (subst AE_density)
- using D apply simp
- using ae apply eventually_elim
- apply auto
- done
+ using D ae by (auto simp: AE_density)
have int_eq: "(\<integral> x. f x * log b (f x) \<partial>MX) = (\<integral> x. log b (f x) \<partial>distr M MX X)"
unfolding distributed_distr_eq_density[OF X]
@@ -1078,14 +1056,16 @@
by (subst STP.nn_integral_snd[symmetric])
(auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong)
also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)"
- apply (rule nn_integral_cong_AE)
- using aeX1 aeX2 aeX3 AE_space
- apply eventually_elim
- proof (case_tac x, simp add: space_pair_measure)
- fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "a \<in> space T \<and> b \<in> space P"
- "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)"
- then show "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))"
- by (subst nn_integral_multc) (auto split: prod.split simp: ennreal_mult[symmetric])
+ proof -
+ have D: "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))"
+ if "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "a \<in> space T \<and> b \<in> space P"
+ "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)"
+ for a b
+ using that by (subst nn_integral_multc) (auto split: prod.split simp: ennreal_mult[symmetric])
+ show ?thesis
+ apply (rule nn_integral_cong_AE)
+ using aeX1 aeX2 aeX3
+ by (force simp add: space_pair_measure D)
qed
also have "\<dots> = 1"
using Q.emeasure_space_1 distributed_distr_eq_density[OF Pyz]
@@ -1103,8 +1083,8 @@
then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0"
by (intro nn_integral_0_iff_AE[THEN iffD1]) auto
then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0"
- using ae1 ae2 ae3 ae4 AE_space
- by eventually_elim (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure)
+ using ae1 ae2 ae3 ae4
+ by (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure)
then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0"
by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto
with P.emeasure_space_1 show False
@@ -1112,11 +1092,7 @@
qed
have neg: "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) = 0"
- apply (rule nn_integral_0_iff_AE[THEN iffD2])
- apply simp
- apply (subst AE_density)
- apply (auto simp: space_pair_measure ennreal_neg)
- done
+ by (subst nn_integral_0_iff_AE) (auto simp: space_pair_measure ennreal_neg)
have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"
apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]])
@@ -1136,8 +1112,6 @@
qed simp
then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)"
apply (rule nn_integral_eq_integral)
- apply (subst AE_density)
- apply simp
apply (auto simp: space_pair_measure ennreal_neg)
done
with pos le1
@@ -1148,35 +1122,31 @@
proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
show "AE x in ?P. ?f x \<in> {0<..}"
unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]]
- using ae1 ae2 ae3 ae4 AE_space
- by eventually_elim (auto simp: space_pair_measure less_le)
+ using ae1 ae2 ae3 ae4
+ by (auto simp: space_pair_measure less_le)
show "integrable ?P ?f"
unfolding real_integrable_def
using fin neg by (auto simp: split_beta')
- show "integrable ?P (\<lambda>x. - log b (?f x))"
- apply (subst integrable_real_density)
- apply simp
- apply (auto simp: space_pair_measure) []
- apply simp
+ have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. Pxyz x * - log b (?f x))"
apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3])
- apply simp
- apply simp
- using ae1 ae2 ae3 ae4 AE_space
- apply eventually_elim
+ using ae1 ae2 ae3 ae4
apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps
- less_le space_pair_measure)
+ less_le space_pair_measure)
done
+ then
+ show "integrable ?P (\<lambda>x. - log b (?f x))"
+ by (subst integrable_real_density) (auto simp: space_pair_measure)
qed (auto simp: b_gt_1 minus_log_convex)
also have "\<dots> = conditional_mutual_information b S T P X Y Z"
unfolding \<open>?eq\<close>
apply (subst integral_real_density)
- apply simp
- apply (auto simp: space_pair_measure) []
- apply simp
+ apply simp
+ apply (force simp: space_pair_measure)
+ apply simp
apply (intro integral_cong_AE)
using ae1 ae2 ae3 ae4
- apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps
- space_pair_measure less_le)
+ apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps
+ space_pair_measure less_le)
done
finally show ?nonneg
by simp
@@ -1276,10 +1246,8 @@
using Pxyz Px Pyz by simp
ultimately have I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))"
apply (rule integrable_cong_AE_imp)
- using ae1 ae4 AE_space
- by eventually_elim
- (insert Px_nn Pyz_nn Pxyz_nn,
- auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff space_pair_measure less_le)
+ using ae1 ae4 Px_nn Pyz_nn Pxyz_nn
+ by (auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff space_pair_measure less_le)
have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)
(\<lambda>x. Pxyz x * log b (Pxz (fst x, snd (snd x))) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pz (snd (snd x))))"
@@ -1292,20 +1260,14 @@
by auto
ultimately have I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))"
apply (rule integrable_cong_AE_imp)
- using ae1 ae2 ae3 ae4 AE_space
- by eventually_elim
- (insert Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn,
- auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff less_le space_pair_measure)
+ using ae1 ae2 ae3 ae4 Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn
+ by (auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff less_le space_pair_measure)
from ae I1 I2 show ?eq
- unfolding conditional_mutual_information_def
- apply (subst mi_eq)
- apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz Pyz_nn Pxyz Pxyz_nn])
- apply simp
- apply simp
- apply (simp add: space_pair_measure)
+ unfolding conditional_mutual_information_def mi_eq
+ apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz Pyz_nn Pxyz Pxyz_nn]; simp add: space_pair_measure)
apply (subst Bochner_Integration.integral_diff[symmetric])
- apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff)
+ apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff)
done
let ?P = "density (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) Pxyz"
@@ -1335,15 +1297,15 @@
by (subst STP.nn_integral_snd[symmetric])
(auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong)
also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)"
- apply (rule nn_integral_cong_AE)
- using aeX1 aeX2 aeX3 AE_space
- apply eventually_elim
- proof (case_tac x, simp add: space_pair_measure)
- fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P"
- "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)"
- then show "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))"
- using Pyz_nn[of "(a,b)"]
+ proof -
+ have *: "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))"
+ if "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P"
+ "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)" for a b
+ using Pyz_nn[of "(a,b)"] that
by (subst nn_integral_multc) (auto simp: space_pair_measure ennreal_mult[symmetric])
+ show ?thesis
+ using aeX1 aeX2 aeX3 AE_space
+ by (force simp: * space_pair_measure intro: nn_integral_cong_AE)
qed
also have "\<dots> = 1"
using Q.emeasure_space_1 Pyz_nn distributed_distr_eq_density[OF Pyz]
@@ -1362,9 +1324,8 @@
then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0"
by (intro nn_integral_0_iff_AE[THEN iffD1]) auto
then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0"
- using ae1 ae2 ae3 ae4 AE_space
- by eventually_elim
- (insert Px_nn Pz_nn Pxz_nn Pyz_nn,
+ using ae1 ae2 ae3 ae4
+ by (insert Px_nn Pz_nn Pxz_nn Pyz_nn,
auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure)
then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0"
by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto
@@ -1382,19 +1343,12 @@
have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"
apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]])
using ae
- apply (auto simp: split_beta')
- done
+ by (auto simp: split_beta')
have "- log b 1 \<le> - log b (integral\<^sup>L ?P ?f)"
proof (intro le_imp_neg_le log_le[OF b_gt_1])
have If: "integrable ?P ?f"
- unfolding real_integrable_def
- proof (intro conjI)
- from neg show "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) \<noteq> \<infinity>"
- by simp
- from fin show "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>"
- by simp
- qed simp
+ using neg fin by (force simp add: real_integrable_def)
then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)"
using Pz_nn Pxz_nn Pyz_nn Pxyz_nn
by (intro nn_integral_eq_integral)
@@ -1407,25 +1361,19 @@
proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
show "AE x in ?P. ?f x \<in> {0<..}"
unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]]
- using ae1 ae2 ae3 ae4 AE_space
- by eventually_elim (insert Pxyz_nn Pyz_nn Pz_nn Pxz_nn, auto simp: space_pair_measure less_le)
+ using ae1 ae2 ae3 ae4
+ by (insert Pxyz_nn Pyz_nn Pz_nn Pxz_nn, auto simp: space_pair_measure less_le)
show "integrable ?P ?f"
unfolding real_integrable_def
using fin neg by (auto simp: split_beta')
- show "integrable ?P (\<lambda>x. - log b (?f x))"
- using Pz_nn Pxz_nn Pyz_nn Pxyz_nn
- apply (subst integrable_real_density)
- apply simp
- apply simp
- apply simp
+ have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. Pxyz x * - log b (?f x))"
apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3])
- apply simp
- apply simp
- using ae1 ae2 ae3 ae4 AE_space
- apply eventually_elim
- apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff
- zero_less_divide_iff field_simps space_pair_measure less_le)
- done
+ using Pz_nn Pxz_nn Pyz_nn Pxyz_nn ae2 ae3 ae4
+ by (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff
+ zero_less_divide_iff field_simps space_pair_measure less_le)
+ then
+ show "integrable ?P (\<lambda>x. - log b (?f x))"
+ using Pxyz_nn by (auto simp: integrable_real_density)
qed (auto simp: b_gt_1 minus_log_convex)
also have "\<dots> = conditional_mutual_information b S T P X Y Z"
unfolding \<open>?eq\<close>
@@ -1435,9 +1383,9 @@
apply simp
apply simp
apply (intro integral_cong_AE)
- using ae1 ae2 ae3 ae4 AE_space
+ using ae1 ae2 ae3 ae4
apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff
- field_simps space_pair_measure less_le)
+ field_simps space_pair_measure less_le integral_cong_AE)
done
finally show ?nonneg
by simp
@@ -1504,24 +1452,18 @@
note sd = simple_distributedI[OF _ _ refl]
note sp = simple_function_Pair
show ?thesis
- apply (rule conditional_mutual_information_generic_nonneg[OF sf[OF X] sf[OF Y] sf[OF Z]])
- apply (rule simple_distributed[OF sd[OF X]])
- apply simp
- apply simp
- apply (rule simple_distributed[OF sd[OF Z]])
- apply simp
- apply simp
- apply (rule simple_distributed_joint[OF sd[OF sp[OF Y Z]]])
- apply simp
- apply simp
- apply (rule simple_distributed_joint[OF sd[OF sp[OF X Z]]])
- apply simp
- apply simp
- apply (rule simple_distributed_joint2[OF sd[OF sp[OF X sp[OF Y Z]]]])
- apply simp
- apply simp
- apply (auto intro!: integrable_count_space simp: X Y Z simple_functionD)
- done
+ apply (rule conditional_mutual_information_generic_nonneg[OF sf[OF X] sf[OF Y] sf[OF Z]])
+ apply (force intro: simple_distributed[OF sd[OF X]])
+ apply simp
+ apply (force intro: simple_distributed[OF sd[OF Z]])
+ apply simp
+ apply (force intro: simple_distributed_joint[OF sd[OF sp[OF Y Z]]])
+ apply simp
+ apply (force intro: simple_distributed_joint[OF sd[OF sp[OF X Z]]])
+ apply simp
+ apply (fastforce intro: simple_distributed_joint2[OF sd[OF sp[OF X sp[OF Y Z]]]])
+ apply (auto intro!: integrable_count_space simp: X Y Z simple_functionD)
+ done
qed
subsection \<open>Conditional Entropy\<close>
@@ -1560,11 +1502,8 @@
have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Py (snd x) = enn2real (RN_deriv T (distr M T Y) (snd x))"
unfolding AE_density[OF distributed_borel_measurable, OF Pxy]
unfolding distributed_distr_eq_density[OF Py]
- apply (rule ST.AE_pair_measure)
- apply auto
using distributed_RN_deriv[OF Py]
- apply auto
- done
+ by (force intro: ST.AE_pair_measure)
ultimately
have "conditional_entropy b S T X Y = - (\<integral>x. Pxy x * log b (Pxy x / Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
unfolding conditional_entropy_def neg_equal_iff_equal
@@ -1613,17 +1552,14 @@
using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'')
ultimately have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Pxy x \<and> 0 \<le> Py (snd x) \<and>
(Pxy x = 0 \<or> (Pxy x \<noteq> 0 \<longrightarrow> 0 < Pxy x \<and> 0 < Py (snd x)))"
- using AE_space by eventually_elim (auto simp: space_pair_measure less_le)
+ by (auto simp: space_pair_measure less_le)
then have ae: "AE x in S \<Otimes>\<^sub>M T.
Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) = Pxy x * log b (Pxy x / Py (snd x))"
- by eventually_elim (auto simp: log_simps field_simps b_gt_1)
+ by (auto simp: log_simps field_simps b_gt_1)
have "conditional_entropy b S T X Y =
- (\<integral>x. Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
unfolding conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified] neg_equal_iff_equal
- apply (intro integral_cong_AE)
- using ae
- apply auto
- done
+ using ae by (force intro: integral_cong_AE)
also have "\<dots> = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T)) - - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
by (simp add: Bochner_Integration.integral_diff[OF I1 I2])
finally show ?thesis
@@ -1671,7 +1607,7 @@
from Y show "- (\<integral> (x, y). ?f (x, y) * log b (?f (x, y) / Py y) \<partial>?P) =
- (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))"
by (auto intro!: sum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite eq sum.If_cases split_beta')
-qed (insert Y XY, auto)
+qed (use Y XY in auto)
lemma (in information_space) conditional_mutual_information_eq_conditional_entropy:
assumes X: "simple_function M X" and Y: "simple_function M Y"
@@ -1891,7 +1827,7 @@
have "0 \<le> mutual_information b S T X Y"
by (rule mutual_information_nonneg') fact+
also have "\<dots> = entropy b S X - conditional_entropy b S T X Y"
- apply (rule mutual_information_eq_entropy_conditional_entropy')
+ apply (intro mutual_information_eq_entropy_conditional_entropy')
using assms
by (auto intro!: finite_entropy_integrable finite_entropy_distributed
finite_entropy_integrable_transform[OF Px]
@@ -1933,14 +1869,22 @@
have eq: "(\<lambda>x. ((f \<circ> X) x, X x)) ` space M = (\<lambda>x. (f x, x)) ` X ` space M" by auto
have inj: "\<And>A. inj_on (\<lambda>x. (f x, x)) A"
by (auto simp: inj_on_def)
- show ?thesis
- apply (subst entropy_chain_rule[symmetric, OF fX X])
- apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] measure_nonneg refl]])
- apply (subst entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]])
+
+ have "\<H>(X) = - (\<Sum>x\<in>X ` space M. prob (X -` {x} \<inter> space M) * log b (prob (X -` {x} \<inter> space M)))"
+ by (simp add: entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]])
+ also have "\<dots> = - (\<Sum>x\<in>(\<lambda>x. ((f \<circ> X) x, X x)) ` space M.
+ prob ((\<lambda>x. ((f \<circ> X) x, X x)) -` {x} \<inter> space M) *
+ log b (prob ((\<lambda>x. ((f \<circ> X) x, X x)) -` {x} \<inter> space M)))"
unfolding eq
apply (subst sum.reindex[OF inj])
apply (auto intro!: sum.cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"])
done
+ also have "... = \<H>(\<lambda>x. ((f \<circ> X) x, X x))"
+ using entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] measure_nonneg refl]]
+ by fastforce
+ also have "\<dots> = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)"
+ using X entropy_chain_rule by blast
+ finally show ?thesis .
qed
corollary (in information_space) entropy_data_processing:
--- a/src/HOL/Probability/Levy.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Probability/Levy.thy Mon Aug 21 18:38:25 2023 +0100
@@ -32,13 +32,8 @@
by (simp add: norm_divide norm_mult)
also have "cmod ?one / abs t + cmod ?two / abs t \<le>
((- (a * t))^2 / 2) / abs t + ((- (b * t))^2 / 2) / abs t"
- apply (rule add_mono)
- apply (rule divide_right_mono)
- using iexp_approx1 [of "-(t * a)" 1] apply (simp add: field_simps eval_nat_numeral)
- apply force
- apply (rule divide_right_mono)
- using iexp_approx1 [of "-(t * b)" 1] apply (simp add: field_simps eval_nat_numeral)
- by force
+ using iexp_approx1 [of "-(t * _)" 1]
+ by (intro add_mono divide_right_mono abs_ge_zero) (auto simp: field_simps eval_nat_numeral)
also have "\<dots> = a^2 / 2 * abs t + b^2 / 2 * abs t"
using \<open>t \<noteq> 0\<close> apply (case_tac "t \<ge> 0", simp add: field_simps power2_eq_square)
using \<open>t \<noteq> 0\<close> by (subst (1 2) abs_of_neg, auto simp add: field_simps power2_eq_square)
@@ -88,6 +83,8 @@
assume "T \<ge> 0"
let ?f' = "\<lambda>(t, x). indicator {-T<..<T} t *\<^sub>R ?f t x"
{ fix x
+ have int: "interval_lebesgue_integrable lborel (ereal 0) (ereal T) (\<lambda>t. 2 * (sin (t * (x-w)) / t))" for w
+ using integrable_sinc' interval_lebesgue_integrable_mult_right by blast
have 1: "complex_interval_lebesgue_integrable lborel u v (\<lambda>t. ?f t x)" for u v :: real
using Levy_Inversion_aux2[of "x - b" "x - a"]
apply (simp add: interval_lebesgue_integrable_def set_integrable_def del: times_divide_eq_left)
@@ -110,21 +107,18 @@
also have "\<dots> = (CLBINT t=(0::real)..T. complex_of_real(
2 * (sin (t * (x - a)) / t) - 2 * (sin (t * (x - b)) / t)))"
using \<open>T \<ge> 0\<close>
- apply (intro interval_integral_cong)
- apply (simp add: field_simps cis.ctr Im_divide Re_divide Im_exp Re_exp complex_eq_iff)
- unfolding minus_diff_eq[symmetric, of "y * x" "y * a" for y a] sin_minus cos_minus
- apply (simp add: field_simps power2_eq_square)
- done
+ by (intro interval_integral_cong) (simp add: divide_simps Im_divide Re_divide Im_exp Re_exp complex_eq_iff)
also have "\<dots> = complex_of_real (LBINT t=(0::real)..T.
2 * (sin (t * (x - a)) / t) - 2 * (sin (t * (x - b)) / t))"
by (rule interval_lebesgue_integral_of_real)
+ also have "\<dots> = complex_of_real ((LBINT t=ereal 0..ereal T. 2 * (sin (t * (x - a)) / t)) -
+ (LBINT t=ereal 0..ereal T. 2 * (sin (t * (x - b)) / t)))"
+ unfolding interval_lebesgue_integral_diff
+ using int by auto
also have "\<dots> = complex_of_real (2 * (sgn (x - a) * Si (T * abs (x - a)) -
sgn (x - b) * Si (T * abs (x - b))))"
- apply (subst interval_lebesgue_integral_diff)
- apply (rule interval_lebesgue_integrable_mult_right, rule integrable_sinc')+
- apply (subst interval_lebesgue_integral_mult_right)+
- apply (simp add: zero_ereal_def[symmetric] LBINT_I0c_sin_scale_divide[OF \<open>T \<ge> 0\<close>])
- done
+ unfolding interval_lebesgue_integral_mult_right
+ by (simp add: zero_ereal_def[symmetric] LBINT_I0c_sin_scale_divide[OF \<open>T \<ge> 0\<close>])
finally have "(CLBINT t. ?f' (t, x)) =
2 * (sgn (x - a) * Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b)))" .
} note main_eq = this
@@ -287,22 +281,15 @@
assume "u > 0" and "x \<noteq> 0"
hence "(CLBINT t:{-u..u}. 1 - iexp (t * x)) = (CLBINT t=-u..u. 1 - iexp (t * x))"
by (subst interval_integral_Icc, auto)
- also have "\<dots> = (CLBINT t=-u..0. 1 - iexp (t * x)) + (CLBINT t=0..u. 1 - iexp (t * x))"
+ also have "\<dots> = (CLBINT t=-u..ereal 0. 1 - iexp (t * x)) + (CLBINT t= ereal 0..u. 1 - iexp (t * x))"
using \<open>u > 0\<close>
- apply (subst interval_integral_sum)
- apply (simp add: min_absorb1 min_absorb2 max_absorb1 max_absorb2)
- apply (rule interval_integrable_isCont)
- apply auto
- done
+ by (subst interval_integral_sum; force simp add: interval_integrable_isCont)
also have "\<dots> = (CLBINT t=ereal 0..u. 1 - iexp (t * -x)) + (CLBINT t=ereal 0..u. 1 - iexp (t * x))"
- apply (subgoal_tac "0 = ereal 0", erule ssubst)
by (subst interval_integral_reflect, auto)
+ also have "... = CLBINT xa=ereal 0..ereal u. 1 - iexp (xa * - x) + (1 - iexp (xa * x))"
+ by (subst interval_lebesgue_integral_add (2) [symmetric]) (auto simp: interval_integrable_isCont)
also have "\<dots> = (LBINT t=ereal 0..u. 2 - 2 * cos (t * x))"
- apply (subst interval_lebesgue_integral_add (2) [symmetric])
- apply ((rule interval_integrable_isCont, auto)+) [2]
- unfolding exp_Euler cos_of_real
- apply (simp add: of_real_mult interval_lebesgue_integral_of_real[symmetric])
- done
+ unfolding exp_Euler cos_of_real by (simp flip: interval_lebesgue_integral_of_real)
also have "\<dots> = 2 * u - 2 * sin (u * x) / x"
by (subst interval_lebesgue_integral_diff)
(auto intro!: interval_integrable_isCont
@@ -375,13 +362,11 @@
proof -
fix \<epsilon> :: real
assume "\<epsilon> > 0"
- note M'.isCont_char [of 0]
- hence "\<exists>d>0. \<forall>t. abs t < d \<longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4"
- apply (subst (asm) continuous_at_eps_delta)
- apply (drule_tac x = "\<epsilon> / 4" in spec)
- using \<open>\<epsilon> > 0\<close> by (auto simp add: dist_real_def dist_complex_def M'.char_zero)
- then obtain d where "d > 0 \<and> (\<forall>t. (abs t < d \<longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4))" ..
- hence d0: "d > 0" and d1: "\<And>t. abs t < d \<Longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4" by auto
+ with M'.isCont_char [of 0]
+ obtain d where d0: "d>0" and "\<forall>x'. dist x' 0 < d \<longrightarrow> dist (char M' x') (char M' 0) < \<epsilon>/4"
+ unfolding continuous_at_eps_delta by (metis \<open>0 < \<epsilon>\<close> divide_pos_pos zero_less_numeral)
+ then have d1: "\<And>t. abs t < d \<Longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4"
+ by (simp add: M'.char_zero dist_norm)
have 1: "\<And>x. cmod (1 - char M' x) \<le> 2"
by (rule order_trans [OF norm_triangle_ineq4], auto simp add: M'.cmod_char_le_1)
then have 2: "\<And>u v. complex_set_integrable lborel {u..v} (\<lambda>x. 1 - char M' x)"
@@ -395,15 +380,18 @@
using integral_norm_bound[of _ "\<lambda>x. indicator {u..v} x *\<^sub>R (1 - char M' x)" for u v] by simp
also have 4: "\<dots> \<le> LBINT t:{-d/2..d/2}. \<epsilon> / 4"
unfolding set_lebesgue_integral_def
- apply (rule integral_mono [OF 3])
- apply (simp add: emeasure_lborel_Icc_eq)
- apply (case_tac "x \<in> {-d/2..d/2}")
- apply auto
- apply (subst norm_minus_commute)
- apply (rule less_imp_le)
- apply (rule d1 [simplified])
- using d0 apply auto
- done
+ proof (rule integral_mono [OF 3])
+
+ show "indicat_real {- d / 2..d / 2} x *\<^sub>R cmod (1 - char M' x)
+ \<le> indicat_real {- d / 2..d / 2} x *\<^sub>R (\<epsilon> / 4)"
+ if "x \<in> space lborel" for x
+ proof (cases "x \<in> {-d/2..d/2}")
+ case True
+ show ?thesis
+ using d0 d1 that True [simplified]
+ by (smt (verit, best) field_sum_of_halves minus_diff_eq norm_minus_cancel indicator_pos_le scaleR_left_mono)
+ qed auto
+ qed (simp add: emeasure_lborel_Icc_eq)
also from d0 4 have "\<dots> = d * \<epsilon> / 4"
unfolding set_lebesgue_integral_def by simp
finally have bound: "cmod (CLBINT t:{-d/2..d/2}. 1 - char M' t) \<le> d * \<epsilon> / 4" .
@@ -450,14 +438,7 @@
apply (subst Mn.borel_UNIV [symmetric])
by (subst Mn.prob_compl, auto)
also have "UNIV - {x. abs x \<ge> 2 / (d / 2)} = {x. -(4 / d) < x \<and> x < (4 / d)}"
- using d0 apply (auto simp add: field_simps)
- (* very annoying -- this should be automatic *)
- apply (case_tac "x \<ge> 0", auto simp add: field_simps)
- apply (subgoal_tac "0 \<le> x * d", arith, rule mult_nonneg_nonneg, auto)
- apply (case_tac "x \<ge> 0", auto simp add: field_simps)
- apply (subgoal_tac "x * d \<le> 0", arith)
- apply (rule mult_nonpos_nonneg, auto)
- by (case_tac "x \<ge> 0", auto simp add: field_simps)
+ using d0 by (simp add: set_eq_iff divide_simps abs_if) (smt (verit, best) mult_less_0_iff)
finally have "measure (M n) {x. -(4 / d) < x \<and> x < (4 / d)} > 1 - \<epsilon>"
by auto
} note 6 = this
@@ -470,8 +451,7 @@
hence "(\<lambda>k. measure (M n) {- real k<..real k}) \<longlonglongrightarrow> 1"
using Mn.prob_space unfolding * Mn.borel_UNIV by simp
hence "eventually (\<lambda>k. measure (M n) {- real k<..real k} > 1 - \<epsilon>) sequentially"
- apply (elim order_tendstoD (1))
- using \<open>\<epsilon> > 0\<close> by auto
+ using \<open>\<epsilon> > 0\<close> order_tendstoD by fastforce
} note 7 = this
{ fix n :: nat
have "eventually (\<lambda>k. \<forall>m < n. measure (M m) {- real k<..real k} > 1 - \<epsilon>) sequentially"
@@ -490,20 +470,18 @@
hence K: "\<And>m. m < N \<Longrightarrow> 1 - \<epsilon> < Sigma_Algebra.measure (M m) {- real K<..real K}"
by auto
let ?K' = "max K (4 / d)"
- have "-?K' < ?K' \<and> (\<forall>n. 1 - \<epsilon> < measure (M n) {-?K'<..?K'})"
- using d0 apply auto
- apply (rule max.strict_coboundedI2, auto)
- proof -
- fix n
- show " 1 - \<epsilon> < measure (M n) {- max (real K) (4 / d)<..max (real K) (4 / d)}"
- apply (case_tac "n < N")
- apply (rule order_less_le_trans)
- apply (erule K)
- apply (rule Mn.finite_measure_mono, auto)
- apply (rule order_less_le_trans)
- apply (rule 6, erule leI)
- by (rule Mn.finite_measure_mono, auto)
+ have "1 - \<epsilon> < measure (M n) {- max (real K) (4 / d)<..max (real K) (4 / d)}" for n
+ proof (cases "n < N")
+ case True
+ then show ?thesis
+ by (force intro: order_less_le_trans [OF K Mn.finite_measure_mono])
+ next
+ case False
+ then show ?thesis
+ by (force intro: order_less_le_trans [OF 6 Mn.finite_measure_mono])
qed
+ then have "-?K' < ?K' \<and> (\<forall>n. 1 - \<epsilon> < measure (M n) {-?K'<..?K'})"
+ using d0 by (simp add: less_max_iff_disj minus_less_iff)
thus "\<exists>a b. a < b \<and> (\<forall>n. 1 - \<epsilon> < measure (M n) {a<..b})" by (intro exI)
qed
have tight: "tight M"
--- a/src/HOL/Probability/SPMF.thy Sat Aug 12 10:09:29 2023 +0100
+++ b/src/HOL/Probability/SPMF.thy Mon Aug 21 18:38:25 2023 +0100
@@ -11,20 +11,20 @@
subsection \<open>Auxiliary material\<close>
lemma cSUP_singleton [simp]: "(SUP x\<in>{x}. f x :: _ :: conditionally_complete_lattice) = f x"
-by (metis cSup_singleton image_empty image_insert)
+ by (metis cSup_singleton image_empty image_insert)
subsubsection \<open>More about extended reals\<close>
lemma [simp]:
shows ennreal_max_0: "ennreal (max 0 x) = ennreal x"
- and ennreal_max_0': "ennreal (max x 0) = ennreal x"
-by(simp_all add: max_def ennreal_eq_0_iff)
+ and ennreal_max_0': "ennreal (max x 0) = ennreal x"
+ by(simp_all add: max_def ennreal_eq_0_iff)
lemma e2ennreal_0 [simp]: "e2ennreal 0 = 0"
-by(simp add: zero_ennreal_def)
+ by(simp add: zero_ennreal_def)
lemma enn2real_bot [simp]: "enn2real \<bottom> = 0"
-by(simp add: bot_ennreal_def)
+ by(simp add: bot_ennreal_def)
lemma continuous_at_ennreal[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. ennreal (f x))"
unfolding continuous_def by auto
@@ -42,24 +42,24 @@
lemma ennreal_SUP:
"\<lbrakk> (SUP a\<in>A. ennreal (f a)) \<noteq> \<top>; A \<noteq> {} \<rbrakk> \<Longrightarrow> ennreal (SUP a\<in>A. f a) = (SUP a\<in>A. ennreal (f a))"
-using ennreal_Sup[of "f ` A"] by (auto simp add: image_comp)
+ using ennreal_Sup[of "f ` A"] by (auto simp: image_comp)
lemma ennreal_lt_0: "x < 0 \<Longrightarrow> ennreal x = 0"
-by(simp add: ennreal_eq_0_iff)
+ by(simp add: ennreal_eq_0_iff)
subsubsection \<open>More about \<^typ>\<open>'a option\<close>\<close>
lemma None_in_map_option_image [simp]: "None \<in> map_option f ` A \<longleftrightarrow> None \<in> A"
-by auto
+ by auto
lemma Some_in_map_option_image [simp]: "Some x \<in> map_option f ` A \<longleftrightarrow> (\<exists>y. x = f y \<and> Some y \<in> A)"
-by(auto intro: rev_image_eqI dest: sym)
+ by (smt (verit, best) imageE imageI map_option_eq_Some)
lemma case_option_collapse: "case_option x (\<lambda>_. x) = (\<lambda>_. x)"
-by(simp add: fun_eq_iff split: option.split)
+ by(simp add: fun_eq_iff split: option.split)
lemma case_option_id: "case_option None Some = id"
-by(rule ext)(simp split: option.split)
+ by(rule ext)(simp split: option.split)
inductive ord_option :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a option \<Rightarrow> 'b option \<Rightarrow> bool"
for ord :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
@@ -78,65 +78,66 @@
"ord_option (=) (Some x) y"
lemma ord_option_reflI: "(\<And>y. y \<in> set_option x \<Longrightarrow> ord y y) \<Longrightarrow> ord_option ord x x"
-by(cases x) simp_all
+ by(cases x) simp_all
lemma reflp_ord_option: "reflp ord \<Longrightarrow> reflp (ord_option ord)"
-by(simp add: reflp_def ord_option_reflI)
+ by(simp add: reflp_def ord_option_reflI)
lemma ord_option_trans:
"\<lbrakk> ord_option ord x y; ord_option ord y z;
\<And>a b c. \<lbrakk> a \<in> set_option x; b \<in> set_option y; c \<in> set_option z; ord a b; ord b c \<rbrakk> \<Longrightarrow> ord a c \<rbrakk>
\<Longrightarrow> ord_option ord x z"
-by(auto elim!: ord_option.cases)
+ by(auto elim!: ord_option.cases)
lemma transp_ord_option: "transp ord \<Longrightarrow> transp (ord_option ord)"
-unfolding transp_def by(blast intro: ord_option_trans)
+ unfolding transp_def by(blast intro: ord_option_trans)
lemma antisymp_ord_option: "antisymp ord \<Longrightarrow> antisymp (ord_option ord)"
-by(auto intro!: antisympI elim!: ord_option.cases dest: antisympD)
+ by(auto intro!: antisympI elim!: ord_option.cases dest: antisympD)
lemma ord_option_chainD:
"Complete_Partial_Order.chain (ord_option ord) Y
\<Longrightarrow> Complete_Partial_Order.chain ord {x. Some x \<in> Y}"
-by(rule chainI)(auto dest: chainD)
+ by(rule chainI)(auto dest: chainD)
definition lub_option :: "('a set \<Rightarrow> 'b) \<Rightarrow> 'a option set \<Rightarrow> 'b option"
-where "lub_option lub Y = (if Y \<subseteq> {None} then None else Some (lub {x. Some x \<in> Y}))"
+ where "lub_option lub Y = (if Y \<subseteq> {None} then None else Some (lub {x. Some x \<in> Y}))"
lemma map_lub_option: "map_option f (lub_option lub Y) = lub_option (f \<circ> lub) Y"
-by(simp add: lub_option_def)
+ by(simp add: lub_option_def)
lemma lub_option_upper:
assumes "Complete_Partial_Order.chain (ord_option ord) Y" "x \<in> Y"
- and lub_upper: "\<And>Y x. \<lbrakk> Complete_Partial_Order.chain ord Y; x \<in> Y \<rbrakk> \<Longrightarrow> ord x (lub Y)"
+ and lub_upper: "\<And>Y x. \<lbrakk> Complete_Partial_Order.chain ord Y; x \<in> Y \<rbrakk> \<Longrightarrow> ord x (lub Y)"
shows "ord_option ord x (lub_option lub Y)"
-using assms(1-2)
-by(cases x)(auto simp add: lub_option_def intro: lub_upper[OF ord_option_chainD])
+ using assms(1-2)
+ by(cases x)(auto simp: lub_option_def intro: lub_upper[OF ord_option_chainD])
lemma lub_option_least:
assumes Y: "Complete_Partial_Order.chain (ord_option ord) Y"
- and upper: "\<And>x. x \<in> Y \<Longrightarrow> ord_option ord x y"
+ and upper: "\<And>x. x \<in> Y \<Longrightarrow> ord_option ord x y"
assumes lub_least: "\<And>Y y. \<lbrakk> Complete_Partial_Order.chain ord Y; \<And>x. x \<in> Y \<Longrightarrow> ord x y \<rbrakk> \<Longrightarrow> ord (lub Y) y"
shows "ord_option ord (lub_option lub Y) y"
-using Y
-by(cases y)(auto 4 3 simp add: lub_option_def intro: lub_least[OF ord_option_chainD] dest: upper)
+ using Y
+ by(cases y)(auto 4 3 simp add: lub_option_def intro: lub_least[OF ord_option_chainD] dest: upper)
lemma lub_map_option: "lub_option lub (map_option f ` Y) = lub_option (lub \<circ> (`) f) Y"
-apply(auto simp add: lub_option_def)
-apply(erule notE)
-apply(rule arg_cong[where f=lub])
-apply(auto intro: rev_image_eqI dest: sym)
-done
+proof -
+ have "\<And>u y. \<lbrakk>Some u \<in> Y; y \<in> Y\<rbrakk> \<Longrightarrow> {f y |y. Some y \<in> Y} = f ` {x. Some x \<in> Y}"
+ by blast
+ then show ?thesis
+ by (auto simp: lub_option_def)
+qed
lemma ord_option_mono: "\<lbrakk> ord_option A x y; \<And>x y. A x y \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> ord_option B x y"
-by(auto elim: ord_option.cases)
+ by(auto elim: ord_option.cases)
lemma ord_option_mono' [mono]:
"(\<And>x y. A x y \<longrightarrow> B x y) \<Longrightarrow> ord_option A x y \<longrightarrow> ord_option B x y"
-by(blast intro: ord_option_mono)
+ by(blast intro: ord_option_mono)
lemma ord_option_compp: "ord_option (A OO B) = ord_option A OO ord_option B"
-by(auto simp add: fun_eq_iff elim!: ord_option.cases intro: ord_option.intros)
+ by(auto simp: fun_eq_iff elim!: ord_option.cases intro: ord_option.intros)
lemma ord_option_inf: "inf (ord_option A) (ord_option B) = ord_option (inf A B)" (is "?lhs = ?rhs")
proof(rule antisym)
@@ -144,13 +145,13 @@
qed(auto elim: ord_option_mono)
lemma ord_option_map2: "ord_option ord x (map_option f y) = ord_option (\<lambda>x y. ord x (f y)) x y"
-by(auto elim: ord_option.cases)
+ by(auto elim: ord_option.cases)
lemma ord_option_map1: "ord_option ord (map_option f x) y = ord_option (\<lambda>x y. ord (f x) y) x y"
-by(auto elim: ord_option.cases)
+ by(auto elim: ord_option.cases)
lemma option_ord_Some1_iff: "option_ord (Some x) y \<longleftrightarrow> y = Some x"
-by(auto simp add: flat_ord_def)
+ by(auto simp: flat_ord_def)
subsubsection \<open>A relator for sets that treats sets like predicates\<close>
@@ -158,46 +159,46 @@
begin
definition rel_pred :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"
-where "rel_pred R A B = (R ===> (=)) (\<lambda>x. x \<in> A) (\<lambda>y. y \<in> B)"
+ where "rel_pred R A B = (R ===> (=)) (\<lambda>x. x \<in> A) (\<lambda>y. y \<in> B)"
lemma rel_predI: "(R ===> (=)) (\<lambda>x. x \<in> A) (\<lambda>y. y \<in> B) \<Longrightarrow> rel_pred R A B"
-by(simp add: rel_pred_def)
+ by(simp add: rel_pred_def)
lemma rel_predD: "\<lbrakk> rel_pred R A B; R x y \<rbrakk> \<Longrightarrow> x \<in> A \<longleftrightarrow> y \<in> B"
-by(simp add: rel_pred_def rel_fun_def)
+ by(simp add: rel_pred_def rel_fun_def)
lemma Collect_parametric: "((A ===> (=)) ===> rel_pred A) Collect Collect"
\<comment> \<open>Declare this rule as @{attribute transfer_rule} only locally
because it blows up the search space for @{method transfer}
(in combination with @{thm [source] Collect_transfer})\<close>
-by(simp add: rel_funI rel_predI)
+ by(simp add: rel_funI rel_predI)
end
subsubsection \<open>Monotonicity rules\<close>
lemma monotone_gfp_eadd1: "monotone (\<ge>) (\<ge>) (\<lambda>x. x + y :: enat)"
-by(auto intro!: monotoneI)
+ by(auto intro!: monotoneI)
lemma monotone_gfp_eadd2: "monotone (\<ge>) (\<ge>) (\<lambda>y. x + y :: enat)"
-by(auto intro!: monotoneI)
+ by(auto intro!: monotoneI)
lemma mono2mono_gfp_eadd[THEN gfp.mono2mono2, cont_intro, simp]:
shows monotone_eadd: "monotone (rel_prod (\<ge>) (\<ge>)) (\<ge>) (\<lambda>(x, y). x + y :: enat)"
-by(simp add: monotone_gfp_eadd1 monotone_gfp_eadd2)
+ by(simp add: monotone_gfp_eadd1 monotone_gfp_eadd2)
lemma eadd_gfp_partial_function_mono [partial_function_mono]:
"\<lbrakk> monotone (fun_ord (\<ge>)) (\<ge>) f; monotone (fun_ord (\<ge>)) (\<ge>) g \<rbrakk>
\<Longrightarrow> monotone (fun_ord (\<ge>)) (\<ge>) (\<lambda>x. f x + g x :: enat)"
-by(rule mono2mono_gfp_eadd)
+ by(rule mono2mono_gfp_eadd)
lemma mono2mono_ereal[THEN lfp.mono2mono]:
shows monotone_ereal: "monotone (\<le>) (\<le>) ereal"
-by(rule monotoneI) simp
+ by(rule monotoneI) simp
lemma mono2mono_ennreal[THEN lfp.mono2mono]:
shows monotone_ennreal: "monotone (\<le>) (\<le>) ennreal"
-by(rule monotoneI)(simp add: ennreal_leI)
+ by(rule monotoneI)(simp add: ennreal_leI)
subsubsection \<open>Bijections\<close>
@@ -207,20 +208,17 @@
shows "\<exists>f. bij_betw f A B \<and> (\<forall>x\<in>A. R x (f x))"
proof -
from assms obtain f where f: "\<And>x. x \<in> A \<Longrightarrow> R x (f x)" and B: "\<And>x. x \<in> A \<Longrightarrow> f x \<in> B"
- apply(atomize_elim)
- apply(fold all_conj_distrib)
- apply(subst choice_iff[symmetric])
- apply(auto dest: rel_setD1)
- done
- have "inj_on f A" by(rule inj_onI)(auto dest!: f dest: bi_uniqueDl[OF unique])
+ by (metis bi_unique_rel_set_lemma image_eqI)
+ have "inj_on f A"
+ by (metis (no_types, lifting) bi_unique_def f inj_on_def unique)
moreover have "f ` A = B" using rel
- by(auto 4 3 intro: B dest: rel_setD2 f bi_uniqueDr[OF unique])
+ by (smt (verit) bi_unique_def bi_unique_rel_set_lemma f image_cong unique)
ultimately have "bij_betw f A B" unfolding bij_betw_def ..
thus ?thesis using f by blast
qed
lemma bij_betw_rel_setD: "bij_betw f A B \<Longrightarrow> rel_set (\<lambda>x y. y = f x) A B"
-by(rule rel_setI)(auto dest: bij_betwE bij_betw_imp_surj_on[symmetric])
+ by(rule rel_setI)(auto dest: bij_betwE bij_betw_imp_surj_on[symmetric])
subsection \<open>Subprobability mass function\<close>
@@ -228,33 +226,29 @@
translations (type) "'a spmf" \<leftharpoondown> (type) "'a option pmf"
definition measure_spmf :: "'a spmf \<Rightarrow> 'a measure"
-where "measure_spmf p = distr (restrict_space (measure_pmf p) (range Some)) (count_space UNIV) the"
+ where "measure_spmf p = distr (restrict_space (measure_pmf p) (range Some)) (count_space UNIV) the"
abbreviation spmf :: "'a spmf \<Rightarrow> 'a \<Rightarrow> real"
-where "spmf p x \<equiv> pmf p (Some x)"
+ where "spmf p x \<equiv> pmf p (Some x)"
lemma space_measure_spmf: "space (measure_spmf p) = UNIV"
-by(simp add: measure_spmf_def)
+ by(simp add: measure_spmf_def)
lemma sets_measure_spmf [simp, measurable_cong]: "sets (measure_spmf p) = sets (count_space UNIV)"
-by(simp add: measure_spmf_def)
+ by(simp add: measure_spmf_def)
lemma measure_spmf_not_bot [simp]: "measure_spmf p \<noteq> \<bottom>"
-proof
- assume "measure_spmf p = \<bottom>"
- hence "space (measure_spmf p) = space \<bottom>" by simp
- thus False by(simp add: space_measure_spmf)
-qed
+ by (metis empty_not_UNIV space_bot space_measure_spmf)
lemma measurable_the_measure_pmf_Some [measurable, simp]:
"the \<in> measurable (restrict_space (measure_pmf p) (range Some)) (count_space UNIV)"
-by(auto simp add: measurable_def sets_restrict_space space_restrict_space integral_restrict_space)
+ by(auto simp: measurable_def sets_restrict_space space_restrict_space integral_restrict_space)
lemma measurable_spmf_measure1[simp]: "measurable (measure_spmf M) N = UNIV \<rightarrow> space N"
-by(auto simp: measurable_def space_measure_spmf)
+ by(auto simp: measurable_def space_measure_spmf)
lemma measurable_spmf_measure2[simp]: "measurable N (measure_spmf M) = measurable N (count_space UNIV)"
-by(intro measurable_cong_sets) simp_all
+ by(intro measurable_cong_sets) simp_all
lemma subprob_space_measure_spmf [simp, intro!]: "subprob_space (measure_spmf p)"
proof
@@ -263,36 +257,37 @@
qed(simp add: space_measure_spmf)
interpretation measure_spmf: subprob_space "measure_spmf p" for p
-by(rule subprob_space_measure_spmf)
+ by(rule subprob_space_measure_spmf)
lemma finite_measure_spmf [simp]: "finite_measure (measure_spmf p)"
-by unfold_locales
+ by unfold_locales
lemma spmf_conv_measure_spmf: "spmf p x = measure (measure_spmf p) {x}"
-by(auto simp add: measure_spmf_def measure_distr measure_restrict_space pmf.rep_eq space_restrict_space intro: arg_cong2[where f=measure])
+ by(auto simp: measure_spmf_def measure_distr measure_restrict_space pmf.rep_eq space_restrict_space intro: arg_cong2[where f=measure])
lemma emeasure_measure_spmf_conv_measure_pmf:
"emeasure (measure_spmf p) A = emeasure (measure_pmf p) (Some ` A)"
-by(auto simp add: measure_spmf_def emeasure_distr emeasure_restrict_space space_restrict_space intro: arg_cong2[where f=emeasure])
+ by(auto simp: measure_spmf_def emeasure_distr emeasure_restrict_space space_restrict_space intro: arg_cong2[where f=emeasure])
lemma measure_measure_spmf_conv_measure_pmf:
"measure (measure_spmf p) A = measure (measure_pmf p) (Some ` A)"
-using emeasure_measure_spmf_conv_measure_pmf[of p A]
-by(simp add: measure_spmf.emeasure_eq_measure measure_pmf.emeasure_eq_measure)
+ using emeasure_measure_spmf_conv_measure_pmf[of p A]
+ by(simp add: measure_spmf.emeasure_eq_measure measure_pmf.emeasure_eq_measure)
lemma emeasure_spmf_map_pmf_Some [simp]:
"emeasure (measure_spmf (map_pmf Some p)) A = emeasure (measure_pmf p) A"
-by(auto simp add: measure_spmf_def emeasure_distr emeasure_restrict_space space_restrict_space intro: arg_cong2[where f=emeasure])
+ by(auto simp: measure_spmf_def emeasure_distr emeasure_restrict_space space_restrict_space intro: arg_cong2[where f=emeasure])
lemma measure_spmf_map_pmf_Some [simp]:
"measure (measure_spmf (map_pmf Some p)) A = measure (measure_pmf p) A"
-using emeasure_spmf_map_pmf_Some[of p A] by(simp add: measure_spmf.emeasure_eq_measure measure_pmf.emeasure_eq_measure)
+ using emeasure_spmf_map_pmf_Some[of p A] by(simp add: measure_spmf.emeasure_eq_measure measure_pmf.emeasure_eq_measure)
lemma nn_integral_measure_spmf: "(\<integral>\<^sup>+ x. f x \<partial>measure_spmf p) = \<integral>\<^sup>+ x. ennreal (spmf p x) * f x \<partial>count_space UNIV"
(is "?lhs = ?rhs")
proof -
have "?lhs = \<integral>\<^sup>+ x. pmf p x * f (the x) \<partial>count_space (range Some)"
- by(simp add: measure_spmf_def nn_integral_distr nn_integral_restrict_space nn_integral_measure_pmf nn_integral_count_space_indicator ac_simps times_ereal.simps(1)[symmetric] del: times_ereal.simps(1))
+ by(simp add: measure_spmf_def nn_integral_distr nn_integral_restrict_space nn_integral_measure_pmf nn_integral_count_space_indicator ac_simps
+ flip: times_ereal.simps [symmetric])
also have "\<dots> = \<integral>\<^sup>+ x. ennreal (spmf p (the x)) * f (the x) \<partial>count_space (range Some)"
by(rule nn_integral_cong) auto
also have "\<dots> = \<integral>\<^sup>+ x. spmf p (the (Some x)) * f (the (Some x)) \<partial>count_space UNIV"
@@ -312,69 +307,65 @@
qed
lemma emeasure_spmf_single: "emeasure (measure_spmf p) {x} = spmf p x"
-by(simp add: measure_spmf.emeasure_eq_measure spmf_conv_measure_spmf)
+ by(simp add: measure_spmf.emeasure_eq_measure spmf_conv_measure_spmf)
lemma measurable_measure_spmf[measurable]:
"(\<lambda>x. measure_spmf (M x)) \<in> measurable (count_space UNIV) (subprob_algebra (count_space UNIV))"
-by (auto simp: space_subprob_algebra)
+ by (auto simp: space_subprob_algebra)
lemma nn_integral_measure_spmf_conv_measure_pmf:
assumes [measurable]: "f \<in> borel_measurable (count_space UNIV)"
shows "nn_integral (measure_spmf p) f = nn_integral (restrict_space (measure_pmf p) (range Some)) (f \<circ> the)"
-by(simp add: measure_spmf_def nn_integral_distr o_def)
+ by(simp add: measure_spmf_def nn_integral_distr o_def)
lemma measure_spmf_in_space_subprob_algebra [simp]:
"measure_spmf p \<in> space (subprob_algebra (count_space UNIV))"
-by(simp add: space_subprob_algebra)
+ by(simp add: space_subprob_algebra)
lemma nn_integral_spmf_neq_top: "(\<integral>\<^sup>+ x. spmf p x \<partial>count_space UNIV) \<noteq> \<top>"
-using nn_integral_measure_spmf[where f="\<lambda>_. 1", of p, symmetric] by simp
+ using nn_integral_measure_spmf[where f="\<lambda>_. 1", of p, symmetric]
+ by simp
lemma SUP_spmf_neq_top': "(SUP p\<in>Y. ennreal (spmf p x)) \<noteq> \<top>"
-proof(rule neq_top_trans)
- show "(SUP p\<in>Y. ennreal (spmf p x)) \<le> 1" by(rule SUP_least)(simp add: pmf_le_1)
-qed simp
+ by (metis SUP_least ennreal_le_1 ennreal_one_neq_top neq_top_trans pmf_le_1)
lemma SUP_spmf_neq_top: "(SUP i. ennreal (spmf (Y i) x)) \<noteq> \<top>"
-proof(rule neq_top_trans)
- show "(SUP i. ennreal (spmf (Y i) x)) \<le> 1" by(rule SUP_least)(simp add: pmf_le_1)
-qed simp
+ by (meson SUP_eq_top_iff ennreal_le_1 ennreal_one_less_top linorder_not_le pmf_le_1)
lemma SUP_emeasure_spmf_neq_top: "(SUP p\<in>Y. emeasure (measure_spmf p) A) \<noteq> \<top>"
-proof(rule neq_top_trans)
- show "(SUP p\<in>Y. emeasure (measure_spmf p) A) \<le> 1"
- by(rule SUP_least)(simp add: measure_spmf.subprob_emeasure_le_1)
-qed simp
+ by (metis ennreal_one_less_top less_SUP_iff linorder_not_le measure_spmf.subprob_emeasure_le_1)
subsection \<open>Support\<close>
definition set_spmf :: "'a spmf \<Rightarrow> 'a set"
-where "set_spmf p = set_pmf p \<bind> set_option"
+ where "set_spmf p = set_pmf p \<bind> set_option"
lemma set_spmf_rep_eq: "set_spmf p = {x. measure (measure_spmf p) {x} \<noteq> 0}"
proof -
have "\<And>x :: 'a. the -` {x} \<inter> range Some = {Some x}" by auto
then show ?thesis
- by(auto simp add: set_spmf_def set_pmf.rep_eq measure_spmf_def measure_distr measure_restrict_space space_restrict_space intro: rev_image_eqI)
+ unfolding set_spmf_def measure_spmf_def
+ by(auto simp: set_pmf.rep_eq measure_distr measure_restrict_space space_restrict_space)
qed
lemma in_set_spmf: "x \<in> set_spmf p \<longleftrightarrow> Some x \<in> set_pmf p"
-by(simp add: set_spmf_def)
+ by(simp add: set_spmf_def)
lemma AE_measure_spmf_iff [simp]: "(AE x in measure_spmf p. P x) \<longleftrightarrow> (\<forall>x\<in>set_spmf p. P x)"
-by(auto 4 3 simp add: measure_spmf_def AE_distr_iff AE_restrict_space_iff AE_measure_pmf_iff set_spmf_def cong del: AE_cong)
+ unfolding set_spmf_def measure_spmf_def
+ by(force simp: AE_distr_iff AE_restrict_space_iff AE_measure_pmf_iff cong del: AE_cong)
lemma spmf_eq_0_set_spmf: "spmf p x = 0 \<longleftrightarrow> x \<notin> set_spmf p"
-by(auto simp add: pmf_eq_0_set_pmf set_spmf_def intro: rev_image_eqI)
+ by(auto simp: pmf_eq_0_set_pmf set_spmf_def)
lemma in_set_spmf_iff_spmf: "x \<in> set_spmf p \<longleftrightarrow> spmf p x \<noteq> 0"
-by(auto simp add: set_spmf_def set_pmf_iff intro: rev_image_eqI)
+ by(auto simp: set_spmf_def set_pmf_iff)
lemma set_spmf_return_pmf_None [simp]: "set_spmf (return_pmf None) = {}"
-by(auto simp add: set_spmf_def)
+ by(auto simp: set_spmf_def)
lemma countable_set_spmf [simp]: "countable (set_spmf p)"
-by(simp add: set_spmf_def bind_UNION)
+ by(simp add: set_spmf_def bind_UNION)
lemma spmf_eqI:
assumes "\<And>i. spmf p i = spmf q i"
@@ -389,147 +380,146 @@
case None
have "ennreal (pmf p i) = measure (measure_pmf p) {i}" by(simp add: pmf_def)
also have "{i} = space (measure_pmf p) - range Some"
- by(auto simp add: None intro: ccontr)
+ by(auto simp: None intro: ccontr)
also have "measure (measure_pmf p) \<dots> = ennreal 1 - measure (measure_pmf p) (range Some)"
by(simp add: measure_pmf.prob_compl ennreal_minus[symmetric] del: space_measure_pmf)
also have "range Some = (\<Union>x\<in>set_spmf p. {Some x}) \<union> Some ` (- set_spmf p)"
by auto
also have "measure (measure_pmf p) \<dots> = measure (measure_pmf p) (\<Union>x\<in>set_spmf p. {Some x})"
- by(rule measure_pmf.measure_zero_union)(auto simp add: measure_pmf.prob_eq_0 AE_measure_pmf_iff in_set_spmf_iff_spmf set_pmf_iff)
+ by(rule measure_pmf.measure_zero_union)(auto simp: measure_pmf.prob_eq_0 AE_measure_pmf_iff in_set_spmf_iff_spmf set_pmf_iff)
also have "ennreal \<dots> = \<integral>\<^sup>+ x. measure (measure_pmf p) {Some x} \<partial>count_space (set_spmf p)"
unfolding measure_pmf.emeasure_eq_measure[symmetric]
by(simp_all add: emeasure_UN_countable disjoint_family_on_def)
also have "\<dots> = \<integral>\<^sup>+ x. spmf p x \<partial>count_space (set_spmf p)" by(simp add: pmf_def)
also have "\<dots> = \<integral>\<^sup>+ x. spmf q x \<partial>count_space (set_spmf p)" by(simp add: assms)
- also have "set_spmf p = set_spmf q" by(auto simp add: in_set_spmf_iff_spmf assms)
+ also have "set_spmf p = set_spmf q" by(auto simp: in_set_spmf_iff_spmf assms)
also have "(\<integral>\<^sup>+ x. spmf q x \<partial>count_space (set_spmf q)) = \<integral>\<^sup>+ x. measure (measure_pmf q) {Some x} \<partial>count_space (set_spmf q)"
by(simp add: pmf_def)
also have "\<dots> = measure (measure_pmf q) (\<Union>x\<in>set_spmf q. {Some x})"
unfolding measure_pmf.emeasure_eq_measure[symmetric]
by(simp_all add: emeasure_UN_countable disjoint_family_on_def)
also have "\<dots> = measure (measure_pmf q) ((\<Union>x\<in>set_spmf q. {Some x}) \<union> Some ` (- set_spmf q))"
- by(rule ennreal_cong measure_pmf.measure_zero_union[symmetric])+(auto simp add: measure_pmf.prob_eq_0 AE_measure_pmf_iff in_set_spmf_iff_spmf set_pmf_iff)
+ by(rule ennreal_cong measure_pmf.measure_zero_union[symmetric])+(auto simp: measure_pmf.prob_eq_0 AE_measure_pmf_iff in_set_spmf_iff_spmf set_pmf_iff)
also have "((\<Union>x\<in>set_spmf q. {Some x}) \<union> Some ` (- set_spmf q)) = range Some" by auto
also have "ennreal 1 - measure (measure_pmf q) \<dots> = measure (measure_pmf q) (space (measure_pmf q) - range Some)"
by(simp add: one_ereal_def measure_pmf.prob_compl ennreal_minus[symmetric] del: space_measure_pmf)
also have "space (measure_pmf q) - range Some = {i}"
- by(auto simp add: None intro: ccontr)
+ by(auto simp: None intro: ccontr)
also have "measure (measure_pmf q) \<dots> = pmf q i" by(simp add: pmf_def)
finally show ?thesis by simp
qed
qed
lemma integral_measure_spmf_restrict:
- fixes f :: "'a \<Rightarrow> 'b :: {banach, second_countable_topology}" shows
- "(\<integral> x. f x \<partial>measure_spmf M) = (\<integral> x. f x \<partial>restrict_space (measure_spmf M) (set_spmf M))"
-by(auto intro!: integral_cong_AE simp add: integral_restrict_space)
+ fixes f :: "'a \<Rightarrow> 'b :: {banach, second_countable_topology}"
+ shows "(\<integral> x. f x \<partial>measure_spmf M) = (\<integral> x. f x \<partial>restrict_space (measure_spmf M) (set_spmf M))"
+ by(auto intro!: integral_cong_AE simp add: integral_restrict_space)
lemma nn_integral_measure_spmf':
"(\<integral>\<^sup>+ x. f x \<partial>measure_spmf p) = \<integral>\<^sup>+ x. ennreal (spmf p x) * f x \<partial>count_space (set_spmf p)"
-by(auto simp add: nn_integral_measure_spmf nn_integral_count_space_indicator in_set_spmf_iff_spmf intro!: nn_integral_cong split: split_indicator)
+ by(auto simp: nn_integral_measure_spmf nn_integral_count_space_indicator in_set_spmf_iff_spmf intro!: nn_integral_cong split: split_indicator)
subsection \<open>Functorial structure\<close>
abbreviation map_spmf :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a spmf \<Rightarrow> 'b spmf"
-where "map_spmf f \<equiv> map_pmf (map_option f)"
+ where "map_spmf f \<equiv> map_pmf (map_option f)"
context begin
local_setup \<open>Local_Theory.map_background_naming (Name_Space.mandatory_path "spmf")\<close>
lemma map_comp: "map_spmf f (map_spmf g p) = map_spmf (f \<circ> g) p"
-by(simp add: pmf.map_comp o_def option.map_comp)
+ by(simp add: pmf.map_comp o_def option.map_comp)
lemma map_id0: "map_spmf id = id"
-by(simp add: pmf.map_id option.map_id0)
+ by(simp add: pmf.map_id option.map_id0)
lemma map_id [simp]: "map_spmf id p = p"
-by(simp add: map_id0)
+ by(simp add: map_id0)
lemma map_ident [simp]: "map_spmf (\<lambda>x. x) p = p"
-by(simp add: id_def[symmetric])
+ by(simp add: id_def[symmetric])
end
lemma set_map_spmf [simp]: "set_spmf (map_spmf f p) = f ` set_spmf p"
-by(simp add: set_spmf_def image_bind bind_image o_def Option.option.set_map)
+ by(simp add: set_spmf_def image_bind bind_image o_def Option.option.set_map)
lemma map_spmf_cong:
- "\<lbrakk> p = q; \<And>x. x \<in> set_spmf q \<Longrightarrow> f x = g x \<rbrakk>
- \<Longrightarrow> map_spmf f p = map_spmf g q"
-by(auto intro: pmf.map_cong option.map_cong simp add: in_set_spmf)
+ "\<lbrakk> p = q; \<And>x. x \<in> set_spmf q \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> map_spmf f p = map_spmf g q"
+ by(auto intro: pmf.map_cong option.map_cong simp add: in_set_spmf)
lemma map_spmf_cong_simp:
"\<lbrakk> p = q; \<And>x. x \<in> set_spmf q =simp=> f x = g x \<rbrakk>
\<Longrightarrow> map_spmf f p = map_spmf g q"
-unfolding simp_implies_def by(rule map_spmf_cong)
+ unfolding simp_implies_def by(rule map_spmf_cong)
lemma map_spmf_idI: "(\<And>x. x \<in> set_spmf p \<Longrightarrow> f x = x) \<Longrightarrow> map_spmf f p = p"
-by(rule map_pmf_idI map_option_idI)+(simp add: in_set_spmf)
+ by(rule map_pmf_idI map_option_idI)+(simp add: in_set_spmf)
lemma emeasure_map_spmf:
"emeasure (measure_spmf (map_spmf f p)) A = emeasure (measure_spmf p) (f -` A)"
-by(auto simp add: measure_spmf_def emeasure_distr measurable_restrict_space1 space_restrict_space emeasure_restrict_space intro: arg_cong2[where f=emeasure])
+ by(auto simp: measure_spmf_def emeasure_distr measurable_restrict_space1 space_restrict_space emeasure_restrict_space intro: arg_cong2[where f=emeasure])
lemma measure_map_spmf: "measure (measure_spmf (map_spmf f p)) A = measure (measure_spmf p) (f -` A)"
-using emeasure_map_spmf[of f p A] by(simp add: measure_spmf.emeasure_eq_measure)
+ using emeasure_map_spmf[of f p A] by(simp add: measure_spmf.emeasure_eq_measure)
lemma measure_map_spmf_conv_distr:
"measure_spmf (map_spmf f p) = distr (measure_spmf p) (count_space UNIV) f"
-by(rule measure_eqI)(simp_all add: emeasure_map_spmf emeasure_distr)
+ by(rule measure_eqI)(simp_all add: emeasure_map_spmf emeasure_distr)
lemma spmf_map_pmf_Some [simp]: "spmf (map_pmf Some p) i = pmf p i"
-by(simp add: pmf_map_inj')
+ by(simp add: pmf_map_inj')
lemma spmf_map_inj: "\<lbrakk> inj_on f (set_spmf M); x \<in> set_spmf M \<rbrakk> \<Longrightarrow> spmf (map_spmf f M) (f x) = spmf M x"
-by(subst option.map(2)[symmetric, where f=f])(rule pmf_map_inj, auto simp add: in_set_spmf inj_on_def elim!: option.inj_map_strong[rotated])
+ by (smt (verit) elem_set in_set_spmf inj_on_def option.inj_map_strong option.map(2) pmf_map_inj)
lemma spmf_map_inj': "inj f \<Longrightarrow> spmf (map_spmf f M) (f x) = spmf M x"
-by(subst option.map(2)[symmetric, where f=f])(rule pmf_map_inj'[OF option.inj_map])
+ by(subst option.map(2)[symmetric, where f=f])(rule pmf_map_inj'[OF option.inj_map])
lemma spmf_map_outside: "x \<notin> f ` set_spmf M \<Longrightarrow> spmf (map_spmf f M) x = 0"
-unfolding spmf_eq_0_set_spmf by simp
+ unfolding spmf_eq_0_set_spmf by simp
lemma ennreal_spmf_map: "ennreal (spmf (map_spmf f p) x) = emeasure (measure_spmf p) (f -` {x})"
-by(auto simp add: ennreal_pmf_map measure_spmf_def emeasure_distr emeasure_restrict_space space_restrict_space intro: arg_cong2[where f=emeasure])
+ by (metis emeasure_map_spmf emeasure_spmf_single)
lemma spmf_map: "spmf (map_spmf f p) x = measure (measure_spmf p) (f -` {x})"
-using ennreal_spmf_map[of f p x] by(simp add: measure_spmf.emeasure_eq_measure)
+ using ennreal_spmf_map[of f p x] by(simp add: measure_spmf.emeasure_eq_measure)
lemma ennreal_spmf_map_conv_nn_integral:
"ennreal (spmf (map_spmf f p) x) = integral\<^sup>N (measure_spmf p) (indicator (f -` {x}))"
-by(auto simp add: ennreal_pmf_map measure_spmf_def emeasure_distr space_restrict_space emeasure_restrict_space intro: arg_cong2[where f=emeasure])
+ by (simp add: ennreal_spmf_map)
subsection \<open>Monad operations\<close>
subsubsection \<open>Return\<close>
abbreviation return_spmf :: "'a \<Rightarrow> 'a spmf"
-where "return_spmf x \<equiv> return_pmf (Some x)"
+ where "return_spmf x \<equiv> return_pmf (Some x)"
lemma pmf_return_spmf: "pmf (return_spmf x) y = indicator {y} (Some x)"
-by(fact pmf_return)
+ by(fact pmf_return)
lemma measure_spmf_return_spmf: "measure_spmf (return_spmf x) = Giry_Monad.return (count_space UNIV) x"
-by(rule measure_eqI)(simp_all add: measure_spmf_def emeasure_distr space_restrict_space emeasure_restrict_space indicator_def)
+ by(rule measure_eqI)(simp_all add: measure_spmf_def emeasure_distr space_restrict_space emeasure_restrict_space indicator_def)
lemma measure_spmf_return_pmf_None [simp]: "measure_spmf (return_pmf None) = null_measure (count_space UNIV)"
-by(rule measure_eqI)(auto simp add: measure_spmf_def emeasure_distr space_restrict_space emeasure_restrict_space indicator_eq_0_iff)
+ by (simp add: emeasure_measure_spmf_conv_measure_pmf measure_eqI)
lemma set_return_spmf [simp]: "set_spmf (return_spmf x) = {x}"
-by(auto simp add: set_spmf_def)
+ by(auto simp: set_spmf_def)
subsubsection \<open>Bind\<close>
definition bind_spmf :: "'a spmf \<Rightarrow> ('a \<Rightarrow> 'b spmf) \<Rightarrow> 'b spmf"
-where "bind_spmf x f = bind_pmf x (\<lambda>a. case a of None \<Rightarrow> return_pmf None | Some a' \<Rightarrow> f a')"
+ where "bind_spmf x f = bind_pmf x (\<lambda>a. case a of None \<Rightarrow> return_pmf None | Some a' \<Rightarrow> f a')"
adhoc_overloading Monad_Syntax.bind bind_spmf
lemma return_None_bind_spmf [simp]: "return_pmf None \<bind> (f :: 'a \<Rightarrow> _) = return_pmf None"
-by(simp add: bind_spmf_def bind_return_pmf)
+ by(simp add: bind_spmf_def bind_return_pmf)
lemma return_bind_spmf [simp]: "return_spmf x \<bind> f = f x"
-by(simp add: bind_spmf_def bind_return_pmf)
+ by(simp add: bind_spmf_def bind_return_pmf)
lemma bind_return_spmf [simp]: "x \<bind> return_spmf = x"
proof -
@@ -542,7 +532,8 @@
lemma bind_spmf_assoc [simp]:
fixes x :: "'a spmf" and f :: "'a \<Rightarrow> 'b spmf" and g :: "'b \<Rightarrow> 'c spmf"
shows "(x \<bind> f) \<bind> g = x \<bind> (\<lambda>y. f y \<bind> g)"
-by(auto simp add: bind_spmf_def bind_assoc_pmf fun_eq_iff bind_return_pmf split: option.split intro: arg_cong[where f="bind_pmf x"])
+ unfolding bind_spmf_def
+ by (smt (verit, best) bind_assoc_pmf bind_pmf_cong bind_return_pmf option.case_eq_if)
lemma pmf_bind_spmf_None: "pmf (p \<bind> f) None = pmf p None + \<integral> x. pmf (f x) None \<partial>measure_spmf p"
(is "?lhs = ?rhs")
@@ -551,28 +542,40 @@
have "?lhs = \<integral> x. ?f x \<partial>measure_pmf p"
by(simp add: bind_spmf_def pmf_bind)
also have "\<dots> = \<integral> x. ?f None * indicator {None} x + ?f x * indicator (range Some) x \<partial>measure_pmf p"
- by(rule Bochner_Integration.integral_cong)(auto simp add: indicator_def)
+ by(rule Bochner_Integration.integral_cong)(auto simp: indicator_def)
also have "\<dots> = (\<integral> x. ?f None * indicator {None} x \<partial>measure_pmf p) + (\<integral> x. ?f x * indicator (range Some) x \<partial>measure_pmf p)"
by(rule Bochner_Integration.integral_add)(auto 4 3 intro: integrable_real_mult_indicator measure_pmf.integrable_const_bound[where B=1] simp add: AE_measure_pmf_iff pmf_le_1)
also have "\<dots> = pmf p None + \<integral> x. indicator (range Some) x * pmf (f (the x)) None \<partial>measure_pmf p"
- by(auto simp add: measure_measure_pmf_finite indicator_eq_0_iff intro!: Bochner_Integration.integral_cong)
- also have "\<dots> = ?rhs" unfolding measure_spmf_def
- by(subst integral_distr)(auto simp add: integral_restrict_space)
+ by(auto simp: measure_measure_pmf_finite indicator_eq_0_iff intro!: Bochner_Integration.integral_cong)
+ also have "\<dots> = ?rhs"
+ unfolding measure_spmf_def
+ by(subst integral_distr)(auto simp: integral_restrict_space)
finally show ?thesis .
qed
lemma spmf_bind: "spmf (p \<bind> f) y = \<integral> x. spmf (f x) y \<partial>measure_spmf p"
-unfolding measure_spmf_def
-by(subst integral_distr)(auto simp add: bind_spmf_def pmf_bind integral_restrict_space indicator_eq_0_iff intro!: Bochner_Integration.integral_cong split: option.split)
+proof -
+ have "\<And>x. spmf (case x of None \<Rightarrow> return_pmf None | Some x \<Rightarrow> f x) y =
+ indicat_real (range Some) x * spmf (f (the x)) y"
+ by (simp add: split: option.split)
+ then show ?thesis
+ by (simp add: measure_spmf_def integral_distr bind_spmf_def pmf_bind integral_restrict_space)
+qed
lemma ennreal_spmf_bind: "ennreal (spmf (p \<bind> f) x) = \<integral>\<^sup>+ y. spmf (f y) x \<partial>measure_spmf p"
-by(auto simp add: bind_spmf_def ennreal_pmf_bind nn_integral_measure_spmf_conv_measure_pmf nn_integral_restrict_space intro: nn_integral_cong split: split_indicator option.split)
+proof -
+ have "\<And>y. ennreal (spmf (case y of None \<Rightarrow> return_pmf None | Some x \<Rightarrow> f x) x) =
+ ennreal (spmf (f (the y)) x) * indicator (range Some) y"
+ by (simp add: split: option.split)
+ then show ?thesis
+ by (simp add: bind_spmf_def ennreal_pmf_bind nn_integral_measure_spmf_conv_measure_pmf nn_integral_restrict_space)
+qed
lemma measure_spmf_bind_pmf: "measure_spmf (p \<bind> f) = measure_pmf p \<bind> measure_spmf \<circ> f"
(is "?lhs = ?rhs")
proof(rule measure_eqI)
show "sets ?lhs = sets ?rhs"
- by(simp add: sets_bind[where N="count_space UNIV"] space_measure_spmf)
+ by (simp add: Giry_Monad.bind_def)
next
fix A :: "'a set"
have "emeasure ?lhs A = \<integral>\<^sup>+ x. emeasure (measure_spmf (f x)) A \<partial>measure_pmf p"
@@ -602,41 +605,43 @@
qed
lemma map_spmf_bind_spmf: "map_spmf f (bind_spmf p g) = bind_spmf p (map_spmf f \<circ> g)"
-by(auto simp add: bind_spmf_def map_bind_pmf fun_eq_iff split: option.split intro: arg_cong2[where f=bind_pmf])
+ by(auto simp: bind_spmf_def map_bind_pmf fun_eq_iff split: option.split intro: arg_cong2[where f=bind_pmf])
lemma bind_map_spmf: "map_spmf f p \<bind> g = p \<bind> g \<circ> f"
-by(simp add: bind_spmf_def bind_map_pmf o_def cong del: option.case_cong_weak)
+ by(simp add: bind_spmf_def bind_map_pmf o_def cong del: option.case_cong_weak)
lemma spmf_bind_leI:
assumes "\<And>y. y \<in> set_spmf p \<Longrightarrow> spmf (f y) x \<le> r"
and "0 \<le> r"
shows "spmf (bind_spmf p f) x \<le> r"
proof -
- have "ennreal (spmf (bind_spmf p f) x) = \<integral>\<^sup>+ y. spmf (f y) x \<partial>measure_spmf p" by(rule ennreal_spmf_bind)
- also have "\<dots> \<le> \<integral>\<^sup>+ y. r \<partial>measure_spmf p" by(rule nn_integral_mono_AE)(simp add: assms)
- also have "\<dots> \<le> r" using assms measure_spmf.emeasure_space_le_1
- by(auto simp add: measure_spmf.emeasure_eq_measure intro!: mult_left_le)
+ have "ennreal (spmf (bind_spmf p f) x) = \<integral>\<^sup>+ y. spmf (f y) x \<partial>measure_spmf p"
+ by(rule ennreal_spmf_bind)
+ also have "\<dots> \<le> \<integral>\<^sup>+ y. r \<partial>measure_spmf p"
+ by(rule nn_integral_mono_AE)(simp add: assms)
+ also have "\<dots> \<le> r"
+ using assms measure_spmf.emeasure_space_le_1
+ by(auto simp: measure_spmf.emeasure_eq_measure intro!: mult_left_le)
finally show ?thesis using assms(2) by(simp)
qed
lemma map_spmf_conv_bind_spmf: "map_spmf f p = (p \<bind> (\<lambda>x. return_spmf (f x)))"
-by(simp add: map_pmf_def bind_spmf_def)(rule bind_pmf_cong, simp_all split: option.split)
+ by(simp add: map_pmf_def bind_spmf_def)(rule bind_pmf_cong, simp_all split: option.split)
lemma bind_spmf_cong:
- "\<lbrakk> p = q; \<And>x. x \<in> set_spmf q \<Longrightarrow> f x = g x \<rbrakk>
- \<Longrightarrow> bind_spmf p f = bind_spmf q g"
-by(auto simp add: bind_spmf_def in_set_spmf intro: bind_pmf_cong option.case_cong)
+ "\<lbrakk> p = q; \<And>x. x \<in> set_spmf q \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> bind_spmf p f = bind_spmf q g"
+ by(auto simp: bind_spmf_def in_set_spmf intro: bind_pmf_cong option.case_cong)
lemma bind_spmf_cong_simp:
"\<lbrakk> p = q; \<And>x. x \<in> set_spmf q =simp=> f x = g x \<rbrakk>
\<Longrightarrow> bind_spmf p f = bind_spmf q g"
-by(simp add: simp_implies_def cong: bind_spmf_cong)
+ by(simp add: simp_implies_def cong: bind_spmf_cong)
lemma set_bind_spmf: "set_spmf (M \<bind> f) = set_spmf M \<bind> (set_spmf \<circ> f)"
-by(auto simp add: set_spmf_def bind_spmf_def bind_UNION split: option.splits)
+ by(auto simp: set_spmf_def bind_spmf_def bind_UNION split: option.splits)
lemma bind_spmf_const_return_None [simp]: "bind_spmf p (\<lambda>_. return_pmf None) = return_pmf None"
-by(simp add: bind_spmf_def case_option_collapse)
+ by(simp add: bind_spmf_def case_option_collapse)
lemma bind_commute_spmf:
"bind_spmf p (\<lambda>x. bind_spmf q (f x)) = bind_spmf q (\<lambda>y. bind_spmf p (\<lambda>x. f x y))"
@@ -654,32 +659,24 @@
subsection \<open>Relator\<close>
abbreviation rel_spmf :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a spmf \<Rightarrow> 'b spmf \<Rightarrow> bool"
-where "rel_spmf R \<equiv> rel_pmf (rel_option R)"
-
-lemma rel_pmf_mono:
- "\<lbrakk>rel_pmf A f g; \<And>x y. A x y \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_pmf B f g"
-using pmf.rel_mono[of A B] by(simp add: le_fun_def)
+ where "rel_spmf R \<equiv> rel_pmf (rel_option R)"
lemma rel_spmf_mono:
"\<lbrakk>rel_spmf A f g; \<And>x y. A x y \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_spmf B f g"
-apply(erule rel_pmf_mono)
-using option.rel_mono[of A B] by(simp add: le_fun_def)
+ by (metis option.rel_sel pmf.rel_mono_strong)
lemma rel_spmf_mono_strong:
"\<lbrakk> rel_spmf A f g; \<And>x y. \<lbrakk> A x y; x \<in> set_spmf f; y \<in> set_spmf g \<rbrakk> \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_spmf B f g"
-apply(erule pmf.rel_mono_strong)
-apply(erule option.rel_mono_strong)
-apply(auto simp add: in_set_spmf)
-done
+ by (metis elem_set in_set_spmf option.rel_mono_strong pmf.rel_mono_strong)
lemma rel_spmf_reflI: "(\<And>x. x \<in> set_spmf p \<Longrightarrow> P x x) \<Longrightarrow> rel_spmf P p p"
-by(rule rel_pmf_reflI)(auto simp add: set_spmf_def intro: rel_option_reflI)
+ by (metis (mono_tags, lifting) option.rel_eq pmf.rel_eq rel_spmf_mono_strong)
lemma rel_spmfI [intro?]:
"\<lbrakk> \<And>x y. (x, y) \<in> set_spmf pq \<Longrightarrow> P x y; map_spmf fst pq = p; map_spmf snd pq = q \<rbrakk>
\<Longrightarrow> rel_spmf P p q"
by(rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. case x of None \<Rightarrow> (None, None) | Some (a, b) \<Rightarrow> (Some a, Some b)) pq"])
- (auto simp add: pmf.map_comp o_def in_set_spmf split: option.splits intro: pmf.map_cong)
+ (auto simp: pmf.map_comp o_def in_set_spmf split: option.splits intro: pmf.map_cong)
lemma rel_spmfE [elim?, consumes 1, case_names rel_spmf]:
assumes "rel_spmf P p q"
@@ -687,76 +684,76 @@
"\<And>x y. (x, y) \<in> set_spmf pq \<Longrightarrow> P x y"
"p = map_spmf fst pq"
"q = map_spmf snd pq"
-using assms
+ using assms
proof(cases rule: rel_pmf.cases[consumes 1, case_names rel_pmf])
case (rel_pmf pq)
let ?pq = "map_pmf (\<lambda>(a, b). case (a, b) of (Some x, Some y) \<Rightarrow> Some (x, y) | _ \<Rightarrow> None) pq"
have "\<And>x y. (x, y) \<in> set_spmf ?pq \<Longrightarrow> P x y"
- by(auto simp add: in_set_spmf split: option.split_asm dest: rel_pmf(1))
+ by(auto simp: in_set_spmf split: option.split_asm dest: rel_pmf(1))
moreover
have "\<And>x. (x, None) \<in> set_pmf pq \<Longrightarrow> x = None" by(auto dest!: rel_pmf(1))
then have "p = map_spmf fst ?pq" using rel_pmf(2)
- by(auto simp add: pmf.map_comp split_beta intro!: pmf.map_cong split: option.split)
+ by(auto simp: pmf.map_comp split_beta intro!: pmf.map_cong split: option.split)
moreover
have "\<And>y. (None, y) \<in> set_pmf pq \<Longrightarrow> y = None" by(auto dest!: rel_pmf(1))
then have "q = map_spmf snd ?pq" using rel_pmf(3)
- by(auto simp add: pmf.map_comp split_beta intro!: pmf.map_cong split: option.split)
+ by(auto simp: pmf.map_comp split_beta intro!: pmf.map_cong split: option.split)
ultimately show thesis ..
qed
lemma rel_spmf_simps:
"rel_spmf R p q \<longleftrightarrow> (\<exists>pq. (\<forall>(x, y)\<in>set_spmf pq. R x y) \<and> map_spmf fst pq = p \<and> map_spmf snd pq = q)"
-by(auto intro: rel_spmfI elim!: rel_spmfE)
+ by(auto intro: rel_spmfI elim!: rel_spmfE)
lemma spmf_rel_map:
shows spmf_rel_map1: "\<And>R f x. rel_spmf R (map_spmf f x) = rel_spmf (\<lambda>x. R (f x)) x"
- and spmf_rel_map2: "\<And>R x g y. rel_spmf R x (map_spmf g y) = rel_spmf (\<lambda>x y. R x (g y)) x y"
-by(simp_all add: fun_eq_iff pmf.rel_map option.rel_map[abs_def])
+ and spmf_rel_map2: "\<And>R x g y. rel_spmf R x (map_spmf g y) = rel_spmf (\<lambda>x y. R x (g y)) x y"
+ by(simp_all add: fun_eq_iff pmf.rel_map option.rel_map[abs_def])
lemma spmf_rel_conversep: "rel_spmf R\<inverse>\<inverse> = (rel_spmf R)\<inverse>\<inverse>"
-by(simp add: option.rel_conversep pmf.rel_conversep)
+ by(simp add: option.rel_conversep pmf.rel_conversep)
lemma spmf_rel_eq: "rel_spmf (=) = (=)"
-by(simp add: pmf.rel_eq option.rel_eq)
+ by(simp add: pmf.rel_eq option.rel_eq)
context includes lifting_syntax
begin
lemma bind_spmf_parametric [transfer_rule]:
"(rel_spmf A ===> (A ===> rel_spmf B) ===> rel_spmf B) bind_spmf bind_spmf"
-unfolding bind_spmf_def[abs_def] by transfer_prover
+ unfolding bind_spmf_def[abs_def] by transfer_prover
lemma return_spmf_parametric: "(A ===> rel_spmf A) return_spmf return_spmf"
-by transfer_prover
+ by transfer_prover
lemma map_spmf_parametric: "((A ===> B) ===> rel_spmf A ===> rel_spmf B) map_spmf map_spmf"
-by transfer_prover
+ by transfer_prover
lemma rel_spmf_parametric:
"((A ===> B ===> (=)) ===> rel_spmf A ===> rel_spmf B ===> (=)) rel_spmf rel_spmf"
-by transfer_prover
+ by transfer_prover
lemma set_spmf_parametric [transfer_rule]:
"(rel_spmf A ===> rel_set A) set_spmf set_spmf"
-unfolding set_spmf_def[abs_def] by transfer_prover
+ unfolding set_spmf_def[abs_def] by transfer_prover
lemma return_spmf_None_parametric:
"(rel_spmf A) (return_pmf None) (return_pmf None)"
-by simp
+ by simp
end
lemma rel_spmf_bindI:
"\<lbrakk> rel_spmf R p q; \<And>x y. R x y \<Longrightarrow> rel_spmf P (f x) (g y) \<rbrakk>
\<Longrightarrow> rel_spmf P (p \<bind> f) (q \<bind> g)"
-by(fact bind_spmf_parametric[THEN rel_funD, THEN rel_funD, OF _ rel_funI])
+ by(fact bind_spmf_parametric[THEN rel_funD, THEN rel_funD, OF _ rel_funI])
lemma rel_spmf_bind_reflI:
"(\<And>x. x \<in> set_spmf p \<Longrightarrow> rel_spmf P (f x) (g x)) \<Longrightarrow> rel_spmf P (p \<bind> f) (p \<bind> g)"
-by(rule rel_spmf_bindI[where R="\<lambda>x y. x = y \<and> x \<in> set_spmf p"])(auto intro: rel_spmf_reflI)
+ by(rule rel_spmf_bindI[where R="\<lambda>x y. x = y \<and> x \<in> set_spmf p"])(auto intro: rel_spmf_reflI)
lemma rel_pmf_return_pmfI: "P x y \<Longrightarrow> rel_pmf P (return_pmf x) (return_pmf y)"
-by(rule rel_pmf.intros[where pq="return_pmf (x, y)"])(simp_all)
+ by simp
context includes lifting_syntax
begin
@@ -770,97 +767,99 @@
from this(1) obtain pq where A: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> A x y"
and p: "p = map_pmf fst pq" and q: "q = map_pmf snd pq" by cases auto
show "measure p X = measure q Y" unfolding p q measure_map_pmf
- by(rule measure_pmf.finite_measure_eq_AE)(auto simp add: AE_measure_pmf_iff dest!: A rel_predD[OF \<open>rel_pred _ _ _\<close>])
+ by(rule measure_pmf.finite_measure_eq_AE)(auto simp: AE_measure_pmf_iff dest!: A rel_predD[OF \<open>rel_pred _ _ _\<close>])
qed
lemma measure_spmf_parametric:
"(rel_spmf A ===> rel_pred A ===> (=)) (\<lambda>p. measure (measure_spmf p)) (\<lambda>q. measure (measure_spmf q))"
-unfolding measure_measure_spmf_conv_measure_pmf[abs_def]
-apply(rule rel_funI)+
-apply(erule measure_pmf_parametric[THEN rel_funD, THEN rel_funD])
-apply(auto simp add: rel_pred_def rel_fun_def elim: option.rel_cases)
-done
+proof -
+ have "\<And>x y xa ya. rel_pred A xa ya \<Longrightarrow> rel_pred (rel_option A) (Some ` xa) (Some ` ya)"
+ by(auto simp: rel_pred_def rel_fun_def elim: option.rel_cases)
+ then show ?thesis
+ unfolding measure_measure_spmf_conv_measure_pmf[abs_def]
+ by (intro rel_funI) (force elim!: measure_pmf_parametric[THEN rel_funD, THEN rel_funD])
+qed
end
subsection \<open>From \<^typ>\<open>'a pmf\<close> to \<^typ>\<open>'a spmf\<close>\<close>
definition spmf_of_pmf :: "'a pmf \<Rightarrow> 'a spmf"
-where "spmf_of_pmf = map_pmf Some"
+ where "spmf_of_pmf = map_pmf Some"
lemma set_spmf_spmf_of_pmf [simp]: "set_spmf (spmf_of_pmf p) = set_pmf p"
-by(auto simp add: spmf_of_pmf_def set_spmf_def bind_image o_def)
+ by(auto simp: spmf_of_pmf_def set_spmf_def bind_image o_def)
lemma spmf_spmf_of_pmf [simp]: "spmf (spmf_of_pmf p) x = pmf p x"
-by(simp add: spmf_of_pmf_def)
+ by(simp add: spmf_of_pmf_def)
lemma pmf_spmf_of_pmf_None [simp]: "pmf (spmf_of_pmf p) None = 0"
-using ennreal_pmf_map[of Some p None] by(simp add: spmf_of_pmf_def)
+ using ennreal_pmf_map[of Some p None] by(simp add: spmf_of_pmf_def)
lemma emeasure_spmf_of_pmf [simp]: "emeasure (measure_spmf (spmf_of_pmf p)) A = emeasure (measure_pmf p) A"
-by(simp add: emeasure_measure_spmf_conv_measure_pmf spmf_of_pmf_def inj_vimage_image_eq)
+ by(simp add: emeasure_measure_spmf_conv_measure_pmf spmf_of_pmf_def inj_vimage_image_eq)
lemma measure_spmf_spmf_of_pmf [simp]: "measure_spmf (spmf_of_pmf p) = measure_pmf p"
-by(rule measure_eqI) simp_all
+ by(rule measure_eqI) simp_all
lemma map_spmf_of_pmf [simp]: "map_spmf f (spmf_of_pmf p) = spmf_of_pmf (map_pmf f p)"
-by(simp add: spmf_of_pmf_def pmf.map_comp o_def)
+ by(simp add: spmf_of_pmf_def pmf.map_comp o_def)
lemma rel_spmf_spmf_of_pmf [simp]: "rel_spmf R (spmf_of_pmf p) (spmf_of_pmf q) = rel_pmf R p q"
-by(simp add: spmf_of_pmf_def pmf.rel_map)
+ by(simp add: spmf_of_pmf_def pmf.rel_map)
lemma spmf_of_pmf_return_pmf [simp]: "spmf_of_pmf (return_pmf x) = return_spmf x"
-by(simp add: spmf_of_pmf_def)
+ by(simp add: spmf_of_pmf_def)
lemma bind_spmf_of_pmf [simp]: "bind_spmf (spmf_of_pmf p) f = bind_pmf p f"
-by(simp add: spmf_of_pmf_def bind_spmf_def bind_map_pmf)
+ by(simp add: spmf_of_pmf_def bind_spmf_def bind_map_pmf)
lemma set_spmf_bind_pmf: "set_spmf (bind_pmf p f) = Set.bind (set_pmf p) (set_spmf \<circ> f)"
-unfolding bind_spmf_of_pmf[symmetric] by(subst set_bind_spmf) simp
+ unfolding bind_spmf_of_pmf[symmetric] by(subst set_bind_spmf) simp
lemma spmf_of_pmf_bind: "spmf_of_pmf (bind_pmf p f) = bind_pmf p (\<lambda>x. spmf_of_pmf (f x))"
-by(simp add: spmf_of_pmf_def map_bind_pmf)
+ by(simp add: spmf_of_pmf_def map_bind_pmf)
lemma bind_pmf_return_spmf: "p \<bind> (\<lambda>x. return_spmf (f x)) = spmf_of_pmf (map_pmf f p)"
-by(simp add: map_pmf_def spmf_of_pmf_bind)
+ by(simp add: map_pmf_def spmf_of_pmf_bind)
subsection \<open>Weight of a subprobability\<close>
abbreviation weight_spmf :: "'a spmf \<Rightarrow> real"
-where "weight_spmf p \<equiv> measure (measure_spmf p) (space (measure_spmf p))"
+ where "weight_spmf p \<equiv> measure (measure_spmf p) (space (measure_spmf p))"
lemma weight_spmf_def: "weight_spmf p = measure (measure_spmf p) UNIV"
-by(simp add: space_measure_spmf)
+ by(simp add: space_measure_spmf)
lemma weight_spmf_le_1: "weight_spmf p \<le> 1"
-by(simp add: measure_spmf.subprob_measure_le_1)
+ by(rule measure_spmf.subprob_measure_le_1)
lemma weight_return_spmf [simp]: "weight_spmf (return_spmf x) = 1"
-by(simp add: measure_spmf_return_spmf measure_return)
+ by(simp add: measure_spmf_return_spmf measure_return)
lemma weight_return_pmf_None [simp]: "weight_spmf (return_pmf None) = 0"
-by(simp)
+ by(simp)
lemma weight_map_spmf [simp]: "weight_spmf (map_spmf f p) = weight_spmf p"
-by(simp add: weight_spmf_def measure_map_spmf)
+ by(simp add: weight_spmf_def measure_map_spmf)
lemma weight_spmf_of_pmf [simp]: "weight_spmf (spmf_of_pmf p) = 1"
-using measure_pmf.prob_space[of p] by(simp add: spmf_of_pmf_def weight_spmf_def)
+ by simp
lemma weight_spmf_nonneg: "weight_spmf p \<ge> 0"
-by(fact measure_nonneg)
+ by(fact measure_nonneg)
lemma (in finite_measure) integrable_weight_spmf [simp]:
"(\<lambda>x. weight_spmf (f x)) \<in> borel_measurable M \<Longrightarrow> integrable M (\<lambda>x. weight_spmf (f x))"
-by(rule integrable_const_bound[where B=1])(simp_all add: weight_spmf_nonneg weight_spmf_le_1)
+ by(rule integrable_const_bound[where B=1])(simp_all add: weight_spmf_nonneg weight_spmf_le_1)
lemma weight_spmf_eq_nn_integral_spmf: "weight_spmf p = \<integral>\<^sup>+ x. spmf p x \<partial>count_space UNIV"
-by(simp add: measure_measure_spmf_conv_measure_pmf space_measure_spmf measure_pmf.emeasure_eq_measure[symmetric] nn_integral_pmf[symmetric] embed_measure_count_space[symmetric] inj_on_def nn_integral_embed_measure measurable_embed_measure1)
+ by (metis NO_MATCH_def measure_spmf.emeasure_eq_measure nn_integral_count_space_indicator nn_integral_indicator nn_integral_measure_spmf sets_UNIV sets_measure_spmf space_measure_spmf)
lemma weight_spmf_eq_nn_integral_support:
"weight_spmf p = \<integral>\<^sup>+ x. spmf p x \<partial>count_space (set_spmf p)"
-unfolding weight_spmf_eq_nn_integral_spmf
-by(auto simp add: nn_integral_count_space_indicator in_set_spmf_iff_spmf intro!: nn_integral_cong split: split_indicator)
+ unfolding weight_spmf_eq_nn_integral_spmf
+ by(auto simp: nn_integral_count_space_indicator in_set_spmf_iff_spmf intro!: nn_integral_cong split: split_indicator)
lemma pmf_None_eq_weight_spmf: "pmf p None = 1 - weight_spmf p"
proof -
@@ -876,30 +875,23 @@
qed
lemma weight_spmf_conv_pmf_None: "weight_spmf p = 1 - pmf p None"
-by(simp add: pmf_None_eq_weight_spmf)
-
-lemma weight_spmf_le_0: "weight_spmf p \<le> 0 \<longleftrightarrow> weight_spmf p = 0"
-by(rule measure_le_0_iff)
+ by(simp add: pmf_None_eq_weight_spmf)
lemma weight_spmf_lt_0: "\<not> weight_spmf p < 0"
-by(simp add: not_less weight_spmf_nonneg)
+ by(simp add: not_less weight_spmf_nonneg)
lemma spmf_le_weight: "spmf p x \<le> weight_spmf p"
-proof -
- have "ennreal (spmf p x) \<le> weight_spmf p"
- unfolding weight_spmf_eq_nn_integral_spmf by(rule nn_integral_ge_point) simp
- then show ?thesis by simp
-qed
+ by (simp add: measure_spmf.bounded_measure spmf_conv_measure_spmf)
lemma weight_spmf_eq_0: "weight_spmf p = 0 \<longleftrightarrow> p = return_pmf None"
-by(auto intro!: pmf_eqI simp add: pmf_None_eq_weight_spmf split: split_indicator)(metis not_Some_eq pmf_le_0_iff spmf_le_weight)
+ by (metis measure_le_0_iff measure_spmf.bounded_measure spmf_conv_measure_spmf spmf_eqI weight_return_pmf_None)
lemma weight_bind_spmf: "weight_spmf (x \<bind> f) = lebesgue_integral (measure_spmf x) (weight_spmf \<circ> f)"
-unfolding weight_spmf_def
-by(simp add: measure_spmf_bind o_def measure_spmf.measure_bind[where N="count_space UNIV"])
+ unfolding weight_spmf_def
+ by(simp add: measure_spmf_bind o_def measure_spmf.measure_bind[where N="count_space UNIV"])
lemma rel_spmf_weightD: "rel_spmf A p q \<Longrightarrow> weight_spmf p = weight_spmf q"
-by(erule rel_spmfE) simp
+ by(erule rel_spmfE) simp
lemma rel_spmf_bij_betw:
assumes f: "bij_betw f (set_spmf p) (set_spmf q)"
@@ -914,14 +906,22 @@
then have "None \<in> set_pmf p \<longleftrightarrow> None \<in> set_pmf q"
by(simp add: pmf_None_eq_weight_spmf set_pmf_iff)
with f have "bij_betw (map_option f) (set_pmf p) (set_pmf q)"
- apply(auto simp add: bij_betw_def in_set_spmf inj_on_def intro: option.expand)
+ apply(auto simp: bij_betw_def in_set_spmf inj_on_def intro: option.expand split: option.split)
apply(rename_tac [!] x)
apply(case_tac [!] x)
apply(auto iff: in_set_spmf)
done
then have "rel_pmf (\<lambda>x y. ?f x = y) p q"
- by(rule rel_pmf_bij_betw)(case_tac x, simp_all add: weq[simplified] eq in_set_spmf pmf_None_eq_weight_spmf)
- thus ?thesis by(rule pmf.rel_mono_strong)(auto intro!: rel_optionI simp add: Option.is_none_def)
+ proof (rule rel_pmf_bij_betw)
+ show "pmf p x = pmf q (map_option f x)" if "x \<in> set_pmf p" for x
+ proof (cases x)
+ case None
+ then show ?thesis
+ by (metis ennreal_inj measure_nonneg option.map_disc_iff pmf_None_eq_weight_spmf weq)
+ qed (use eq in_set_spmf that in force)
+ qed
+ thus ?thesis
+ by (smt (verit, ccfv_SIG) None_eq_map_option_iff option.map_sel option.rel_sel pmf.rel_mono_strong)
qed
subsection \<open>From density to spmfs\<close>
@@ -929,7 +929,7 @@
context fixes f :: "'a \<Rightarrow> real" begin
definition embed_spmf :: "'a spmf"
-where "embed_spmf = embed_pmf (\<lambda>x. case x of None \<Rightarrow> 1 - enn2real (\<integral>\<^sup>+ x. ennreal (f x) \<partial>count_space UNIV) | Some x' \<Rightarrow> max 0 (f x'))"
+ where "embed_spmf = embed_pmf (\<lambda>x. case x of None \<Rightarrow> 1 - enn2real (\<integral>\<^sup>+ x. ennreal (f x) \<partial>count_space UNIV) | Some x' \<Rightarrow> max 0 (f x'))"
context
assumes prob: "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>count_space UNIV) \<le> 1"
@@ -951,32 +951,25 @@
also have "(\<integral>\<^sup>+ x. ?f x \<partial>\<dots>) = \<integral>\<^sup>+ x. ennreal (f x) \<partial>count_space UNIV"
by(subst nn_integral_embed_measure)(simp_all add: measurable_embed_measure1)
also have "?None + \<dots> = 1" using prob
- by(auto simp add: ennreal_minus[symmetric] ennreal_1[symmetric] ennreal_enn2real_if top_unique simp del: ennreal_1)(simp add: diff_add_self_ennreal)
+ by(auto simp: ennreal_minus[symmetric] ennreal_1[symmetric] ennreal_enn2real_if top_unique simp del: ennreal_1)(simp add: diff_add_self_ennreal)
finally show ?thesis .
qed
lemma pmf_embed_spmf_None: "pmf embed_spmf None = 1 - enn2real (\<integral>\<^sup>+ x. ennreal (f x) \<partial>count_space UNIV)"
unfolding embed_spmf_def
-apply(subst pmf_embed_pmf)
- subgoal using prob by(simp add: field_simps enn2real_leI split: option.split)
- apply(rule nn_integral_embed_spmf_eq_1)
-apply simp
-done
+ by (smt (verit, del_insts) enn2real_leI ennreal_1 nn_integral_cong nn_integral_embed_spmf_eq_1
+ option.case_eq_if pmf_embed_pmf prob)
lemma spmf_embed_spmf [simp]: "spmf embed_spmf x = max 0 (f x)"
-unfolding embed_spmf_def
-apply(subst pmf_embed_pmf)
- subgoal using prob by(simp add: field_simps enn2real_leI split: option.split)
- apply(rule nn_integral_embed_spmf_eq_1)
-apply simp
-done
+ unfolding embed_spmf_def
+ by (smt (verit, best) enn2real_leI ennreal_1 nn_integral_cong nn_integral_embed_spmf_eq_1 option.case_eq_if option.simps(5) pmf_embed_pmf prob)
end
end
-lemma embed_spmf_K_0[simp]: "embed_spmf (\<lambda>_. 0) = return_pmf None" (is "?lhs = ?rhs")
-by(rule spmf_eqI)(simp add: zero_ereal_def[symmetric])
+lemma embed_spmf_K_0[simp]: "embed_spmf (\<lambda>_. 0) = return_pmf None"
+ by(rule spmf_eqI)(simp add: zero_ereal_def[symmetric])
subsection \<open>Ordering on spmfs\<close>
@@ -996,20 +989,20 @@
\<close>
abbreviation ord_spmf :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a spmf \<Rightarrow> 'a spmf \<Rightarrow> bool"
-where "ord_spmf ord \<equiv> rel_pmf (ord_option ord)"
+ where "ord_spmf ord \<equiv> rel_pmf (ord_option ord)"
locale ord_spmf_syntax begin
notation ord_spmf (infix "\<sqsubseteq>\<index>" 60)
end
lemma ord_spmf_map_spmf1: "ord_spmf R (map_spmf f p) = ord_spmf (\<lambda>x. R (f x)) p"
-by(simp add: pmf.rel_map[abs_def] ord_option_map1[abs_def])
+ by(simp add: pmf.rel_map[abs_def] ord_option_map1[abs_def])
lemma ord_spmf_map_spmf2: "ord_spmf R p (map_spmf f q) = ord_spmf (\<lambda>x y. R x (f y)) p q"
-by(simp add: pmf.rel_map ord_option_map2)
+ by(simp add: pmf.rel_map ord_option_map2)
lemma ord_spmf_map_spmf12: "ord_spmf R (map_spmf f p) (map_spmf f q) = ord_spmf (\<lambda>x y. R (f x) (f y)) p q"
-by(simp add: pmf.rel_map ord_option_map1[abs_def] ord_option_map2)
+ by(simp add: pmf.rel_map ord_option_map1[abs_def] ord_option_map2)
lemmas ord_spmf_map_spmf = ord_spmf_map_spmf1 ord_spmf_map_spmf2 ord_spmf_map_spmf12
@@ -1019,14 +1012,14 @@
lemma ord_spmfI:
"\<lbrakk> \<And>x y. (x, y) \<in> set_spmf pq \<Longrightarrow> ord x y; map_spmf fst pq = p; map_spmf snd pq = q \<rbrakk>
\<Longrightarrow> p \<sqsubseteq> q"
-by(rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. case x of None \<Rightarrow> (None, None) | Some (a, b) \<Rightarrow> (Some a, Some b)) pq"])
- (auto simp add: pmf.map_comp o_def in_set_spmf split: option.splits intro: pmf.map_cong)
+ by(rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. case x of None \<Rightarrow> (None, None) | Some (a, b) \<Rightarrow> (Some a, Some b)) pq"])
+ (auto simp: pmf.map_comp o_def in_set_spmf split: option.splits intro: pmf.map_cong)
lemma ord_spmf_None [simp]: "return_pmf None \<sqsubseteq> x"
-by(rule rel_pmf.intros[where pq="map_pmf (Pair None) x"])(auto simp add: pmf.map_comp o_def)
+ by(rule rel_pmf.intros[where pq="map_pmf (Pair None) x"])(auto simp: pmf.map_comp o_def)
lemma ord_spmf_reflI: "(\<And>x. x \<in> set_spmf p \<Longrightarrow> ord x x) \<Longrightarrow> p \<sqsubseteq> p"
-by(rule rel_pmf_reflI ord_option_reflI)+(auto simp add: in_set_spmf)
+ by (metis elem_set in_set_spmf ord_option_reflI pmf.rel_refl_strong)
lemma rel_spmf_inf:
assumes "p \<sqsubseteq> q"
@@ -1037,34 +1030,33 @@
proof -
from \<open>p \<sqsubseteq> q\<close> \<open>q \<sqsubseteq> p\<close>
have "rel_pmf (inf (ord_option ord) (ord_option ord)\<inverse>\<inverse>) p q"
- by(rule rel_pmf_inf)(blast intro: reflp_ord_option transp_ord_option refl trans)+
+ using local.refl local.trans reflp_ord_option rel_pmf_inf transp_ord_option by blast
also have "inf (ord_option ord) (ord_option ord)\<inverse>\<inverse> = rel_option (inf ord ord\<inverse>\<inverse>)"
- by(auto simp add: fun_eq_iff elim: ord_option.cases option.rel_cases)
+ by(auto simp: fun_eq_iff elim: ord_option.cases option.rel_cases)
finally show ?thesis .
qed
end
lemma ord_spmf_return_spmf2: "ord_spmf R p (return_spmf y) \<longleftrightarrow> (\<forall>x\<in>set_spmf p. R x y)"
-by(auto simp add: rel_pmf_return_pmf2 in_set_spmf ord_option.simps intro: ccontr)
+ by(auto simp: rel_pmf_return_pmf2 in_set_spmf ord_option.simps intro: ccontr)
lemma ord_spmf_mono: "\<lbrakk> ord_spmf A p q; \<And>x y. A x y \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> ord_spmf B p q"
-by(erule rel_pmf_mono)(erule ord_option_mono)
+ by(erule pmf.rel_mono_strong)(erule ord_option_mono)
lemma ord_spmf_compp: "ord_spmf (A OO B) = ord_spmf A OO ord_spmf B"
-by(simp add: ord_option_compp pmf.rel_compp)
+ by(simp add: ord_option_compp pmf.rel_compp)
lemma ord_spmf_bindI:
assumes pq: "ord_spmf R p q"
- and fg: "\<And>x y. R x y \<Longrightarrow> ord_spmf P (f x) (g y)"
+ and fg: "\<And>x y. R x y \<Longrightarrow> ord_spmf P (f x) (g y)"
shows "ord_spmf P (p \<bind> f) (q \<bind> g)"
-unfolding bind_spmf_def using pq
-by(rule rel_pmf_bindI)(auto split: option.split intro: fg)
+ unfolding bind_spmf_def using pq
+ by(rule rel_pmf_bindI)(auto split: option.split intro: fg)
lemma ord_spmf_bind_reflI:
- "(\<And>x. x \<in> set_spmf p \<Longrightarrow> ord_spmf R (f x) (g x))
- \<Longrightarrow> ord_spmf R (p \<bind> f) (p \<bind> g)"
-by(rule ord_spmf_bindI[where R="\<lambda>x y. x = y \<and> x \<in> set_spmf p"])(auto intro: ord_spmf_reflI)
+ "(\<And>x. x \<in> set_spmf p \<Longrightarrow> ord_spmf R (f x) (g x)) \<Longrightarrow> ord_spmf R (p \<bind> f) (p \<bind> g)"
+ by(rule ord_spmf_bindI[where R="\<lambda>x y. x = y \<and> x \<in> set_spmf p"])(auto intro: ord_spmf_reflI)
lemma ord_pmf_increaseI:
assumes le: "\<And>x. spmf p x \<le> spmf q x"
@@ -1098,12 +1090,13 @@
also have "?Some = \<integral>\<^sup>+ x. spmf p x \<partial>count_space UNIV"
by(simp add: nn_integral_count_space_indicator[symmetric] embed_measure_count_space[symmetric] inj_on_def nn_integral_embed_measure measurable_embed_measure1)
also have "pmf q None + (?Some2' - ?Some2'') + \<dots> = pmf q None + ?Some2'"
- by(auto simp add: diff_add_self_ennreal le intro!: nn_integral_mono)
+ by(auto simp: diff_add_self_ennreal le intro!: nn_integral_mono)
also have "\<dots> = \<integral>\<^sup>+ x. ennreal (pmf q x) * indicator {None} x + ennreal (pmf q x) * indicator (range Some) x \<partial>count_space UNIV"
by(subst nn_integral_add)(simp_all add: nn_integral_count_space_indicator[symmetric] embed_measure_count_space[symmetric] nn_integral_embed_measure measurable_embed_measure1)
also have "\<dots> = \<integral>\<^sup>+ x. pmf q x \<partial>count_space UNIV"
by(rule nn_integral_cong)(auto split: split_indicator)
- also have "\<dots> = 1" by(simp add: nn_integral_pmf)
+ also have "\<dots> = 1"
+ by(simp add: nn_integral_pmf)
finally show ?thesis .
qed
note f = nonneg integral
@@ -1115,18 +1108,17 @@
by(simp add: spmf_eq_0_set_spmf refl split: option.split_asm if_split_asm) }
have weight_le: "weight_spmf p \<le> weight_spmf q"
- by(subst ennreal_le_iff[symmetric])(auto simp add: weight_spmf_eq_nn_integral_spmf intro!: nn_integral_mono le)
+ by(subst ennreal_le_iff[symmetric])(auto simp: weight_spmf_eq_nn_integral_spmf intro!: nn_integral_mono le)
show "map_pmf fst pq = p"
proof(rule pmf_eqI)
- fix i
+ fix i :: "'a option"
+ have bi: "bij_betw (Pair i) UNIV (fst -` {i})"
+ by(auto simp: bij_betw_def inj_on_def)
have "ennreal (pmf (map_pmf fst pq) i) = (\<integral>\<^sup>+ y. pmf pq (i, y) \<partial>count_space UNIV)"
unfolding pq_def ennreal_pmf_map
- apply(simp add: embed_pmf.rep_eq[OF f] o_def emeasure_density nn_integral_count_space_indicator[symmetric])
- apply(subst pmf_embed_pmf[OF f])
- apply(rule nn_integral_bij_count_space[symmetric])
- apply(auto simp add: bij_betw_def inj_on_def)
- done
+ apply (simp add: embed_pmf.rep_eq[OF f] o_def emeasure_density flip: nn_integral_count_space_indicator)
+ by (smt (verit, best) nn_integral_bij_count_space [OF bi] integral nn_integral_cong nonneg pmf_embed_pmf)
also have "\<dots> = pmf p i"
proof(cases i)
case (Some x)
@@ -1150,21 +1142,20 @@
by(simp add: pmf_None_eq_weight_spmf weight_spmf_eq_nn_integral_spmf[symmetric] ennreal_minus)
also have "\<dots> = ennreal (pmf p None) - ennreal (pmf q None)" by(simp add: ennreal_minus)
finally show ?thesis using None weight_le
- by(auto simp add: diff_add_self_ennreal pmf_None_eq_weight_spmf intro: ennreal_leI)
+ by(auto simp: diff_add_self_ennreal pmf_None_eq_weight_spmf intro: ennreal_leI)
qed
finally show "pmf (map_pmf fst pq) i = pmf p i" by simp
qed
show "map_pmf snd pq = q"
proof(rule pmf_eqI)
- fix i
+ fix i :: "'a option"
+ have bi: "bij_betw (\<lambda>x. (x, i)) UNIV (snd -` {i})"
+ by (auto simp: bij_betw_def inj_on_def)
have "ennreal (pmf (map_pmf snd pq) i) = (\<integral>\<^sup>+ x. pmf pq (x, i) \<partial>count_space UNIV)"
unfolding pq_def ennreal_pmf_map
apply(simp add: embed_pmf.rep_eq[OF f] o_def emeasure_density nn_integral_count_space_indicator[symmetric])
- apply(subst pmf_embed_pmf[OF f])
- apply(rule nn_integral_bij_count_space[symmetric])
- apply(auto simp add: bij_betw_def inj_on_def)
- done
+ by (smt (verit, best) nn_integral_bij_count_space [OF bi] integral nn_integral_cong nonneg pmf_embed_pmf)
also have "\<dots> = ennreal (pmf q i)"
proof(cases i)
case None
@@ -1180,7 +1171,7 @@
also have "\<dots> = (\<integral>\<^sup>+ x. ennreal (pmf pq (x, Some y)) * indicator (range Some) x \<partial>count_space UNIV) + pmf pq (None, Some y)"
by(subst nn_integral_add)(simp_all)
also have "\<dots> = (\<integral>\<^sup>+ x. ennreal (spmf p y) * indicator {Some y} x \<partial>count_space UNIV) + (spmf q y - spmf p y)"
- by(auto simp add: pq_def pmf_embed_pmf[OF f] one_ereal_def[symmetric] simp del: nn_integral_indicator_singleton intro!: arg_cong2[where f="(+)"] nn_integral_cong split: option.split)
+ by(auto simp: pq_def pmf_embed_pmf[OF f] one_ereal_def[symmetric] simp del: nn_integral_indicator_singleton intro!: arg_cong2[where f="(+)"] nn_integral_cong split: option.split)
also have "\<dots> = spmf q y" by(simp add: ennreal_minus[symmetric] le)
finally show ?thesis using Some by simp
qed
@@ -1203,7 +1194,7 @@
have "ennreal (spmf p x) = integral\<^sup>N pq (indicator (fst -` {Some x}))"
using p by(simp add: ennreal_pmf_map)
also have "\<dots> = integral\<^sup>N pq (indicator {(Some x, Some x)})"
- by(rule nn_integral_cong_AE)(auto simp add: AE_measure_pmf_iff split: split_indicator dest: pq)
+ by(rule nn_integral_cong_AE)(auto simp: AE_measure_pmf_iff split: split_indicator dest: pq)
also have "\<dots> \<le> integral\<^sup>N pq (indicator (snd -` {Some x}))"
by(rule nn_integral_mono) simp
also have "\<dots> = ennreal (spmf q x)" using q by(simp add: ennreal_pmf_map)
@@ -1211,11 +1202,11 @@
qed
lemma ord_spmf_eqD_set_spmf: "ord_spmf (=) p q \<Longrightarrow> set_spmf p \<subseteq> set_spmf q"
-by(rule subsetI)(drule_tac x=x in ord_spmf_eq_leD, auto simp add: in_set_spmf_iff_spmf)
+ by (metis ord_spmf_eq_leD pmf_le_0_iff spmf_eq_0_set_spmf subsetI)
lemma ord_spmf_eqD_emeasure:
"ord_spmf (=) p q \<Longrightarrow> emeasure (measure_spmf p) A \<le> emeasure (measure_spmf q) A"
-by(auto intro!: nn_integral_mono split: split_indicator dest: ord_spmf_eq_leD simp add: nn_integral_measure_spmf nn_integral_indicator[symmetric])
+ by(auto intro!: nn_integral_mono split: split_indicator dest: ord_spmf_eq_leD simp add: nn_integral_measure_spmf nn_integral_indicator[symmetric])
lemma ord_spmf_eqD_measure_spmf: "ord_spmf (=) p q \<Longrightarrow> measure_spmf p \<le> measure_spmf q"
by (subst le_measure) (auto simp: ord_spmf_eqD_emeasure)
@@ -1229,9 +1220,10 @@
\<comment> \<open>We go through \<^typ>\<open>ennreal\<close> to have a sensible definition even if \<^term>\<open>Y\<close> is empty.\<close>
lemma lub_spmf_empty [simp]: "SPMF.lub_spmf {} = return_pmf None"
-by(simp add: SPMF.lub_spmf_def bot_ereal_def)
-
-context assumes chain: "Complete_Partial_Order.chain (ord_spmf (=)) Y" begin
+ by(simp add: SPMF.lub_spmf_def bot_ereal_def)
+
+context assumes chain: "Complete_Partial_Order.chain (ord_spmf (=)) Y"
+begin
lemma chain_ord_spmf_eqD: "Complete_Partial_Order.chain (\<le>) ((\<lambda>p x. ennreal (spmf p x)) ` Y)"
(is "Complete_Partial_Order.chain _ (?f ` _)")
@@ -1241,17 +1233,7 @@
then obtain p q where f: "f = ?f p" "p \<in> Y" and g: "g = ?f q" "q \<in> Y" by blast
from chain \<open>p \<in> Y\<close> \<open>q \<in> Y\<close> have "ord_spmf (=) p q \<or> ord_spmf (=) q p" by(rule chainD)
thus "f \<le> g \<or> g \<le> f"
- proof
- assume "ord_spmf (=) p q"
- hence "\<And>x. spmf p x \<le> spmf q x" by(rule ord_spmf_eq_leD)
- hence "f \<le> g" unfolding f g by(auto intro: le_funI)
- thus ?thesis ..
- next
- assume "ord_spmf (=) q p"
- hence "\<And>x. spmf q x \<le> spmf p x" by(rule ord_spmf_eq_leD)
- hence "g \<le> f" unfolding f g by(auto intro: le_funI)
- thus ?thesis ..
- qed
+ by (metis ennreal_leI f(1) g(1) le_funI ord_spmf_eq_leD)
qed
lemma ord_spmf_eq_pmf_None_eq:
@@ -1275,11 +1257,11 @@
lemma ord_spmf_eqD_pmf_None:
assumes "ord_spmf (=) x y"
shows "pmf x None \<ge> pmf y None"
-using assms
-apply cases
-apply(clarsimp simp only: ennreal_le_iff[symmetric, OF pmf_nonneg] ennreal_pmf_map)
-apply(fastforce simp add: AE_measure_pmf_iff intro!: nn_integral_mono_AE)
-done
+ using assms
+ apply cases
+ apply(clarsimp simp only: ennreal_le_iff[symmetric, OF pmf_nonneg] ennreal_pmf_map)
+ apply(fastforce simp: AE_measure_pmf_iff intro!: nn_integral_mono_AE)
+ done
text \<open>
Chains on \<^typ>\<open>'a spmf\<close> maintain countable support.
@@ -1302,7 +1284,7 @@
using chainD[OF chain, of x y] ord_spmf_eqD_pmf_None[of x y] ord_spmf_eqD_pmf_None[of y x]
by (auto simp: N_def)
have N_eq_imp_eq: "\<lbrakk> x \<in> Y; y \<in> Y; N y = N x \<rbrakk> \<Longrightarrow> x = y" for x y
- using chainD[OF chain, of x y] by(auto simp add: N_def dest: ord_spmf_eq_pmf_None_eq)
+ using chainD[OF chain, of x y] by(auto simp: N_def dest: ord_spmf_eq_pmf_None_eq)
have NC: "N ` Y \<noteq> {}" "bdd_below (N ` Y)"
using \<open>Y \<noteq> {}\<close> by(auto intro!: bdd_belowI[of _ 0] simp: N_def)
@@ -1311,7 +1293,7 @@
assume **: "\<not> (\<exists>y\<in>N ` Y. y < N x)"
{ fix y
assume "y \<in> Y"
- with ** consider "N x < N y" | "N x = N y" by(auto simp add: not_less le_less)
+ with ** consider "N x < N y" | "N x = N y" by(auto simp: not_less le_less)
hence "ord_spmf (=) y x" using \<open>y \<in> Y\<close> \<open>x \<in> Y\<close>
by cases(auto dest: N_less_imp_le_spmf N_eq_imp_eq intro: ord_spmf_reflI) }
with False \<open>x \<in> Y\<close> show False by blast
@@ -1387,7 +1369,7 @@
qed
lemma ennreal_spmf_lub_spmf: "Y \<noteq> {} \<Longrightarrow> ennreal (spmf lub_spmf x) = (SUP p\<in>Y. ennreal (spmf p x))"
-unfolding spmf_lub_spmf by(subst ennreal_SUP)(simp_all add: SUP_spmf_neq_top' del: SUP_eq_top_iff Sup_eq_top_iff)
+ by (metis SUP_spmf_neq_top' ennreal_SUP spmf_lub_spmf)
lemma lub_spmf_upper:
assumes p: "p \<in> Y"
@@ -1397,7 +1379,7 @@
from p have [simp]: "Y \<noteq> {}" by auto
from p have "ennreal (spmf p x) \<le> (SUP p\<in>Y. ennreal (spmf p x))" by(rule SUP_upper)
also have "\<dots> = ennreal (spmf lub_spmf x)" using p
- by(subst spmf_lub_spmf)(auto simp add: ennreal_SUP SUP_spmf_neq_top' simp del: SUP_eq_top_iff Sup_eq_top_iff)
+ by(subst spmf_lub_spmf)(auto simp: ennreal_SUP SUP_spmf_neq_top' simp del: SUP_eq_top_iff Sup_eq_top_iff)
finally show "spmf p x \<le> spmf lub_spmf x" by simp
qed simp
@@ -1411,7 +1393,7 @@
fix x
from nonempty obtain p where p: "p \<in> Y" by auto
have "ennreal (spmf lub_spmf x) = (SUP p\<in>Y. ennreal (spmf p x))"
- by(subst spmf_lub_spmf)(auto simp add: ennreal_SUP SUP_spmf_neq_top' nonempty simp del: SUP_eq_top_iff Sup_eq_top_iff)
+ by(subst spmf_lub_spmf)(auto simp: ennreal_SUP SUP_spmf_neq_top' nonempty simp del: SUP_eq_top_iff Sup_eq_top_iff)
also have "\<dots> \<le> ennreal (spmf z x)" by(rule SUP_least)(simp add: ord_spmf_eq_leD z)
finally show "spmf lub_spmf x \<le> spmf z x" by simp
qed simp
@@ -1428,7 +1410,7 @@
also have "\<dots> \<longleftrightarrow> (\<exists>p\<in>Y. ennreal (spmf p x) > 0)"
by(simp add: ennreal_spmf_lub_spmf less_SUP_iff)
also have "\<dots> \<longleftrightarrow> x \<in> ?rhs"
- by(auto simp add: in_set_spmf_iff_spmf less_le)
+ by(auto simp: in_set_spmf_iff_spmf less_le)
finally show "x \<in> ?lhs \<longleftrightarrow> x \<in> ?rhs" .
qed
qed simp
@@ -1440,7 +1422,7 @@
proof -
let ?M = "count_space (set_spmf lub_spmf)"
have "?lhs = \<integral>\<^sup>+ x. ennreal (spmf lub_spmf x) * indicator A x \<partial>?M"
- by(auto simp add: nn_integral_indicator[symmetric] nn_integral_measure_spmf')
+ by(auto simp: nn_integral_indicator[symmetric] nn_integral_measure_spmf')
also have "\<dots> = \<integral>\<^sup>+ x. (SUP y\<in>Y. ennreal (spmf y x) * indicator A x) \<partial>?M"
unfolding ennreal_indicator[symmetric]
by(simp add: spmf_lub_spmf assms ennreal_SUP[OF SUP_spmf_neq_top'] SUP_mult_right_ennreal)
@@ -1449,13 +1431,13 @@
have "(\<lambda>i x. ennreal (spmf i x) * indicator A x) ` Y = (\<lambda>f x. f x * indicator A x) ` (\<lambda>p x. ennreal (spmf p x)) ` Y"
by(simp add: image_image)
also have "Complete_Partial_Order.chain (\<le>) \<dots>" using chain_ord_spmf_eqD
- by(rule chain_imageI)(auto simp add: le_fun_def split: split_indicator)
+ by(rule chain_imageI)(auto simp: le_fun_def split: split_indicator)
finally show "Complete_Partial_Order.chain (\<le>) ((\<lambda>i x. ennreal (spmf i x) * indicator A x) ` Y)" .
qed simp
also have "\<dots> = (SUP y\<in>Y. \<integral>\<^sup>+ x. ennreal (spmf y x) * indicator A x \<partial>count_space UNIV)"
- by(auto simp add: nn_integral_count_space_indicator set_lub_spmf spmf_eq_0_set_spmf split: split_indicator intro!: arg_cong [of _ _ Sup] image_cong nn_integral_cong)
+ by(auto simp: nn_integral_count_space_indicator set_lub_spmf spmf_eq_0_set_spmf split: split_indicator intro!: arg_cong [of _ _ Sup] image_cong nn_integral_cong)
also have "\<dots> = ?rhs"
- by(auto simp add: nn_integral_indicator[symmetric] nn_integral_measure_spmf)
+ by(auto simp: nn_integral_indicator[symmetric] nn_integral_measure_spmf)
finally show ?thesis .
qed
@@ -1474,7 +1456,7 @@
lemma weight_lub_spmf:
assumes Y: "Y \<noteq> {}"
shows "weight_spmf lub_spmf = (SUP y\<in>Y. weight_spmf y)"
-unfolding weight_spmf_def by(rule measure_lub_spmf) fact
+ by (smt (verit, best) SUP_cong assms measure_lub_spmf space_measure_spmf)
lemma measure_spmf_lub_spmf:
assumes Y: "Y \<noteq> {}"
@@ -1519,11 +1501,11 @@
qed
lemma ccpo_spmf: "class.ccpo lub_spmf (ord_spmf (=)) (mk_less (ord_spmf (=)))"
-by(rule ccpo partial_function_definitions_spmf)+
+ by(metis ccpo partial_function_definitions_spmf)
interpretation spmf: partial_function_definitions "ord_spmf (=)" "lub_spmf"
rewrites "lub_spmf {} \<equiv> return_pmf None"
-by(rule partial_function_definitions_spmf) simp
+ by(rule partial_function_definitions_spmf) simp
declaration \<open>Partial_Function.init "spmf" \<^term>\<open>spmf.fixp_fun\<close>
\<^term>\<open>spmf.mono_body\<close> @{thm spmf.fixp_rule_uc} @{thm spmf.fixp_induct_uc}
@@ -1535,14 +1517,14 @@
abbreviation "mono_spmf \<equiv> monotone (fun_ord (ord_spmf (=))) (ord_spmf (=))"
lemma lub_spmf_const [simp]: "lub_spmf {p} = p"
-by(rule spmf_eqI)(simp add: spmf_lub_spmf[OF ccpo.chain_singleton[OF ccpo_spmf]])
+ by(rule spmf_eqI)(simp add: spmf_lub_spmf[OF ccpo.chain_singleton[OF ccpo_spmf]])
lemma bind_spmf_mono':
assumes fg: "ord_spmf (=) f g"
- and hk: "\<And>x :: 'a. ord_spmf (=) (h x) (k x)"
+ and hk: "\<And>x :: 'a. ord_spmf (=) (h x) (k x)"
shows "ord_spmf (=) (f \<bind> h) (g \<bind> k)"
-unfolding bind_spmf_def using assms(1)
-by(rule rel_pmf_bindI)(auto split: option.split simp add: hk)
+ unfolding bind_spmf_def using assms(1)
+ by(rule rel_pmf_bindI)(auto split: option.split simp add: hk)
lemma bind_spmf_mono [partial_function_mono]:
assumes mf: "mono_spmf B" and mg: "\<And>y. mono_spmf (\<lambda>f. C y f)"
@@ -1558,12 +1540,12 @@
qed
lemma monotone_bind_spmf1: "monotone (ord_spmf (=)) (ord_spmf (=)) (\<lambda>y. bind_spmf y g)"
-by(rule monotoneI)(simp add: bind_spmf_mono' ord_spmf_reflI)
+ by(rule monotoneI)(simp add: bind_spmf_mono' ord_spmf_reflI)
lemma monotone_bind_spmf2:
assumes g: "\<And>x. monotone ord (ord_spmf (=)) (\<lambda>y. g y x)"
shows "monotone ord (ord_spmf (=)) (\<lambda>y. bind_spmf p (g y))"
-by(rule monotoneI)(auto intro: bind_spmf_mono' monotoneD[OF g] ord_spmf_reflI)
+ by(rule monotoneI)(auto intro: bind_spmf_mono' monotoneD[OF g] ord_spmf_reflI)
lemma bind_lub_spmf:
assumes chain: "Complete_Partial_Order.chain (ord_spmf (=)) Y"
@@ -1574,18 +1556,18 @@
proof(rule spmf_eqI)
fix i
have chain': "Complete_Partial_Order.chain (\<le>) ((\<lambda>p x. ennreal (spmf p x * spmf (f x) i)) ` Y)"
- using chain by(rule chain_imageI)(auto simp add: le_fun_def dest: ord_spmf_eq_leD intro: mult_right_mono)
+ using chain by(rule chain_imageI)(auto simp: le_fun_def dest: ord_spmf_eq_leD intro: mult_right_mono)
have chain'': "Complete_Partial_Order.chain (ord_spmf (=)) ((\<lambda>p. p \<bind> f) ` Y)"
using chain by(rule chain_imageI)(auto intro!: monotoneI bind_spmf_mono' ord_spmf_reflI)
let ?M = "count_space (set_spmf (lub_spmf Y))"
have "ennreal (spmf ?lhs i) = \<integral>\<^sup>+ x. ennreal (spmf (lub_spmf Y) x) * ennreal (spmf (f x) i) \<partial>?M"
- by(auto simp add: ennreal_spmf_lub_spmf ennreal_spmf_bind nn_integral_measure_spmf')
+ by(auto simp: ennreal_spmf_lub_spmf ennreal_spmf_bind nn_integral_measure_spmf')
also have "\<dots> = \<integral>\<^sup>+ x. (SUP p\<in>Y. ennreal (spmf p x * spmf (f x) i)) \<partial>?M"
by(subst ennreal_spmf_lub_spmf[OF chain Y])(subst SUP_mult_right_ennreal, simp_all add: ennreal_mult Y)
also have "\<dots> = (SUP p\<in>Y. \<integral>\<^sup>+ x. ennreal (spmf p x * spmf (f x) i) \<partial>?M)"
using Y chain' by(rule nn_integral_monotone_convergence_SUP_countable) simp
also have "\<dots> = (SUP p\<in>Y. ennreal (spmf (bind_spmf p f) i))"
- by(auto simp add: ennreal_spmf_bind nn_integral_measure_spmf nn_integral_count_space_indicator set_lub_spmf[OF chain] in_set_spmf_iff_spmf ennreal_mult intro!: arg_cong [of _ _ Sup] image_cong nn_integral_cong split: split_indicator)
+ by(auto simp: ennreal_spmf_bind nn_integral_measure_spmf nn_integral_count_space_indicator set_lub_spmf[OF chain] in_set_spmf_iff_spmf ennreal_mult intro!: arg_cong [of _ _ Sup] image_cong nn_integral_cong split: split_indicator)
also have "\<dots> = ennreal (spmf ?rhs i)" using chain'' by(simp add: ennreal_spmf_lub_spmf Y image_comp)
finally show "spmf ?lhs i = spmf ?rhs i" by simp
qed
@@ -1594,16 +1576,17 @@
lemma map_lub_spmf:
"Complete_Partial_Order.chain (ord_spmf (=)) Y
\<Longrightarrow> map_spmf f (lub_spmf Y) = lub_spmf (map_spmf f ` Y)"
-unfolding map_spmf_conv_bind_spmf[abs_def] by(simp add: bind_lub_spmf o_def)
+ unfolding map_spmf_conv_bind_spmf[abs_def] by(simp add: bind_lub_spmf o_def)
lemma mcont_bind_spmf1: "mcont lub_spmf (ord_spmf (=)) lub_spmf (ord_spmf (=)) (\<lambda>y. bind_spmf y f)"
-using monotone_bind_spmf1 by(rule mcontI)(rule contI, simp add: bind_lub_spmf)
+ using monotone_bind_spmf1
+ by(intro contI mcontI) (auto simp: bind_lub_spmf)
lemma bind_lub_spmf2:
assumes chain: "Complete_Partial_Order.chain ord Y"
- and g: "\<And>y. monotone ord (ord_spmf (=)) (g y)"
+ and g: "\<And>y. monotone ord (ord_spmf (=)) (g y)"
shows "bind_spmf x (\<lambda>y. lub_spmf (g y ` Y)) = lub_spmf ((\<lambda>p. bind_spmf x (\<lambda>y. g y p)) ` Y)"
- (is "?lhs = ?rhs")
+ (is "?lhs = ?rhs")
proof(cases "Y = {}")
case Y: False
show ?thesis
@@ -1612,7 +1595,7 @@
have chain': "\<And>y. Complete_Partial_Order.chain (ord_spmf (=)) (g y ` Y)"
using chain g[THEN monotoneD] by(rule chain_imageI)
have chain'': "Complete_Partial_Order.chain (\<le>) ((\<lambda>p y. ennreal (spmf x y * spmf (g y p) i)) ` Y)"
- using chain by(rule chain_imageI)(auto simp add: le_fun_def dest: ord_spmf_eq_leD monotoneD[OF g] intro!: mult_left_mono)
+ using chain by(rule chain_imageI)(auto simp: le_fun_def dest: ord_spmf_eq_leD monotoneD[OF g] intro!: mult_left_mono)
have chain''': "Complete_Partial_Order.chain (ord_spmf (=)) ((\<lambda>p. bind_spmf x (\<lambda>y. g y p)) ` Y)"
using chain by(rule chain_imageI)(rule monotone_bind_spmf2[OF g, THEN monotoneD])
@@ -1624,7 +1607,7 @@
also have "\<dots> = (SUP p\<in>Y. ennreal (spmf (bind_spmf x (\<lambda>y. g y p)) i))"
by(simp add: ennreal_spmf_bind nn_integral_measure_spmf' ennreal_mult)
also have "\<dots> = ennreal (spmf ?rhs i)" using chain'''
- by(auto simp add: ennreal_spmf_lub_spmf Y image_comp)
+ by(auto simp: ennreal_spmf_lub_spmf Y image_comp)
finally show "spmf ?lhs i = spmf ?rhs i" by simp
qed
qed simp
@@ -1656,44 +1639,44 @@
lemma bind_pmf_mono [partial_function_mono]:
"(\<And>y. mono_spmf (\<lambda>f. C y f)) \<Longrightarrow> mono_spmf (\<lambda>f. bind_pmf p (\<lambda>x. C x f))"
-using bind_spmf_mono[of "\<lambda>_. spmf_of_pmf p" C] by simp
+ using bind_spmf_mono[of "\<lambda>_. spmf_of_pmf p" C] by simp
lemma map_spmf_mono [partial_function_mono]: "mono_spmf B \<Longrightarrow> mono_spmf (\<lambda>g. map_spmf f (B g))"
-unfolding map_spmf_conv_bind_spmf by(rule bind_spmf_mono) simp_all
+ unfolding map_spmf_conv_bind_spmf by(rule bind_spmf_mono) simp_all
lemma mcont_map_spmf [cont_intro]:
"mcont luba orda lub_spmf (ord_spmf (=)) g
\<Longrightarrow> mcont luba orda lub_spmf (ord_spmf (=)) (\<lambda>x. map_spmf f (g x))"
-unfolding map_spmf_conv_bind_spmf by(rule mcont_bind_spmf) simp_all
+ unfolding map_spmf_conv_bind_spmf by(rule mcont_bind_spmf) simp_all
lemma monotone_set_spmf: "monotone (ord_spmf (=)) (\<subseteq>) set_spmf"
-by(rule monotoneI)(rule ord_spmf_eqD_set_spmf)
+ by(rule monotoneI)(rule ord_spmf_eqD_set_spmf)
lemma cont_set_spmf: "cont lub_spmf (ord_spmf (=)) Union (\<subseteq>) set_spmf"
-by(rule contI)(subst set_lub_spmf; simp)
+ by(rule contI)(subst set_lub_spmf; simp)
lemma mcont2mcont_set_spmf[THEN mcont2mcont, cont_intro]:
shows mcont_set_spmf: "mcont lub_spmf (ord_spmf (=)) Union (\<subseteq>) set_spmf"
-by(rule mcontI monotone_set_spmf cont_set_spmf)+
+ by(rule mcontI monotone_set_spmf cont_set_spmf)+
lemma monotone_spmf: "monotone (ord_spmf (=)) (\<le>) (\<lambda>p. spmf p x)"
-by(rule monotoneI)(simp add: ord_spmf_eq_leD)
+ by(rule monotoneI)(simp add: ord_spmf_eq_leD)
lemma cont_spmf: "cont lub_spmf (ord_spmf (=)) Sup (\<le>) (\<lambda>p. spmf p x)"
-by(rule contI)(simp add: spmf_lub_spmf)
+ by(rule contI)(simp add: spmf_lub_spmf)
lemma mcont_spmf: "mcont lub_spmf (ord_spmf (=)) Sup (\<le>) (\<lambda>p. spmf p x)"
-by(rule mcontI monotone_spmf cont_spmf)+
+ by(metis mcontI monotone_spmf cont_spmf)
lemma cont_ennreal_spmf: "cont lub_spmf (ord_spmf (=)) Sup (\<le>) (\<lambda>p. ennreal (spmf p x))"
-by(rule contI)(simp add: ennreal_spmf_lub_spmf)
+ by(rule contI)(simp add: ennreal_spmf_lub_spmf)
lemma mcont2mcont_ennreal_spmf [THEN mcont2mcont, cont_intro]:
shows mcont_ennreal_spmf: "mcont lub_spmf (ord_spmf (=)) Sup (\<le>) (\<lambda>p. ennreal (spmf p x))"
-by(rule mcontI mono2mono_ennreal monotone_spmf cont_ennreal_spmf)+
+ by(metis mcontI mono2mono_ennreal monotone_spmf cont_ennreal_spmf)
lemma nn_integral_map_spmf [simp]: "nn_integral (measure_spmf (map_spmf f p)) g = nn_integral (measure_spmf p) (g \<circ> f)"
-by(auto 4 3 simp add: measure_spmf_def nn_integral_distr nn_integral_restrict_space intro: nn_integral_cong split: split_indicator)
+ by(force simp: measure_spmf_def nn_integral_distr nn_integral_restrict_space intro: nn_integral_cong split: split_indicator)
subsubsection \<open>Admissibility of \<^term>\<open>rel_spmf\<close>\<close>
@@ -1705,7 +1688,7 @@
also have "\<dots> \<le> measure (measure_pmf q) {y. \<exists>x\<in>Some ` A. rel_option R x y}"
using assms by(rule rel_pmf_measureD)
also have "\<dots> = ?rhs" unfolding measure_measure_spmf_conv_measure_pmf
- by(rule arg_cong2[where f=measure])(auto simp add: option_rel_Some1)
+ by(rule arg_cong2[where f=measure])(auto simp: option_rel_Some1)
finally show ?thesis .
qed
@@ -1728,7 +1711,7 @@
define A' where "A' = the ` (A \<inter> range Some)"
define A'' where "A'' = A \<inter> {None}"
have A: "A = Some ` A' \<union> A''" "Some ` A' \<inter> A'' = {}"
- unfolding A'_def A''_def by(auto 4 3 intro: rev_image_eqI)
+ unfolding A'_def A''_def by(auto simp: image_iff)
have "measure (measure_pmf p) A = measure (measure_pmf p) (Some ` A') + measure (measure_pmf p) A''"
by(simp add: A measure_pmf.finite_measure_Union)
also have "measure (measure_pmf p) (Some ` A') = measure (measure_spmf p) A'"
@@ -1737,7 +1720,7 @@
also (ord_eq_le_trans[OF _ add_right_mono])
have "\<dots> = measure (measure_pmf q) {y. \<exists>x\<in>A'. rel_option R (Some x) y}"
unfolding measure_measure_spmf_conv_measure_pmf
- by(rule arg_cong2[where f=measure])(auto simp add: A'_def option_rel_Some1)
+ by(rule arg_cong2[where f=measure])(auto simp: A'_def option_rel_Some1)
also
{ have "weight_spmf p \<le> measure (measure_spmf q) {y. \<exists>x. R x y}"
using eq1[of UNIV] unfolding weight_spmf_def by simp
@@ -1769,7 +1752,7 @@
have "rel_spmf R (lub_spmf (fst ` Y)) (lub_spmf (snd ` Y))"
proof(rule rel_spmf_measureI)
show "weight_spmf (lub_spmf (snd ` Y)) \<le> weight_spmf (lub_spmf (fst ` Y))"
- by(auto simp add: weight_lub_spmf chain1 chain2 Y rel_spmf_weightD[OF R, symmetric] intro!: cSUP_least intro: cSUP_upper2[OF bdd_aboveI2[OF weight_spmf_le_1]])
+ by(auto simp: weight_lub_spmf chain1 chain2 Y rel_spmf_weightD[OF R, symmetric] intro!: cSUP_least intro: cSUP_upper2[OF bdd_aboveI2[OF weight_spmf_le_1]])
fix A
have "measure (measure_spmf (lub_spmf (fst ` Y))) A = (SUP y\<in>fst ` Y. measure (measure_spmf y) A)"
@@ -1786,17 +1769,17 @@
lemma admissible_rel_spmf_mcont [cont_intro]:
"\<lbrakk> mcont lub ord lub_spmf (ord_spmf (=)) f; mcont lub ord lub_spmf (ord_spmf (=)) g \<rbrakk>
\<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. rel_spmf R (f x) (g x))"
-by(rule admissible_subst[OF admissible_rel_spmf, where f="\<lambda>x. (f x, g x)", simplified])(rule mcont_Pair)
+ by(rule admissible_subst[OF admissible_rel_spmf, where f="\<lambda>x. (f x, g x)", simplified])(rule mcont_Pair)
context includes lifting_syntax
begin
lemma fixp_spmf_parametric':
assumes f: "\<And>x. monotone (ord_spmf (=)) (ord_spmf (=)) F"
- and g: "\<And>x. monotone (ord_spmf (=)) (ord_spmf (=)) G"
- and param: "(rel_spmf R ===> rel_spmf R) F G"
+ and g: "\<And>x. monotone (ord_spmf (=)) (ord_spmf (=)) G"
+ and param: "(rel_spmf R ===> rel_spmf R) F G"
shows "(rel_spmf R) (ccpo.fixp lub_spmf (ord_spmf (=)) F) (ccpo.fixp lub_spmf (ord_spmf (=)) G)"
-by(rule parallel_fixp_induct[OF ccpo_spmf ccpo_spmf _ f g])(auto intro: param[THEN rel_funD])
+ by(rule parallel_fixp_induct[OF ccpo_spmf ccpo_spmf _ f g])(auto intro: param[THEN rel_funD])
lemma fixp_spmf_parametric:
assumes f: "\<And>x. mono_spmf (\<lambda>f. F f x)"
@@ -1807,13 +1790,9 @@
proof(rule parallel_fixp_induct_1_1[OF partial_function_definitions_spmf partial_function_definitions_spmf _ _ reflexive reflexive, where P="(A ===> rel_spmf R)"])
show "ccpo.admissible (prod_lub (fun_lub lub_spmf) (fun_lub lub_spmf)) (rel_prod (fun_ord (ord_spmf (=))) (fun_ord (ord_spmf (=)))) (\<lambda>x. (A ===> rel_spmf R) (fst x) (snd x))"
unfolding rel_fun_def
- apply(rule admissible_all admissible_imp admissible_rel_spmf_mcont)+
- apply(rule spmf.mcont2mcont[OF mcont_call])
- apply(rule mcont_fst)
- apply(rule spmf.mcont2mcont[OF mcont_call])
- apply(rule mcont_snd)
- done
- show "(A ===> rel_spmf R) (\<lambda>_. lub_spmf {}) (\<lambda>_. lub_spmf {})" by auto
+ by(fastforce intro: admissible_all admissible_imp admissible_rel_spmf_mcont)
+ show "(A ===> rel_spmf R) (\<lambda>_. lub_spmf {}) (\<lambda>_. lub_spmf {})"
+ by auto
show "(A ===> rel_spmf R) (F f) (G g)" if "(A ===> rel_spmf R) f g" for f g
using that by(rule rel_funD[OF param])
qed
@@ -1827,40 +1806,46 @@
subsection \<open>Restrictions on spmfs\<close>
definition restrict_spmf :: "'a spmf \<Rightarrow> 'a set \<Rightarrow> 'a spmf" (infixl "\<upharpoonleft>" 110)
-where "p \<upharpoonleft> A = map_pmf (\<lambda>x. x \<bind> (\<lambda>y. if y \<in> A then Some y else None)) p"
+ where "p \<upharpoonleft> A = map_pmf (\<lambda>x. x \<bind> (\<lambda>y. if y \<in> A then Some y else None)) p"
lemma set_restrict_spmf [simp]: "set_spmf (p \<upharpoonleft> A) = set_spmf p \<inter> A"
-by(fastforce simp add: restrict_spmf_def set_spmf_def split: bind_splits if_split_asm)
+ by(fastforce simp: restrict_spmf_def set_spmf_def split: bind_splits if_split_asm)
lemma restrict_map_spmf: "map_spmf f p \<upharpoonleft> A = map_spmf f (p \<upharpoonleft> (f -` A))"
-by(simp add: restrict_spmf_def pmf.map_comp o_def map_option_bind bind_map_option if_distrib cong del: if_weak_cong)
+ by(simp add: restrict_spmf_def pmf.map_comp o_def map_option_bind bind_map_option if_distrib cong del: if_weak_cong)
lemma restrict_restrict_spmf [simp]: "p \<upharpoonleft> A \<upharpoonleft> B = p \<upharpoonleft> (A \<inter> B)"
-by(auto simp add: restrict_spmf_def pmf.map_comp o_def intro!: pmf.map_cong bind_option_cong)
+ by(auto simp: restrict_spmf_def pmf.map_comp o_def intro!: pmf.map_cong bind_option_cong)
lemma restrict_spmf_empty [simp]: "p \<upharpoonleft> {} = return_pmf None"
-by(simp add: restrict_spmf_def)
+ by(simp add: restrict_spmf_def)
lemma restrict_spmf_UNIV [simp]: "p \<upharpoonleft> UNIV = p"
-by(simp add: restrict_spmf_def)
+ by(simp add: restrict_spmf_def)
lemma spmf_restrict_spmf_outside [simp]: "x \<notin> A \<Longrightarrow> spmf (p \<upharpoonleft> A) x = 0"
-by(simp add: spmf_eq_0_set_spmf)
-
-lemma emeasure_restrict_spmf [simp]:
- "emeasure (measure_spmf (p \<upharpoonleft> A)) X = emeasure (measure_spmf p) (X \<inter> A)"
-by(auto simp add: restrict_spmf_def measure_spmf_def emeasure_distr measurable_restrict_space1 emeasure_restrict_space space_restrict_space intro: arg_cong2[where f=emeasure] split: bind_splits if_split_asm)
+ by(simp add: spmf_eq_0_set_spmf)
+
+lemma emeasure_restrict_spmf [simp]: "emeasure (measure_spmf (p \<upharpoonleft> A)) X = emeasure (measure_spmf p) (X \<inter> A)"
+proof -
+ have "(\<lambda>x. x \<bind> (\<lambda>y. if y \<in> A then Some y else None)) -` the -` X \<inter>
+ (\<lambda>x. x \<bind> (\<lambda>y. if y \<in> A then Some y else None)) -` range Some =
+ the -` X \<inter> the -` A \<inter> range Some"
+ by(auto split: bind_splits if_split_asm)
+ then show ?thesis
+ by (simp add: restrict_spmf_def measure_spmf_def emeasure_distr emeasure_restrict_space)
+qed
lemma measure_restrict_spmf [simp]:
"measure (measure_spmf (p \<upharpoonleft> A)) X = measure (measure_spmf p) (X \<inter> A)"
-using emeasure_restrict_spmf[of p A X]
-by(simp only: measure_spmf.emeasure_eq_measure ennreal_inj measure_nonneg)
+ using emeasure_restrict_spmf[of p A X]
+ by(simp only: measure_spmf.emeasure_eq_measure ennreal_inj measure_nonneg)
lemma spmf_restrict_spmf: "spmf (p \<upharpoonleft> A) x = (if x \<in> A then spmf p x else 0)"
-by(simp add: spmf_conv_measure_spmf)
+ by(simp add: spmf_conv_measure_spmf)
lemma spmf_restrict_spmf_inside [simp]: "x \<in> A \<Longrightarrow> spmf (p \<upharpoonleft> A) x = spmf p x"
-by(simp add: spmf_restrict_spmf)
+ by(simp add: spmf_restrict_spmf)
lemma pmf_restrict_spmf_None: "pmf (p \<upharpoonleft> A) None = pmf p None + measure (measure_spmf p) (- A)"
proof -
@@ -1873,37 +1858,37 @@
qed
lemma restrict_spmf_trivial: "(\<And>x. x \<in> set_spmf p \<Longrightarrow> x \<in> A) \<Longrightarrow> p \<upharpoonleft> A = p"
-by(rule spmf_eqI)(auto simp add: spmf_restrict_spmf spmf_eq_0_set_spmf)
+ by(rule spmf_eqI)(auto simp: spmf_restrict_spmf spmf_eq_0_set_spmf)
lemma restrict_spmf_trivial': "set_spmf p \<subseteq> A \<Longrightarrow> p \<upharpoonleft> A = p"
-by(rule restrict_spmf_trivial) blast
+ by(rule restrict_spmf_trivial) blast
lemma restrict_return_spmf: "return_spmf x \<upharpoonleft> A = (if x \<in> A then return_spmf x else return_pmf None)"
-by(simp add: restrict_spmf_def)
+ by(simp add: restrict_spmf_def)
lemma restrict_return_spmf_inside [simp]: "x \<in> A \<Longrightarrow> return_spmf x \<upharpoonleft> A = return_spmf x"
-by(simp add: restrict_return_spmf)
+ by(simp add: restrict_return_spmf)
lemma restrict_return_spmf_outside [simp]: "x \<notin> A \<Longrightarrow> return_spmf x \<upharpoonleft> A = return_pmf None"
-by(simp add: restrict_return_spmf)
+ by(simp add: restrict_return_spmf)
lemma restrict_spmf_return_pmf_None [simp]: "return_pmf None \<upharpoonleft> A = return_pmf None"
-by(simp add: restrict_spmf_def)
+ by(simp add: restrict_spmf_def)
lemma restrict_bind_pmf: "bind_pmf p g \<upharpoonleft> A = p \<bind> (\<lambda>x. g x \<upharpoonleft> A)"
-by(simp add: restrict_spmf_def map_bind_pmf o_def)
+ by(simp add: restrict_spmf_def map_bind_pmf o_def)
lemma restrict_bind_spmf: "bind_spmf p g \<upharpoonleft> A = p \<bind> (\<lambda>x. g x \<upharpoonleft> A)"
-by(auto simp add: bind_spmf_def restrict_bind_pmf cong del: option.case_cong_weak cong: option.case_cong intro!: bind_pmf_cong split: option.split)
+ by(auto simp: bind_spmf_def restrict_bind_pmf cong del: option.case_cong_weak cong: option.case_cong intro!: bind_pmf_cong split: option.split)
lemma bind_restrict_pmf: "bind_pmf (p \<upharpoonleft> A) g = p \<bind> (\<lambda>x. if x \<in> Some ` A then g x else g None)"
-by(auto simp add: restrict_spmf_def bind_map_pmf fun_eq_iff split: bind_split intro: arg_cong2[where f=bind_pmf])
+ by(auto simp: restrict_spmf_def bind_map_pmf fun_eq_iff split: bind_split intro: arg_cong2[where f=bind_pmf])
lemma bind_restrict_spmf: "bind_spmf (p \<upharpoonleft> A) g = p \<bind> (\<lambda>x. if x \<in> A then g x else return_pmf None)"
-by(auto simp add: bind_spmf_def bind_restrict_pmf fun_eq_iff intro: arg_cong2[where f=bind_pmf] split: option.split)
+ by(auto simp: bind_spmf_def bind_restrict_pmf fun_eq_iff intro: arg_cong2[where f=bind_pmf] split: option.split)
lemma spmf_map_restrict: "spmf (map_spmf fst (p \<upharpoonleft> (snd -` {y}))) x = spmf p (x, y)"
-by(subst spmf_map)(auto intro: arg_cong2[where f=measure] simp add: spmf_conv_measure_spmf)
+ by(subst spmf_map)(auto intro: arg_cong2[where f=measure] simp add: spmf_conv_measure_spmf)
lemma measure_eqI_restrict_spmf:
assumes "rel_spmf R (restrict_spmf p A) (restrict_spmf q B)"
@@ -1920,55 +1905,55 @@
"spmf_of_set A = (if finite A \<and> A \<noteq> {} then spmf_of_pmf (pmf_of_set A) else return_pmf None)"
lemma spmf_of_set: "spmf (spmf_of_set A) x = indicator A x / card A"
-by(auto simp add: spmf_of_set_def)
+ by(auto simp: spmf_of_set_def)
lemma pmf_spmf_of_set_None [simp]: "pmf (spmf_of_set A) None = indicator {A. infinite A \<or> A = {}} A"
-by(simp add: spmf_of_set_def)
+ by(simp add: spmf_of_set_def)
lemma set_spmf_of_set: "set_spmf (spmf_of_set A) = (if finite A then A else {})"
-by(simp add: spmf_of_set_def)
+ by(simp add: spmf_of_set_def)
lemma set_spmf_of_set_finite [simp]: "finite A \<Longrightarrow> set_spmf (spmf_of_set A) = A"
-by(simp add: set_spmf_of_set)
+ by(simp add: set_spmf_of_set)
lemma spmf_of_set_singleton: "spmf_of_set {x} = return_spmf x"
-by(simp add: spmf_of_set_def pmf_of_set_singleton)
+ by(simp add: spmf_of_set_def pmf_of_set_singleton)
lemma map_spmf_of_set_inj_on [simp]:
"inj_on f A \<Longrightarrow> map_spmf f (spmf_of_set A) = spmf_of_set (f ` A)"
-by(auto simp add: spmf_of_set_def map_pmf_of_set_inj dest: finite_imageD)
+ by(auto simp: spmf_of_set_def map_pmf_of_set_inj dest: finite_imageD)
lemma spmf_of_pmf_pmf_of_set [simp]:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> spmf_of_pmf (pmf_of_set A) = spmf_of_set A"
-by(simp add: spmf_of_set_def)
+ by(simp add: spmf_of_set_def)
lemma weight_spmf_of_set:
"weight_spmf (spmf_of_set A) = (if finite A \<and> A \<noteq> {} then 1 else 0)"
-by(auto simp only: spmf_of_set_def weight_spmf_of_pmf weight_return_pmf_None split: if_split)
+ by(auto simp only: spmf_of_set_def weight_spmf_of_pmf weight_return_pmf_None split: if_split)
lemma weight_spmf_of_set_finite [simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> weight_spmf (spmf_of_set A) = 1"
-by(simp add: weight_spmf_of_set)
+ by(simp add: weight_spmf_of_set)
lemma weight_spmf_of_set_infinite [simp]: "infinite A \<Longrightarrow> weight_spmf (spmf_of_set A) = 0"
-by(simp add: weight_spmf_of_set)
+ by(simp add: weight_spmf_of_set)
lemma measure_spmf_spmf_of_set:
"measure_spmf (spmf_of_set A) = (if finite A \<and> A \<noteq> {} then measure_pmf (pmf_of_set A) else null_measure (count_space UNIV))"
-by(simp add: spmf_of_set_def del: spmf_of_pmf_pmf_of_set)
+ by(simp add: spmf_of_set_def del: spmf_of_pmf_pmf_of_set)
lemma emeasure_spmf_of_set:
"emeasure (measure_spmf (spmf_of_set S)) A = card (S \<inter> A) / card S"
-by(auto simp add: measure_spmf_spmf_of_set emeasure_pmf_of_set)
+ by(auto simp: measure_spmf_spmf_of_set emeasure_pmf_of_set)
lemma measure_spmf_of_set:
"measure (measure_spmf (spmf_of_set S)) A = card (S \<inter> A) / card S"
-by(auto simp add: measure_spmf_spmf_of_set measure_pmf_of_set)
+ by(auto simp: measure_spmf_spmf_of_set measure_pmf_of_set)
lemma nn_integral_spmf_of_set: "nn_integral (measure_spmf (spmf_of_set A)) f = sum f A / card A"
-by(cases "finite A")(auto simp add: spmf_of_set_def nn_integral_pmf_of_set card_gt_0_iff simp del: spmf_of_pmf_pmf_of_set)
+ by(cases "finite A")(auto simp: spmf_of_set_def nn_integral_pmf_of_set card_gt_0_iff simp del: spmf_of_pmf_pmf_of_set)
lemma integral_spmf_of_set: "integral\<^sup>L (measure_spmf (spmf_of_set A)) f = sum f A / card A"
-by(clarsimp simp add: spmf_of_set_def integral_pmf_of_set card_gt_0_iff simp del: spmf_of_pmf_pmf_of_set)
+ by (metis card.infinite div_0 division_ring_divide_zero integral_null_measure integral_pmf_of_set measure_spmf_spmf_of_set of_nat_0 sum.empty)
notepad begin \<comment> \<open>\<^const>\<open>pmf_of_set\<close> is not fully parametric.\<close>
define R :: "nat \<Rightarrow> nat \<Rightarrow> bool" where "R x y \<longleftrightarrow> (x \<noteq> 0 \<longrightarrow> y = 0)" for x y
@@ -1991,7 +1976,7 @@
also have "\<dots> = emeasure (measure_pmf pq) (snd -` {2, 1})"
unfolding 2[symmetric] measure_pmf.emeasure_eq_measure[symmetric] by(simp)
also have "\<dots> = emeasure (measure_pmf pq) {(0, 2), (0, 1)}"
- by(rule emeasure_eq_AE)(auto simp add: AE_measure_pmf_iff R_def dest!: pq)
+ by(rule emeasure_eq_AE)(auto simp: AE_measure_pmf_iff R_def dest!: pq)
also have "\<dots> \<le> emeasure (measure_pmf pq) (fst -` {0})"
by(rule emeasure_mono) auto
also have "\<dots> = emeasure (measure_pmf (pmf_of_set A)) {0}"
@@ -2013,7 +1998,7 @@
define AB where "AB = (\<lambda>x. (x, f x)) ` A"
define R' where "R' x y \<longleftrightarrow> (x, y) \<in> AB" for x y
have "(x, y) \<in> AB" if "(x, y) \<in> set_pmf (pmf_of_set AB)" for x y
- using that by(auto simp add: AB_def A)
+ using that by(auto simp: AB_def A)
moreover have "map_pmf fst (pmf_of_set AB) = pmf_of_set A"
by(simp add: AB_def map_pmf_of_set_inj[symmetric] inj_on_def A pmf.map_comp o_def)
moreover
@@ -2030,10 +2015,11 @@
and R: "\<And>x. x \<in> A \<Longrightarrow> R x (f x)"
shows "rel_spmf R (spmf_of_set A) (spmf_of_set B)"
proof -
- have "finite A \<longleftrightarrow> finite B" using f by(rule bij_betw_finite)
- moreover have "A = {} \<longleftrightarrow> B = {}" using f by(auto dest: bij_betw_empty2 bij_betw_empty1)
- ultimately show ?thesis using assms
- by(auto simp add: spmf_of_set_def simp del: spmf_of_pmf_pmf_of_set intro: rel_pmf_of_set_bij)
+ obtain "finite A \<longleftrightarrow> finite B" "A = {} \<longleftrightarrow> B = {}"
+ using bij_betw_empty1 bij_betw_empty2 bij_betw_finite f by blast
+ then show ?thesis
+ using assms
+ by (metis rel_pmf_of_set_bij rel_spmf_spmf_of_pmf return_spmf_None_parametric spmf_of_set_def)
qed
context includes lifting_syntax
@@ -2047,7 +2033,8 @@
assume R: "rel_set R A B"
with assms obtain f where "bij_betw f A B" and f: "\<And>x. x \<in> A \<Longrightarrow> R x (f x)"
by(auto dest: bi_unique_rel_set_bij_betw)
- then show "rel_spmf R (spmf_of_set A) (spmf_of_set B)" by(rule rel_spmf_of_set_bij)
+ then show "rel_spmf R (spmf_of_set A) (spmf_of_set B)"
+ by(rule rel_spmf_of_set_bij)
qed
end
@@ -2063,7 +2050,7 @@
also have "\<dots> = (if i then card (B \<inter> A) / card B else card (B - A) / card B)"
by(auto intro: arg_cong[where f=card])
also have "\<dots> = (if i then card (B \<inter> A) / card B else (card B - card (B \<inter> A)) / card B)"
- by(auto simp add: card_Diff_subset_Int assms)
+ by(auto simp: card_Diff_subset_Int assms)
also have "\<dots> = ennreal (spmf ?rhs i)"
by(simp add: assms card_gt_0_iff field_simps card_mono Int_commute of_nat_diff)
finally show "spmf ?lhs i = spmf ?rhs i" by simp
@@ -2079,48 +2066,48 @@
qed
lemma bind_coin_spmf_eq_const: "coin_spmf \<bind> (\<lambda>x :: bool. return_spmf (b = x)) = coin_spmf"
-using map_eq_const_coin_spmf unfolding map_spmf_conv_bind_spmf by simp
+ using map_eq_const_coin_spmf unfolding map_spmf_conv_bind_spmf by simp
lemma bind_coin_spmf_eq_const': "coin_spmf \<bind> (\<lambda>x :: bool. return_spmf (x = b)) = coin_spmf"
-by(rewrite in "_ = \<hole>" bind_coin_spmf_eq_const[symmetric, of b])(auto intro: bind_spmf_cong)
+ by(rewrite in "_ = \<hole>" bind_coin_spmf_eq_const[symmetric, of b])(auto intro: bind_spmf_cong)
subsection \<open>Losslessness\<close>
definition lossless_spmf :: "'a spmf \<Rightarrow> bool"
-where "lossless_spmf p \<longleftrightarrow> weight_spmf p = 1"
+ where "lossless_spmf p \<longleftrightarrow> weight_spmf p = 1"
lemma lossless_iff_pmf_None: "lossless_spmf p \<longleftrightarrow> pmf p None = 0"
-by(simp add: lossless_spmf_def pmf_None_eq_weight_spmf)
+ by(simp add: lossless_spmf_def pmf_None_eq_weight_spmf)
lemma lossless_return_spmf [iff]: "lossless_spmf (return_spmf x)"
-by(simp add: lossless_iff_pmf_None)
+ by(simp add: lossless_iff_pmf_None)
lemma lossless_return_pmf_None [iff]: "\<not> lossless_spmf (return_pmf None)"
-by(simp add: lossless_iff_pmf_None)
+ by(simp add: lossless_iff_pmf_None)
lemma lossless_map_spmf [simp]: "lossless_spmf (map_spmf f p) \<longleftrightarrow> lossless_spmf p"
-by(auto simp add: lossless_iff_pmf_None pmf_eq_0_set_pmf)
+ by(auto simp: lossless_iff_pmf_None pmf_eq_0_set_pmf)
lemma lossless_bind_spmf [simp]:
"lossless_spmf (p \<bind> f) \<longleftrightarrow> lossless_spmf p \<and> (\<forall>x\<in>set_spmf p. lossless_spmf (f x))"
-by(simp add: lossless_iff_pmf_None pmf_bind_spmf_None add_nonneg_eq_0_iff integral_nonneg_AE integral_nonneg_eq_0_iff_AE measure_spmf.integrable_const_bound[where B=1] pmf_le_1)
+ by(simp add: lossless_iff_pmf_None pmf_bind_spmf_None add_nonneg_eq_0_iff integral_nonneg_AE integral_nonneg_eq_0_iff_AE measure_spmf.integrable_const_bound[where B=1] pmf_le_1)
lemma lossless_weight_spmfD: "lossless_spmf p \<Longrightarrow> weight_spmf p = 1"
-by(simp add: lossless_spmf_def)
+ by(simp add: lossless_spmf_def)
lemma lossless_iff_set_pmf_None:
"lossless_spmf p \<longleftrightarrow> None \<notin> set_pmf p"
-by (simp add: lossless_iff_pmf_None pmf_eq_0_set_pmf)
+ by (simp add: lossless_iff_pmf_None pmf_eq_0_set_pmf)
lemma lossless_spmf_of_set [simp]: "lossless_spmf (spmf_of_set A) \<longleftrightarrow> finite A \<and> A \<noteq> {}"
-by(auto simp add: lossless_spmf_def weight_spmf_of_set)
+ by(auto simp: lossless_spmf_def weight_spmf_of_set)
lemma lossless_spmf_spmf_of_spmf [simp]: "lossless_spmf (spmf_of_pmf p)"
-by(simp add: lossless_spmf_def)
+ by(simp add: lossless_spmf_def)
lemma lossless_spmf_bind_pmf [simp]:
"lossless_spmf (bind_pmf p f) \<longleftrightarrow> (\<forall>x\<in>set_pmf p. lossless_spmf (f x))"
-by(simp add: lossless_iff_pmf_None pmf_bind integral_nonneg_AE integral_nonneg_eq_0_iff_AE measure_pmf.integrable_const_bound[where B=1] AE_measure_pmf_iff pmf_le_1)
+ by(simp add: lossless_iff_pmf_None pmf_bind integral_nonneg_AE integral_nonneg_eq_0_iff_AE measure_pmf.integrable_const_bound[where B=1] AE_measure_pmf_iff pmf_le_1)
lemma lossless_spmf_conv_spmf_of_pmf: "lossless_spmf p \<longleftrightarrow> (\<exists>p'. p = spmf_of_pmf p')"
proof
@@ -2134,7 +2121,7 @@
fix i
have "ennreal (pmf (map_pmf the p) i) = \<integral>\<^sup>+ x. indicator (the -` {i}) x \<partial>p" by(simp add: ennreal_pmf_map)
also have "\<dots> = \<integral>\<^sup>+ x. indicator {i} x \<partial>measure_spmf p" unfolding measure_spmf_def
- by(subst nn_integral_distr)(auto simp add: nn_integral_restrict_space AE_measure_pmf_iff simp del: nn_integral_indicator intro!: nn_integral_cong_AE split: split_indicator dest!: * )
+ by(subst nn_integral_distr)(auto simp: nn_integral_restrict_space AE_measure_pmf_iff simp del: nn_integral_indicator intro!: nn_integral_cong_AE split: split_indicator dest!: * )
also have "\<dots> = spmf p i" by(simp add: emeasure_spmf_single)
finally show "spmf p i = spmf (spmf_of_pmf ?p) i" by simp
qed
@@ -2142,22 +2129,24 @@
qed auto
lemma spmf_False_conv_True: "lossless_spmf p \<Longrightarrow> spmf p False = 1 - spmf p True"
-by(clarsimp simp add: lossless_spmf_conv_spmf_of_pmf pmf_False_conv_True)
+ by(clarsimp simp add: lossless_spmf_conv_spmf_of_pmf pmf_False_conv_True)
lemma spmf_True_conv_False: "lossless_spmf p \<Longrightarrow> spmf p True = 1 - spmf p False"
-by(simp add: spmf_False_conv_True)
+ by(simp add: spmf_False_conv_True)
lemma bind_eq_return_spmf:
"bind_spmf p f = return_spmf x \<longleftrightarrow> (\<forall>y\<in>set_spmf p. f y = return_spmf x) \<and> lossless_spmf p"
-by(auto simp add: bind_spmf_def bind_eq_return_pmf in_set_spmf lossless_iff_pmf_None pmf_eq_0_set_pmf iff del: not_None_eq split: option.split)
+ apply (simp add: bind_spmf_def bind_eq_return_pmf split: option.split)
+ by (metis in_set_spmf lossless_iff_set_pmf_None not_None_eq)
lemma rel_spmf_return_spmf2:
"rel_spmf R p (return_spmf x) \<longleftrightarrow> lossless_spmf p \<and> (\<forall>a\<in>set_spmf p. R a x)"
-by(auto simp add: lossless_iff_set_pmf_None rel_pmf_return_pmf2 option_rel_Some2 in_set_spmf, metis in_set_spmf not_None_eq)
+ apply (simp add: lossless_iff_set_pmf_None rel_pmf_return_pmf2 option_rel_Some2 in_set_spmf)
+ by (metis in_set_spmf not_None_eq option.sel)
lemma rel_spmf_return_spmf1:
"rel_spmf R (return_spmf x) p \<longleftrightarrow> lossless_spmf p \<and> (\<forall>a\<in>set_spmf p. R x a)"
-using rel_spmf_return_spmf2[of "R\<inverse>\<inverse>"] by(simp add: spmf_rel_conversep)
+ using rel_spmf_return_spmf2[of "R\<inverse>\<inverse>"] by(simp add: spmf_rel_conversep)
lemma rel_spmf_bindI1:
assumes f: "\<And>x. x \<in> set_spmf p \<Longrightarrow> rel_spmf R (f x) q"
@@ -2173,7 +2162,7 @@
lemma rel_spmf_bindI2:
"\<lbrakk> \<And>x. x \<in> set_spmf q \<Longrightarrow> rel_spmf R p (f x); lossless_spmf q \<rbrakk>
\<Longrightarrow> rel_spmf R p (bind_spmf q f)"
-using rel_spmf_bindI1[of q "conversep R" f p] by(simp add: spmf_rel_conversep)
+ using rel_spmf_bindI1[of q "conversep R" f p] by(simp add: spmf_rel_conversep)
subsection \<open>Scaling\<close>
@@ -2192,71 +2181,72 @@
qed
lemma spmf_scale_spmf: "spmf (scale_spmf r p) x = max 0 (min (inverse (weight_spmf p)) r) * spmf p x" (is "?lhs = ?rhs")
-unfolding scale_spmf_def
-apply(subst spmf_embed_spmf[OF scale_spmf_le_1])
-apply(simp add: max_def min_def weight_spmf_le_0 field_simps weight_spmf_nonneg not_le order.strict_iff_order)
-apply(metis antisym_conv order_trans weight_spmf_nonneg zero_le_mult_iff zero_le_one)
-done
+ unfolding scale_spmf_def
+ apply(subst spmf_embed_spmf[OF scale_spmf_le_1])
+ apply(simp add: max_def min_def measure_le_0_iff field_simps weight_spmf_nonneg not_le order.strict_iff_order)
+ apply(metis antisym_conv order_trans weight_spmf_nonneg zero_le_mult_iff zero_le_one)
+ done
lemma real_inverse_le_1_iff: fixes x :: real
shows "\<lbrakk> 0 \<le> x; x \<le> 1 \<rbrakk> \<Longrightarrow> 1 / x \<le> 1 \<longleftrightarrow> x = 1 \<or> x = 0"
-by auto
+ by auto
lemma spmf_scale_spmf': "r \<le> 1 \<Longrightarrow> spmf (scale_spmf r p) x = max 0 r * spmf p x"
-using real_inverse_le_1_iff[OF weight_spmf_nonneg weight_spmf_le_1, of p]
-by(auto simp add: spmf_scale_spmf max_def min_def field_simps)(metis pmf_le_0_iff spmf_le_weight)
+ using real_inverse_le_1_iff[OF weight_spmf_nonneg weight_spmf_le_1, of p]
+ by(auto simp: spmf_scale_spmf max_def min_def field_simps)(metis pmf_le_0_iff spmf_le_weight)
lemma scale_spmf_neg: "r \<le> 0 \<Longrightarrow> scale_spmf r p = return_pmf None"
-by(rule spmf_eqI)(simp add: spmf_scale_spmf' max_def)
+ by(rule spmf_eqI)(simp add: spmf_scale_spmf' max_def)
lemma scale_spmf_return_None [simp]: "scale_spmf r (return_pmf None) = return_pmf None"
-by(rule spmf_eqI)(simp add: spmf_scale_spmf)
+ by(rule spmf_eqI)(simp add: spmf_scale_spmf)
lemma scale_spmf_conv_bind_bernoulli:
assumes "r \<le> 1"
shows "scale_spmf r p = bind_pmf (bernoulli_pmf r) (\<lambda>b. if b then p else return_pmf None)" (is "?lhs = ?rhs")
proof(rule spmf_eqI)
fix x
- have "ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)" using assms
+ have "\<lbrakk>weight_spmf p = 0\<rbrakk> \<Longrightarrow> spmf p x = 0"
+ by (metis pmf_le_0_iff spmf_le_weight)
+ moreover have "\<lbrakk>weight_spmf p \<noteq> 0; 1 / weight_spmf p < 1\<rbrakk> \<Longrightarrow> weight_spmf p = 1"
+ by (smt (verit) divide_less_eq_1 measure_spmf.subprob_measure_le_1 weight_spmf_lt_0)
+ ultimately have "ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)"
+ using assms
unfolding spmf_scale_spmf ennreal_pmf_bind nn_integral_measure_pmf UNIV_bool bernoulli_pmf.rep_eq
- apply(auto simp add: nn_integral_count_space_finite max_def min_def field_simps real_inverse_le_1_iff[OF weight_spmf_nonneg weight_spmf_le_1] weight_spmf_lt_0 not_le ennreal_mult[symmetric])
- apply (metis pmf_le_0_iff spmf_le_weight)
- apply (metis pmf_le_0_iff spmf_le_weight)
- apply (meson le_divide_eq_1_pos measure_spmf.subprob_measure_le_1 not_less order_trans weight_spmf_le_0)
- by (meson divide_le_0_1_iff less_imp_le order_trans weight_spmf_le_0)
+ by(auto simp: nn_integral_count_space_finite max_def min_def field_simps
+ real_inverse_le_1_iff[OF weight_spmf_nonneg weight_spmf_le_1] ennreal_mult[symmetric])
thus "spmf ?lhs x = spmf ?rhs x" by simp
qed
lemma nn_integral_spmf: "(\<integral>\<^sup>+ x. spmf p x \<partial>count_space A) = emeasure (measure_spmf p) A"
-apply(simp add: measure_spmf_def emeasure_distr emeasure_restrict_space space_restrict_space nn_integral_pmf[symmetric])
-apply(rule nn_integral_bij_count_space[where g=Some])
-apply(auto simp add: bij_betw_def)
-done
+proof -
+ have "bij_betw Some A (the -` A \<inter> range Some)"
+ by(auto simp: bij_betw_def)
+ then show ?thesis
+ by (metis bij_betw_def emeasure_measure_spmf_conv_measure_pmf nn_integral_pmf')
+qed
lemma measure_spmf_scale_spmf: "measure_spmf (scale_spmf r p) = scale_measure (min (inverse (weight_spmf p)) r) (measure_spmf p)"
-apply(rule measure_eqI)
- apply simp
-apply(simp add: nn_integral_spmf[symmetric] spmf_scale_spmf)
-apply(subst nn_integral_cmult[symmetric])
-apply(auto simp add: max_def min_def ennreal_mult[symmetric] not_le ennreal_lt_0)
-done
+ by(rule measure_eqI; simp add: spmf_scale_spmf ennreal_mult' flip: nn_integral_spmf nn_integral_cmult)
lemma measure_spmf_scale_spmf':
- "r \<le> 1 \<Longrightarrow> measure_spmf (scale_spmf r p) = scale_measure r (measure_spmf p)"
-unfolding measure_spmf_scale_spmf
-apply(cases "weight_spmf p > 0")
- apply(simp add: min.absorb2 field_simps weight_spmf_le_1 mult_le_one)
-apply(clarsimp simp add: weight_spmf_le_0 min_def scale_spmf_neg weight_spmf_eq_0 not_less)
-done
+ assumes "r \<le> 1"
+ shows "measure_spmf (scale_spmf r p) = scale_measure r (measure_spmf p)"
+proof(cases "weight_spmf p > 0")
+ case True
+ with assms show ?thesis
+ by(simp add: measure_spmf_scale_spmf field_simps weight_spmf_le_1 mult_le_one)
+next
+ case False
+ then show ?thesis
+ by (simp add: order_less_le weight_spmf_eq_0)
+qed
lemma scale_spmf_1 [simp]: "scale_spmf 1 p = p"
-apply(rule spmf_eqI)
-apply(simp add: spmf_scale_spmf max_def min_def order.strict_iff_order field_simps weight_spmf_nonneg)
-apply(metis antisym_conv divide_le_eq_1 less_imp_le pmf_nonneg spmf_le_weight weight_spmf_nonneg weight_spmf_le_1)
-done
+ by (simp add: spmf_eqI spmf_scale_spmf')
lemma scale_spmf_0 [simp]: "scale_spmf 0 p = return_pmf None"
-by(rule spmf_eqI)(simp add: spmf_scale_spmf min_def max_def weight_spmf_le_0)
+ by (simp add: scale_spmf_neg)
lemma bind_scale_spmf:
assumes r: "r \<le> 1"
@@ -2264,9 +2254,10 @@
(is "?lhs = ?rhs")
proof(rule spmf_eqI)
fix x
- have "ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)" using r
- by(simp add: ennreal_spmf_bind measure_spmf_scale_spmf' nn_integral_scale_measure spmf_scale_spmf')
- (simp add: ennreal_mult ennreal_lt_0 nn_integral_cmult max_def min_def)
+ have "ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)"
+ using r
+ by(simp add: ennreal_spmf_bind measure_spmf_scale_spmf' nn_integral_scale_measure spmf_scale_spmf'
+ ennreal_mult nn_integral_cmult)
thus "spmf ?lhs x = spmf ?rhs x" by simp
qed
@@ -2295,45 +2286,50 @@
proof(rule spmf_eqI)
fix i
show "spmf ?lhs i = spmf ?rhs i" unfolding spmf_scale_spmf
- by(subst (1 2) spmf_map)(auto simp add: measure_spmf_scale_spmf max_def min_def ennreal_lt_0)
+ by(subst (1 2) spmf_map)(auto simp: measure_spmf_scale_spmf max_def min_def ennreal_lt_0)
qed
lemma set_scale_spmf: "set_spmf (scale_spmf r p) = (if r > 0 then set_spmf p else {})"
-apply(auto simp add: in_set_spmf_iff_spmf spmf_scale_spmf)
-apply(simp add: max_def min_def not_le weight_spmf_lt_0 weight_spmf_eq_0 split: if_split_asm)
-done
+ apply(auto simp: in_set_spmf_iff_spmf spmf_scale_spmf)
+ apply(simp add: min_def weight_spmf_eq_0 split: if_split_asm)
+ done
lemma set_scale_spmf' [simp]: "0 < r \<Longrightarrow> set_spmf (scale_spmf r p) = set_spmf p"
-by(simp add: set_scale_spmf)
+ by(simp add: set_scale_spmf)
lemma rel_spmf_scaleI:
assumes "r > 0 \<Longrightarrow> rel_spmf A p q"
shows "rel_spmf A (scale_spmf r p) (scale_spmf r q)"
proof(cases "r > 0")
case True
- from assms[OF this] show ?thesis
- by(rule rel_spmfE)(auto simp add: map_scale_spmf[symmetric] spmf_rel_map True intro: rel_spmf_reflI)
+ from assms[OF True] show ?thesis
+ by(rule rel_spmfE)(auto simp: map_scale_spmf[symmetric] spmf_rel_map True intro: rel_spmf_reflI)
qed(simp add: not_less scale_spmf_neg)
lemma weight_scale_spmf: "weight_spmf (scale_spmf r p) = min 1 (max 0 r * weight_spmf p)"
proof -
+ have "\<lbrakk>1 / weight_spmf p \<le> r; ennreal r * ennreal (weight_spmf p) < 1\<rbrakk> \<Longrightarrow> weight_spmf p = 0"
+ by (smt (verit) ennreal_less_one_iff ennreal_mult'' measure_le_0_iff mult_imp_less_div_pos)
+ moreover
+ have "\<lbrakk>r < 1 / weight_spmf p; 1 \<le> ennreal r * ennreal (weight_spmf p)\<rbrakk> \<Longrightarrow> weight_spmf p = 0"
+ by (smt (verit, ccfv_threshold) ennreal_ge_1 ennreal_mult'' mult_imp_div_pos_le weight_spmf_lt_0)
+ ultimately
have "ennreal (weight_spmf (scale_spmf r p)) = min 1 (max 0 r * ennreal (weight_spmf p))"
unfolding weight_spmf_eq_nn_integral_spmf
apply(simp add: spmf_scale_spmf ennreal_mult zero_ereal_def[symmetric] nn_integral_cmult)
- apply(auto simp add: weight_spmf_eq_nn_integral_spmf[symmetric] field_simps min_def max_def not_le weight_spmf_lt_0 ennreal_mult[symmetric])
- subgoal by(subst (asm) ennreal_mult[symmetric], meson divide_less_0_1_iff le_less_trans not_le weight_spmf_lt_0, simp+, meson not_le pos_divide_le_eq weight_spmf_le_0)
- subgoal by(cases "r \<ge> 0")(simp_all add: ennreal_mult[symmetric] weight_spmf_nonneg ennreal_lt_0, meson le_less_trans not_le pos_divide_le_eq zero_less_divide_1_iff)
+ apply(auto simp: weight_spmf_eq_nn_integral_spmf[symmetric] field_simps min_def max_def not_le weight_spmf_lt_0 ennreal_mult[symmetric])
done
- thus ?thesis by(auto simp add: min_def max_def ennreal_mult[symmetric] split: if_split_asm)
+ thus ?thesis
+ by(auto simp: min_def max_def ennreal_mult[symmetric] split: if_split_asm)
qed
lemma weight_scale_spmf' [simp]:
"\<lbrakk> 0 \<le> r; r \<le> 1 \<rbrakk> \<Longrightarrow> weight_spmf (scale_spmf r p) = r * weight_spmf p"
-by(simp add: weight_scale_spmf max_def min_def)(metis antisym_conv mult_left_le order_trans weight_spmf_le_1)
+ by(simp add: weight_scale_spmf max_def min_def)(metis antisym_conv mult_left_le order_trans weight_spmf_le_1)
lemma pmf_scale_spmf_None:
"pmf (scale_spmf k p) None = 1 - min 1 (max 0 k * (1 - pmf p None))"
-unfolding pmf_None_eq_weight_spmf by(simp add: weight_scale_spmf)
+ unfolding pmf_None_eq_weight_spmf by(simp add: weight_scale_spmf)
lemma scale_scale_spmf:
"scale_spmf r (scale_spmf r' p) = scale_spmf (r * max 0 (min (inverse (weight_spmf p)) r')) p"
@@ -2347,25 +2343,29 @@
show ?thesis
proof(rule spmf_eqI)
fix i
- have "max 0 (min (1 / weight_spmf p) r') * max 0 (min (1 / min 1 (weight_spmf p * max 0 r')) r) =
+ have *: "max 0 (min (1 / weight_spmf p) r') * max 0 (min (1 / min 1 (weight_spmf p * max 0 r')) r) =
max 0 (min (1 / weight_spmf p) (r * max 0 (min (1 / weight_spmf p) r')))"
using True
- by(simp add: field_simps max_def min.absorb_iff2[symmetric])(auto simp add: min_def field_simps zero_le_mult_iff)
- then show "spmf ?lhs i = spmf ?rhs i"
- apply (subst spmf_scale_spmf)+ (*FOR SOME REASON we now get linarith_split_limit exceeded if simp is used*)
- by (metis (no_types, opaque_lifting) inverse_eq_divide mult.commute mult.left_commute weight_scale_spmf)
+ by (simp add: max_def) (auto simp: min_def field_simps zero_le_mult_iff)
+ show "spmf ?lhs i = spmf ?rhs i"
+ by (simp add: spmf_scale_spmf) (metis * inverse_eq_divide mult.commute weight_scale_spmf)
qed
qed
lemma scale_scale_spmf' [simp]:
- "\<lbrakk> 0 \<le> r; r \<le> 1; 0 \<le> r'; r' \<le> 1 \<rbrakk>
- \<Longrightarrow> scale_spmf r (scale_spmf r' p) = scale_spmf (r * r') p"
-apply(cases "weight_spmf p > 0")
-apply(auto simp add: scale_scale_spmf min_def max_def field_simps not_le weight_spmf_lt_0 weight_spmf_eq_0 not_less weight_spmf_le_0)
-apply(subgoal_tac "1 = r'")
- apply (metis (no_types) div_by_1 eq_iff measure_spmf.subprob_measure_le_1 mult.commute mult_cancel_right1)
-apply(meson eq_iff le_divide_eq_1_pos measure_spmf.subprob_measure_le_1 mult_imp_div_pos_le order.trans)
-done
+ assumes "0 \<le> r" "r \<le> 1" "0 \<le> r'" "r' \<le> 1"
+ shows "scale_spmf r (scale_spmf r' p) = scale_spmf (r * r') p"
+proof(cases "weight_spmf p > 0")
+ case True
+ with assms have "r' = 1" if "1 \<le> r' * weight_spmf p"
+ by (smt (verit, best) measure_spmf.subprob_measure_le_1 mult_eq_1 mult_le_one that)
+ with assms True show ?thesis
+ by (smt (verit, best) eq_divide_imp measure_le_0_iff mult.assoc mult_nonneg_nonneg scale_scale_spmf weight_scale_spmf')
+next
+ case False
+ with assms show ?thesis
+ by (simp add: weight_spmf_eq_0 zero_less_measure_iff)
+qed
lemma scale_spmf_eq_same: "scale_spmf r p = p \<longleftrightarrow> weight_spmf p = 0 \<or> r = 1 \<or> r \<ge> 1 \<and> weight_spmf p = 1"
(is "?lhs \<longleftrightarrow> ?rhs")
@@ -2373,53 +2373,59 @@
assume ?lhs
hence "weight_spmf (scale_spmf r p) = weight_spmf p" by simp
hence *: "min 1 (max 0 r * weight_spmf p) = weight_spmf p" by(simp add: weight_scale_spmf)
- hence **: "weight_spmf p = 0 \<or> r \<ge> 1" by(auto simp add: min_def max_def split: if_split_asm)
+ hence **: "weight_spmf p = 0 \<or> r \<ge> 1" by(auto simp: min_def max_def split: if_split_asm)
show ?rhs
proof(cases "weight_spmf p = 0")
case False
- with ** have "r \<ge> 1" by simp
- with * False have "r = 1 \<or> weight_spmf p = 1" by(simp add: max_def min_def not_le split: if_split_asm)
- with \<open>r \<ge> 1\<close> show ?thesis by simp
+ with ** have "r \<ge> 1"
+ by simp
+ with * False have "r = 1 \<or> weight_spmf p = 1"
+ by(simp add: max_def min_def not_le split: if_split_asm)
+ with \<open>r \<ge> 1\<close> show ?thesis
+ by simp
qed simp
-qed(auto intro!: spmf_eqI simp add: spmf_scale_spmf, metis pmf_le_0_iff spmf_le_weight)
+next
+ show "weight_spmf p = 0 \<or> r = 1 \<or> 1 \<le> r \<and> weight_spmf p = 1 \<Longrightarrow> scale_spmf r p = p"
+ by (smt (verit) div_by_1 inverse_eq_divide inverse_positive_iff_positive scale_scale_spmf scale_spmf_1)
+qed
lemma map_const_spmf_of_set:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> map_spmf (\<lambda>_. c) (spmf_of_set A) = return_spmf c"
-by(simp add: map_spmf_conv_bind_spmf bind_spmf_const)
+ by(simp add: map_spmf_conv_bind_spmf bind_spmf_const)
subsection \<open>Conditional spmfs\<close>
lemma set_pmf_Int_Some: "set_pmf p \<inter> Some ` A = {} \<longleftrightarrow> set_spmf p \<inter> A = {}"
-by(auto simp add: in_set_spmf)
+ by(auto simp: in_set_spmf)
lemma measure_spmf_zero_iff: "measure (measure_spmf p) A = 0 \<longleftrightarrow> set_spmf p \<inter> A = {}"
-unfolding measure_measure_spmf_conv_measure_pmf by(simp add: measure_pmf_zero_iff set_pmf_Int_Some)
+ unfolding measure_measure_spmf_conv_measure_pmf by(simp add: measure_pmf_zero_iff set_pmf_Int_Some)
definition cond_spmf :: "'a spmf \<Rightarrow> 'a set \<Rightarrow> 'a spmf"
-where "cond_spmf p A = (if set_spmf p \<inter> A = {} then return_pmf None else cond_pmf p (Some ` A))"
+ where "cond_spmf p A = (if set_spmf p \<inter> A = {} then return_pmf None else cond_pmf p (Some ` A))"
lemma set_cond_spmf [simp]: "set_spmf (cond_spmf p A) = set_spmf p \<inter> A"
-by(auto 4 4 simp add: cond_spmf_def in_set_spmf iff: set_cond_pmf[THEN set_eq_iff[THEN iffD1], THEN spec, rotated])
+ by(auto 4 4 simp add: cond_spmf_def in_set_spmf iff: set_cond_pmf[THEN set_eq_iff[THEN iffD1], THEN spec, rotated])
lemma cond_map_spmf [simp]: "cond_spmf (map_spmf f p) A = map_spmf f (cond_spmf p (f -` A))"
proof -
have "map_option f -` Some ` A = Some ` f -` A" by auto
moreover have "set_pmf p \<inter> map_option f -` Some ` A \<noteq> {}" if "Some x \<in> set_pmf p" "f x \<in> A" for x
using that by auto
- ultimately show ?thesis by(auto simp add: cond_spmf_def in_set_spmf cond_map_pmf)
+ ultimately show ?thesis by(auto simp: cond_spmf_def in_set_spmf cond_map_pmf)
qed
lemma spmf_cond_spmf [simp]:
"spmf (cond_spmf p A) x = (if x \<in> A then spmf p x / measure (measure_spmf p) A else 0)"
-by(auto simp add: cond_spmf_def pmf_cond set_pmf_Int_Some[symmetric] measure_measure_spmf_conv_measure_pmf measure_pmf_zero_iff)
+ by(auto simp: cond_spmf_def pmf_cond set_pmf_Int_Some[symmetric] measure_measure_spmf_conv_measure_pmf measure_pmf_zero_iff)
lemma bind_eq_return_pmf_None:
"bind_spmf p f = return_pmf None \<longleftrightarrow> (\<forall>x\<in>set_spmf p. f x = return_pmf None)"
-by(auto simp add: bind_spmf_def bind_eq_return_pmf in_set_spmf split: option.splits)
+ by(auto simp: bind_spmf_def bind_eq_return_pmf in_set_spmf split: option.splits)
lemma return_pmf_None_eq_bind:
"return_pmf None = bind_spmf p f \<longleftrightarrow> (\<forall>x\<in>set_spmf p. f x = return_pmf None)"
-using bind_eq_return_pmf_None[of p f] by auto
+ using bind_eq_return_pmf_None[of p f] by auto
(* Conditional probabilities do not seem to interact nicely with bind. *)
@@ -2429,27 +2435,29 @@
where "pair_spmf p q = bind_pmf (pair_pmf p q) (\<lambda>xy. case xy of (Some x, Some y) \<Rightarrow> return_spmf (x, y) | _ \<Rightarrow> return_pmf None)"
lemma map_fst_pair_spmf [simp]: "map_spmf fst (pair_spmf p q) = scale_spmf (weight_spmf q) p"
-unfolding bind_spmf_const[symmetric]
-apply(simp add: pair_spmf_def map_bind_pmf pair_pmf_def bind_assoc_pmf option.case_distrib)
-apply(subst bind_commute_pmf)
-apply(auto intro!: bind_pmf_cong[OF refl] simp add: bind_return_pmf bind_spmf_def bind_return_pmf' case_option_collapse option.case_distrib[where h="map_spmf _"] option.case_distrib[symmetric] case_option_id split: option.split cong del: option.case_cong_weak)
-done
+ unfolding bind_spmf_const[symmetric]
+ apply(simp add: pair_spmf_def map_bind_pmf pair_pmf_def bind_assoc_pmf option.case_distrib)
+ apply(subst bind_commute_pmf)
+ apply(force intro!: bind_pmf_cong[OF refl] simp add: bind_return_pmf bind_spmf_def bind_return_pmf' case_option_collapse
+ option.case_distrib[where h="map_spmf _"] option.case_distrib[symmetric] case_option_id split: option.split cong: option.case_cong)
+ done
lemma map_snd_pair_spmf [simp]: "map_spmf snd (pair_spmf p q) = scale_spmf (weight_spmf p) q"
-unfolding bind_spmf_const[symmetric]
+ unfolding bind_spmf_const[symmetric]
apply(simp add: pair_spmf_def map_bind_pmf pair_pmf_def bind_assoc_pmf option.case_distrib
- cong del: option.case_cong_weak)
-apply(auto intro!: bind_pmf_cong[OF refl] simp add: bind_return_pmf bind_spmf_def bind_return_pmf' case_option_collapse option.case_distrib[where h="map_spmf _"] option.case_distrib[symmetric] case_option_id split: option.split cong del: option.case_cong_weak)
-done
+ cong del: option.case_cong_weak)
+ apply(auto intro!: bind_pmf_cong[OF refl] simp add: bind_return_pmf bind_spmf_def bind_return_pmf' case_option_collapse
+ option.case_distrib[where h="map_spmf _"] option.case_distrib[symmetric] case_option_id split: option.split cong del: option.case_cong_weak)
+ done
lemma set_pair_spmf [simp]: "set_spmf (pair_spmf p q) = set_spmf p \<times> set_spmf q"
-by(auto 4 3 simp add: pair_spmf_def set_spmf_bind_pmf bind_UNION in_set_spmf intro: rev_bexI split: option.splits)
+ by(force simp add: pair_spmf_def set_spmf_bind_pmf bind_UNION in_set_spmf split: option.splits)
lemma spmf_pair [simp]: "spmf (pair_spmf p q) (x, y) = spmf p x * spmf q y" (is "?lhs = ?rhs")
proof -
have "ennreal ?lhs = \<integral>\<^sup>+ a. \<integral>\<^sup>+ b. indicator {(x, y)} (a, b) \<partial>measure_spmf q \<partial>measure_spmf p"
unfolding measure_spmf_def pair_spmf_def ennreal_pmf_bind nn_integral_pair_pmf'
- by(auto simp add: zero_ereal_def[symmetric] nn_integral_distr nn_integral_restrict_space nn_integral_multc[symmetric] intro!: nn_integral_cong split: option.split split_indicator)
+ by(auto simp: zero_ereal_def[symmetric] nn_integral_distr nn_integral_restrict_space nn_integral_multc[symmetric] intro!: nn_integral_cong split: option.split split_indicator)
also have "\<dots> = \<integral>\<^sup>+ a. (\<integral>\<^sup>+ b. indicator {y} b \<partial>measure_spmf q) * indicator {x} a \<partial>measure_spmf p"
by(subst nn_integral_multc[symmetric])(auto intro!: nn_integral_cong split: split_indicator)
also have "\<dots> = ennreal ?rhs" by(simp add: emeasure_spmf_single max_def ennreal_mult mult.commute)
@@ -2457,42 +2465,46 @@
qed
lemma pair_map_spmf2: "pair_spmf p (map_spmf f q) = map_spmf (apsnd f) (pair_spmf p q)"
-by(auto simp add: pair_spmf_def pair_map_pmf2 bind_map_pmf map_bind_pmf intro: bind_pmf_cong split: option.split)
+ unfolding pair_spmf_def pair_map_pmf2 bind_map_pmf map_bind_pmf
+ by (intro bind_pmf_cong refl) (auto split: option.split)
lemma pair_map_spmf1: "pair_spmf (map_spmf f p) q = map_spmf (apfst f) (pair_spmf p q)"
-by(auto simp add: pair_spmf_def pair_map_pmf1 bind_map_pmf map_bind_pmf intro: bind_pmf_cong split: option.split)
+ unfolding pair_spmf_def pair_map_pmf1 bind_map_pmf map_bind_pmf
+ by (intro bind_pmf_cong refl) (auto split: option.split)
lemma pair_map_spmf: "pair_spmf (map_spmf f p) (map_spmf g q) = map_spmf (map_prod f g) (pair_spmf p q)"
-unfolding pair_map_spmf2 pair_map_spmf1 spmf.map_comp by(simp add: apfst_def apsnd_def o_def prod.map_comp)
+ unfolding pair_map_spmf2 pair_map_spmf1 spmf.map_comp
+ by(simp add: apfst_def apsnd_def o_def prod.map_comp)
lemma pair_spmf_alt_def: "pair_spmf p q = bind_spmf p (\<lambda>x. bind_spmf q (\<lambda>y. return_spmf (x, y)))"
-by(auto simp add: pair_spmf_def pair_pmf_def bind_spmf_def bind_assoc_pmf bind_return_pmf split: option.split intro: bind_pmf_cong)
+ unfolding pair_spmf_def pair_pmf_def bind_spmf_def bind_assoc_pmf bind_return_pmf
+ by (intro bind_pmf_cong refl) (auto split: option.split)
lemma weight_pair_spmf [simp]: "weight_spmf (pair_spmf p q) = weight_spmf p * weight_spmf q"
-unfolding pair_spmf_alt_def by(simp add: weight_bind_spmf o_def)
+ unfolding pair_spmf_alt_def by(simp add: weight_bind_spmf o_def)
lemma pair_scale_spmf1: (* FIXME: generalise to arbitrary r *)
"r \<le> 1 \<Longrightarrow> pair_spmf (scale_spmf r p) q = scale_spmf r (pair_spmf p q)"
-by(simp add: pair_spmf_alt_def scale_bind_spmf bind_scale_spmf)
+ by(simp add: pair_spmf_alt_def scale_bind_spmf bind_scale_spmf)
lemma pair_scale_spmf2: (* FIXME: generalise to arbitrary r *)
"r \<le> 1 \<Longrightarrow> pair_spmf p (scale_spmf r q) = scale_spmf r (pair_spmf p q)"
-by(simp add: pair_spmf_alt_def scale_bind_spmf bind_scale_spmf)
+ by(simp add: pair_spmf_alt_def scale_bind_spmf bind_scale_spmf)
lemma pair_spmf_return_None1 [simp]: "pair_spmf (return_pmf None) p = return_pmf None"
-by(rule spmf_eqI)(clarsimp)
+ by(rule spmf_eqI)(clarsimp)
lemma pair_spmf_return_None2 [simp]: "pair_spmf p (return_pmf None) = return_pmf None"
-by(rule spmf_eqI)(clarsimp)
+ by(rule spmf_eqI)(clarsimp)
lemma pair_spmf_return_spmf1: "pair_spmf (return_spmf x) q = map_spmf (Pair x) q"
-by(rule spmf_eqI)(auto split: split_indicator simp add: spmf_map_inj' inj_on_def intro: spmf_map_outside)
+ by(rule spmf_eqI)(auto split: split_indicator simp add: spmf_map_inj' inj_on_def intro: spmf_map_outside)
lemma pair_spmf_return_spmf2: "pair_spmf p (return_spmf y) = map_spmf (\<lambda>x. (x, y)) p"
-by(rule spmf_eqI)(auto split: split_indicator simp add: inj_on_def intro!: spmf_map_outside spmf_map_inj'[symmetric])
+ by(rule spmf_eqI)(auto split: split_indicator simp add: inj_on_def intro!: spmf_map_outside spmf_map_inj'[symmetric])
lemma pair_spmf_return_spmf [simp]: "pair_spmf (return_spmf x) (return_spmf y) = return_spmf (x, y)"
-by(simp add: pair_spmf_return_spmf1)
+ by(simp add: pair_spmf_return_spmf1)
lemma rel_pair_spmf_prod:
"rel_spmf (rel_prod A B) (pair_spmf p q) (pair_spmf p' q') \<longleftrightarrow>
@@ -2532,7 +2544,7 @@
by(simp add: pair_map_spmf[symmetric] p q map_scale_spmf spmf.map_comp)
also have "\<dots> = pair_spmf p q" using full[of p q]
by(simp add: pair_scale_spmf1 pair_scale_spmf2 weight_spmf_le_1 weight_spmf_nonneg)
- (auto simp add: scale_scale_spmf max_def min_def field_simps weight_spmf_nonneg weight_spmf_eq_0)
+ (auto simp: scale_scale_spmf max_def min_def field_simps weight_spmf_nonneg weight_spmf_eq_0)
finally show "map_spmf fst ?pq = \<dots>" .
have [simp]: "snd \<circ> ?f = map_prod snd snd" by(simp add: fun_eq_iff)
@@ -2543,9 +2555,9 @@
by(simp add: pair_map_spmf[symmetric] p' q' map_scale_spmf spmf.map_comp)
also have "\<dots> = pair_spmf p' q'" using full[of p' q'] eq
by(simp add: pair_scale_spmf1 pair_scale_spmf2 weight_spmf_le_1 weight_spmf_nonneg)
- (auto simp add: scale_scale_spmf max_def min_def field_simps weight_spmf_nonneg weight_spmf_eq_0)
+ (auto simp: scale_scale_spmf max_def min_def field_simps weight_spmf_nonneg weight_spmf_eq_0)
finally show "map_spmf snd ?pq = \<dots>" .
- qed(auto simp add: set_scale_spmf split: if_split_asm dest: * ** )
+ qed(auto simp: set_scale_spmf split: if_split_asm dest: * ** )
next
assume ?lhs
then obtain pq where pq: "map_spmf fst pq = pair_spmf p q"
@@ -2582,30 +2594,30 @@
lemma pair_pair_spmf:
"pair_spmf (pair_spmf p q) r = map_spmf (\<lambda>(x, (y, z)). ((x, y), z)) (pair_spmf p (pair_spmf q r))"
-by(simp add: pair_spmf_alt_def map_spmf_conv_bind_spmf)
+ by(simp add: pair_spmf_alt_def map_spmf_conv_bind_spmf)
lemma pair_commute_spmf:
"pair_spmf p q = map_spmf (\<lambda>(y, x). (x, y)) (pair_spmf q p)"
-unfolding pair_spmf_alt_def by(subst bind_commute_spmf)(simp add: map_spmf_conv_bind_spmf)
+ unfolding pair_spmf_alt_def by(subst bind_commute_spmf)(simp add: map_spmf_conv_bind_spmf)
subsection \<open>Assertions\<close>
definition assert_spmf :: "bool \<Rightarrow> unit spmf"
-where "assert_spmf b = (if b then return_spmf () else return_pmf None)"
+ where "assert_spmf b = (if b then return_spmf () else return_pmf None)"
lemma assert_spmf_simps [simp]:
"assert_spmf True = return_spmf ()"
"assert_spmf False = return_pmf None"
-by(simp_all add: assert_spmf_def)
+ by(simp_all add: assert_spmf_def)
lemma in_set_assert_spmf [simp]: "x \<in> set_spmf (assert_spmf p) \<longleftrightarrow> p"
-by(cases p) simp_all
+ by(cases p) simp_all
lemma set_spmf_assert_spmf_eq_empty [simp]: "set_spmf (assert_spmf b) = {} \<longleftrightarrow> \<not> b"
-by(cases b) simp_all
+ by auto
lemma lossless_assert_spmf [iff]: "lossless_spmf (assert_spmf b) \<longleftrightarrow> b"
-by(cases b) simp_all
+ by(cases b) simp_all
subsection \<open>Try\<close>
@@ -2617,59 +2629,59 @@
shows "TRY p ELSE q = p"
proof -
have "TRY p ELSE q = bind_pmf p return_pmf" unfolding try_spmf_def using assms
- by(auto simp add: lossless_iff_set_pmf_None split: option.split intro: bind_pmf_cong)
+ by(auto simp: lossless_iff_set_pmf_None split: option.split intro: bind_pmf_cong)
thus ?thesis by(simp add: bind_return_pmf')
qed
lemma try_spmf_return_spmf1: "TRY return_spmf x ELSE q = return_spmf x"
-by(simp add: try_spmf_def bind_return_pmf)
+ by simp
lemma try_spmf_return_None [simp]: "TRY return_pmf None ELSE q = q"
-by(simp add: try_spmf_def bind_return_pmf)
+ by(simp add: try_spmf_def bind_return_pmf)
lemma try_spmf_return_pmf_None2 [simp]: "TRY p ELSE return_pmf None = p"
-by(simp add: try_spmf_def option.case_distrib[symmetric] bind_return_pmf' case_option_id)
+ by(simp add: try_spmf_def option.case_distrib[symmetric] bind_return_pmf' case_option_id)
lemma map_try_spmf: "map_spmf f (try_spmf p q) = try_spmf (map_spmf f p) (map_spmf f q)"
-by(simp add: try_spmf_def map_bind_pmf bind_map_pmf option.case_distrib[where h="map_spmf f"] o_def cong del: option.case_cong_weak)
+ by(simp add: try_spmf_def map_bind_pmf bind_map_pmf option.case_distrib[where h="map_spmf f"] o_def cong del: option.case_cong_weak)
lemma try_spmf_bind_pmf: "TRY (bind_pmf p f) ELSE q = bind_pmf p (\<lambda>x. TRY (f x) ELSE q)"
-by(simp add: try_spmf_def bind_assoc_pmf)
+ by(simp add: try_spmf_def bind_assoc_pmf)
lemma try_spmf_bind_spmf_lossless:
"lossless_spmf p \<Longrightarrow> TRY (bind_spmf p f) ELSE q = bind_spmf p (\<lambda>x. TRY (f x) ELSE q)"
-by(auto simp add: try_spmf_def bind_spmf_def bind_assoc_pmf bind_return_pmf lossless_iff_set_pmf_None intro!: bind_pmf_cong split: option.split)
+ by (metis (mono_tags, lifting) bind_spmf_of_pmf lossless_spmf_conv_spmf_of_pmf try_spmf_bind_pmf)
lemma try_spmf_bind_out:
"lossless_spmf p \<Longrightarrow> bind_spmf p (\<lambda>x. TRY (f x) ELSE q) = TRY (bind_spmf p f) ELSE q"
-by(simp add: try_spmf_bind_spmf_lossless)
+ by(simp add: try_spmf_bind_spmf_lossless)
lemma lossless_try_spmf [simp]:
"lossless_spmf (TRY p ELSE q) \<longleftrightarrow> lossless_spmf p \<or> lossless_spmf q"
-by(auto simp add: try_spmf_def in_set_spmf lossless_iff_set_pmf_None split: option.splits)
+ by(auto simp: try_spmf_def in_set_spmf lossless_iff_set_pmf_None split: option.splits)
context includes lifting_syntax
begin
lemma try_spmf_parametric [transfer_rule]:
"(rel_spmf A ===> rel_spmf A ===> rel_spmf A) try_spmf try_spmf"
-unfolding try_spmf_def[abs_def] by transfer_prover
+ unfolding try_spmf_def[abs_def] by transfer_prover
end
lemma try_spmf_cong:
"\<lbrakk> p = p'; \<not> lossless_spmf p' \<Longrightarrow> q = q' \<rbrakk> \<Longrightarrow> TRY p ELSE q = TRY p' ELSE q'"
-unfolding try_spmf_def
-by(rule bind_pmf_cong)(auto split: option.split simp add: lossless_iff_set_pmf_None)
+ unfolding try_spmf_def
+ by(rule bind_pmf_cong)(auto split: option.split simp add: lossless_iff_set_pmf_None)
lemma rel_spmf_try_spmf:
"\<lbrakk> rel_spmf R p p'; \<not> lossless_spmf p' \<Longrightarrow> rel_spmf R q q' \<rbrakk>
\<Longrightarrow> rel_spmf R (TRY p ELSE q) (TRY p' ELSE q')"
-unfolding try_spmf_def
-apply(rule rel_pmf_bindI[where R="\<lambda>x y. rel_option R x y \<and> x \<in> set_pmf p \<and> y \<in> set_pmf p'"])
- apply(erule pmf.rel_mono_strong; simp)
-apply(auto split: option.split simp add: lossless_iff_set_pmf_None)
-done
+ unfolding try_spmf_def
+ apply(rule rel_pmf_bindI[where R="\<lambda>x y. rel_option R x y \<and> x \<in> set_pmf p \<and> y \<in> set_pmf p'"])
+ apply (simp add: pmf.rel_mono_strong)
+ apply(auto split: option.split simp add: lossless_iff_set_pmf_None)
+ done
lemma spmf_try_spmf:
"spmf (TRY p ELSE q) x = spmf p x + pmf p None * spmf q x"
@@ -2679,11 +2691,11 @@
also have "\<dots> = (\<integral>\<^sup>+ y. ennreal (spmf q x) * indicator {None} y \<partial>measure_pmf p) + \<integral>\<^sup>+ y. indicator {Some x} y \<partial>measure_pmf p"
by(simp add: nn_integral_add)
also have "\<dots> = ennreal (spmf q x) * pmf p None + spmf p x" by(simp add: emeasure_pmf_single)
- finally show ?thesis by(simp add: ennreal_mult[symmetric] ennreal_plus[symmetric] del: ennreal_plus)
+ finally show ?thesis by(simp flip: ennreal_plus ennreal_mult)
qed
lemma try_scale_spmf_same [simp]: "lossless_spmf p \<Longrightarrow> TRY scale_spmf k p ELSE p = p"
-by(rule spmf_eqI)(auto simp add: spmf_try_spmf spmf_scale_spmf pmf_scale_spmf_None lossless_iff_pmf_None weight_spmf_conv_pmf_None min_def max_def field_simps)
+ by(rule spmf_eqI)(auto simp: spmf_try_spmf spmf_scale_spmf pmf_scale_spmf_None lossless_iff_pmf_None weight_spmf_conv_pmf_None min_def max_def field_simps)
lemma pmf_try_spmf_None [simp]: "pmf (TRY p ELSE q) None = pmf p None * pmf q None" (is "?lhs = ?rhs")
proof -
@@ -2714,7 +2726,7 @@
and fundamental_lemma: "\<bar>measure (measure_spmf p) {x. A x} - measure (measure_spmf q) {y. B y}\<bar> \<le>
measure (measure_spmf p) {x. bad1 x}" (is ?fundamental)
proof -
- have good: "rel_fun ?A (=) (\<lambda>x. A x \<and> \<not> bad1 x) (\<lambda>y. B y \<and> \<not> bad2 y)" by(auto simp add: rel_fun_def)
+ have good: "rel_fun ?A (=) (\<lambda>x. A x \<and> \<not> bad1 x) (\<lambda>y. B y \<and> \<not> bad2 y)" by(auto simp: rel_fun_def)
from assms have 1: "measure (measure_spmf p) {x. A x \<and> \<not> bad1 x} = measure (measure_spmf q) {y. B y \<and> \<not> bad2 y}"
by(rule measure_spmf_parametric[THEN rel_funD, THEN rel_funD])(rule Collect_parametric[THEN rel_funD, OF good])
@@ -2731,7 +2743,7 @@
by(subst (1 2) measure_Union)(auto)
also have "\<dots> = \<bar>?\<mu>p {x. A x \<and> bad1 x} - ?\<mu>q {y. B y \<and> bad2 y}\<bar>" using 1 by simp
also have "\<dots> \<le> max (?\<mu>p {x. A x \<and> bad1 x}) (?\<mu>q {y. B y \<and> bad2 y})"
- by(rule abs_leI)(auto simp add: max_def not_le, simp_all only: add_increasing measure_nonneg mult_2)
+ by(rule abs_leI)(auto simp: max_def not_le, simp_all only: add_increasing measure_nonneg mult_2)
also have "\<dots> \<le> max (?\<mu>p {x. bad1 x}) (?\<mu>q {y. bad2 y})"
by(rule max.mono; rule measure_spmf.finite_measure_mono; auto)
also note 2[symmetric]