Eliminated most occurrences of rule_format attribute.
--- a/src/HOL/Lambda/Lambda.thy Wed Apr 16 22:21:32 2003 +0200
+++ b/src/HOL/Lambda/Lambda.thy Wed Apr 23 00:10:40 2003 +0200
@@ -182,21 +182,19 @@
text {* Not used in Church-Rosser proof, but in Strong
Normalization. \medskip *}
-theorem subst_preserves_beta [rule_format, simp]:
- "r -> s ==> \<forall>t i. r[t/i] -> s[t/i]"
- apply (erule beta.induct)
+theorem subst_preserves_beta [simp]:
+ "r -> s ==> (\<And>t i. r[t/i] -> s[t/i])"
+ apply (induct set: beta)
apply (simp_all add: subst_subst [symmetric])
done
-theorem lift_preserves_beta [rule_format, simp]:
- "r -> s ==> \<forall>i. lift r i -> lift s i"
- apply (erule beta.induct)
- apply auto
- done
+theorem lift_preserves_beta [simp]:
+ "r -> s ==> (\<And>i. lift r i -> lift s i)"
+ by (induct set: beta) auto
-theorem subst_preserves_beta2 [rule_format, simp]:
- "\<forall>r s i. r -> s --> t[r/i] ->> t[s/i]"
- apply (induct_tac t)
+theorem subst_preserves_beta2 [simp]:
+ "\<And>r s i. r -> s ==> t[r/i] ->> t[s/i]"
+ apply (induct t)
apply (simp add: subst_Var r_into_rtrancl)
apply (simp add: rtrancl_beta_App)
apply (simp add: rtrancl_beta_Abs)
--- a/src/HOL/Lambda/ListApplication.thy Wed Apr 16 22:21:32 2003 +0200
+++ b/src/HOL/Lambda/ListApplication.thy Wed Apr 23 00:10:40 2003 +0200
@@ -18,18 +18,17 @@
apply auto
done
-lemma Var_eq_apps_conv [rule_format, iff]:
- "\<forall>s. (Var m = s \<degree>\<degree> ss) = (Var m = s \<and> ss = [])"
- apply (induct_tac ss)
+lemma Var_eq_apps_conv [iff]:
+ "\<And>s. (Var m = s \<degree>\<degree> ss) = (Var m = s \<and> ss = [])"
+ apply (induct ss)
apply auto
done
-lemma Var_apps_eq_Var_apps_conv [rule_format, iff]:
- "\<forall>ss. (Var m \<degree>\<degree> rs = Var n \<degree>\<degree> ss) = (m = n \<and> rs = ss)"
- apply (induct_tac rs rule: rev_induct)
+lemma Var_apps_eq_Var_apps_conv [iff]:
+ "\<And>ss. (Var m \<degree>\<degree> rs = Var n \<degree>\<degree> ss) = (m = n \<and> rs = ss)"
+ apply (induct rs rule: rev_induct)
apply simp
apply blast
- apply (rule allI)
apply (induct_tac ss rule: rev_induct)
apply auto
done
@@ -54,11 +53,10 @@
done
lemma Abs_apps_eq_Abs_apps_conv [iff]:
- "\<forall>ss. (Abs r \<degree>\<degree> rs = Abs s \<degree>\<degree> ss) = (r = s \<and> rs = ss)"
- apply (induct_tac rs rule: rev_induct)
+ "\<And>ss. (Abs r \<degree>\<degree> rs = Abs s \<degree>\<degree> ss) = (r = s \<and> rs = ss)"
+ apply (induct rs rule: rev_induct)
apply simp
apply blast
- apply (rule allI)
apply (induct_tac ss rule: rev_induct)
apply auto
done
@@ -69,11 +67,10 @@
apply auto
done
-lemma Var_apps_neq_Abs_apps [rule_format, iff]:
- "\<forall>ts. Var n \<degree>\<degree> ts ~= Abs r \<degree>\<degree> ss"
- apply (induct_tac ss rule: rev_induct)
+lemma Var_apps_neq_Abs_apps [iff]:
+ "\<And>ts. Var n \<degree>\<degree> ts ~= Abs r \<degree>\<degree> ss"
+ apply (induct ss rule: rev_induct)
apply simp
- apply (rule allI)
apply (induct_tac ts rule: rev_induct)
apply auto
done