--- a/src/HOL/Cardinals/Wellorder_Embedding_FP.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/Cardinals/Wellorder_Embedding_FP.thy Thu Jan 16 16:33:19 2014 +0100
@@ -8,7 +8,7 @@
header {* Well-Order Embeddings (FP) *}
theory Wellorder_Embedding_FP
-imports "~~/src/HOL/Library/Zorn" Fun_More_FP Wellorder_Relation_FP
+imports Zorn Fun_More_FP Wellorder_Relation_FP
begin
--- a/src/HOL/Cardinals/Wellorder_Extension.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/Cardinals/Wellorder_Extension.thy Thu Jan 16 16:33:19 2014 +0100
@@ -5,7 +5,7 @@
header {* Extending Well-founded Relations to Wellorders *}
theory Wellorder_Extension
-imports "~~/src/HOL/Library/Zorn" Order_Union
+imports Zorn Order_Union
begin
subsection {* Extending Well-founded Relations to Wellorders *}
--- a/src/HOL/Hahn_Banach/Vector_Space.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/Hahn_Banach/Vector_Space.thy Thu Jan 16 16:33:19 2014 +0100
@@ -5,7 +5,7 @@
header {* Vector spaces *}
theory Vector_Space
-imports Complex_Main Bounds "~~/src/HOL/Library/Zorn"
+imports Complex_Main Bounds
begin
subsection {* Signature *}
--- a/src/HOL/Hahn_Banach/Zorn_Lemma.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/Hahn_Banach/Zorn_Lemma.thy Thu Jan 16 16:33:19 2014 +0100
@@ -5,7 +5,7 @@
header {* Zorn's Lemma *}
theory Zorn_Lemma
-imports "~~/src/HOL/Library/Zorn"
+imports Main
begin
text {*
--- a/src/HOL/Library/Library.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/Library/Library.thy Thu Jan 16 16:33:19 2014 +0100
@@ -64,7 +64,6 @@
Sum_of_Squares
Transitive_Closure_Table
While_Combinator
- Zorn
begin
end
(*>*)
--- a/src/HOL/Library/Zorn.thy Thu Jan 16 16:20:17 2014 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,712 +0,0 @@
-(* Title: HOL/Library/Zorn.thy
- Author: Jacques D. Fleuriot
- Author: Tobias Nipkow, TUM
- Author: Christian Sternagel, JAIST
-
-Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).
-The well-ordering theorem.
-*)
-
-header {* Zorn's Lemma *}
-
-theory Zorn
-imports Main
-begin
-
-subsection {* Zorn's Lemma for the Subset Relation *}
-
-subsubsection {* Results that do not require an order *}
-
-text {*Let @{text P} be a binary predicate on the set @{text A}.*}
-locale pred_on =
- fixes A :: "'a set"
- and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50)
-begin
-
-abbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) where
- "x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y"
-
-text {*A chain is a totally ordered subset of @{term A}.*}
-definition chain :: "'a set \<Rightarrow> bool" where
- "chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)"
-
-text {*We call a chain that is a proper superset of some set @{term X},
-but not necessarily a chain itself, a superchain of @{term X}.*}
-abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix "<c" 50) where
- "X <c C \<equiv> chain C \<and> X \<subset> C"
-
-text {*A maximal chain is a chain that does not have a superchain.*}
-definition maxchain :: "'a set \<Rightarrow> bool" where
- "maxchain C \<longleftrightarrow> chain C \<and> \<not> (\<exists>S. C <c S)"
-
-text {*We define the successor of a set to be an arbitrary
-superchain, if such exists, or the set itself, otherwise.*}
-definition suc :: "'a set \<Rightarrow> 'a set" where
- "suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))"
-
-lemma chainI [Pure.intro?]:
- "\<lbrakk>C \<subseteq> A; \<And>x y. \<lbrakk>x \<in> C; y \<in> C\<rbrakk> \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> chain C"
- unfolding chain_def by blast
-
-lemma chain_total:
- "chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
- by (simp add: chain_def)
-
-lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X"
- by (simp add: suc_def)
-
-lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X"
- by (simp add: suc_def)
-
-lemma suc_subset: "X \<subseteq> suc X"
- by (auto simp: suc_def maxchain_def intro: someI2)
-
-lemma chain_empty [simp]: "chain {}"
- by (auto simp: chain_def)
-
-lemma not_maxchain_Some:
- "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)"
- by (rule someI_ex) (auto simp: maxchain_def)
-
-lemma suc_not_equals:
- "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C"
- by (auto simp: suc_def) (metis (no_types) less_irrefl not_maxchain_Some)
-
-lemma subset_suc:
- assumes "X \<subseteq> Y" shows "X \<subseteq> suc Y"
- using assms by (rule subset_trans) (rule suc_subset)
-
-text {*We build a set @{term \<C>} that is closed under applications
-of @{term suc} and contains the union of all its subsets.*}
-inductive_set suc_Union_closed ("\<C>") where
- suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>" |
- Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>"
-
-text {*Since the empty set as well as the set itself is a subset of
-every set, @{term \<C>} contains at least @{term "{} \<in> \<C>"} and
-@{term "\<Union>\<C> \<in> \<C>"}.*}
-lemma
- suc_Union_closed_empty: "{} \<in> \<C>" and
- suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>"
- using Union [of "{}"] and Union [of "\<C>"] by simp+
-text {*Thus closure under @{term suc} will hit a maximal chain
-eventually, as is shown below.*}
-
-lemma suc_Union_closed_induct [consumes 1, case_names suc Union,
- induct pred: suc_Union_closed]:
- assumes "X \<in> \<C>"
- and "\<And>X. \<lbrakk>X \<in> \<C>; Q X\<rbrakk> \<Longrightarrow> Q (suc X)"
- and "\<And>X. \<lbrakk>X \<subseteq> \<C>; \<forall>x\<in>X. Q x\<rbrakk> \<Longrightarrow> Q (\<Union>X)"
- shows "Q X"
- using assms by (induct) blast+
-
-lemma suc_Union_closed_cases [consumes 1, case_names suc Union,
- cases pred: suc_Union_closed]:
- assumes "X \<in> \<C>"
- and "\<And>Y. \<lbrakk>X = suc Y; Y \<in> \<C>\<rbrakk> \<Longrightarrow> Q"
- and "\<And>Y. \<lbrakk>X = \<Union>Y; Y \<subseteq> \<C>\<rbrakk> \<Longrightarrow> Q"
- shows "Q"
- using assms by (cases) simp+
-
-text {*On chains, @{term suc} yields a chain.*}
-lemma chain_suc:
- assumes "chain X" shows "chain (suc X)"
- using assms
- by (cases "\<not> chain X \<or> maxchain X")
- (force simp: suc_def dest: not_maxchain_Some)+
-
-lemma chain_sucD:
- assumes "chain X" shows "suc X \<subseteq> A \<and> chain (suc X)"
-proof -
- from `chain X` have *: "chain (suc X)" by (rule chain_suc)
- then have "suc X \<subseteq> A" unfolding chain_def by blast
- with * show ?thesis by blast
-qed
-
-lemma suc_Union_closed_total':
- assumes "X \<in> \<C>" and "Y \<in> \<C>"
- and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y"
- shows "X \<subseteq> Y \<or> suc Y \<subseteq> X"
- using `X \<in> \<C>`
-proof (induct)
- case (suc X)
- with * show ?case by (blast del: subsetI intro: subset_suc)
-qed blast
-
-lemma suc_Union_closed_subsetD:
- assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>"
- shows "X = Y \<or> suc Y \<subseteq> X"
- using assms(2-, 1)
-proof (induct arbitrary: Y)
- case (suc X)
- note * = `\<And>Y. \<lbrakk>Y \<in> \<C>; Y \<subseteq> X\<rbrakk> \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X`
- with suc_Union_closed_total' [OF `Y \<in> \<C>` `X \<in> \<C>`]
- have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast
- then show ?case
- proof
- assume "Y \<subseteq> X"
- with * and `Y \<in> \<C>` have "X = Y \<or> suc Y \<subseteq> X" by blast
- then show ?thesis
- proof
- assume "X = Y" then show ?thesis by simp
- next
- assume "suc Y \<subseteq> X"
- then have "suc Y \<subseteq> suc X" by (rule subset_suc)
- then show ?thesis by simp
- qed
- next
- assume "suc X \<subseteq> Y"
- with `Y \<subseteq> suc X` show ?thesis by blast
- qed
-next
- case (Union X)
- show ?case
- proof (rule ccontr)
- assume "\<not> ?thesis"
- with `Y \<subseteq> \<Union>X` obtain x y z
- where "\<not> suc Y \<subseteq> \<Union>X"
- and "x \<in> X" and "y \<in> x" and "y \<notin> Y"
- and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast
- with `X \<subseteq> \<C>` have "x \<in> \<C>" by blast
- from Union and `x \<in> X`
- have *: "\<And>y. \<lbrakk>y \<in> \<C>; y \<subseteq> x\<rbrakk> \<Longrightarrow> x = y \<or> suc y \<subseteq> x" by blast
- with suc_Union_closed_total' [OF `Y \<in> \<C>` `x \<in> \<C>`]
- have "Y \<subseteq> x \<or> suc x \<subseteq> Y" by blast
- then show False
- proof
- assume "Y \<subseteq> x"
- with * [OF `Y \<in> \<C>`] have "x = Y \<or> suc Y \<subseteq> x" by blast
- then show False
- proof
- assume "x = Y" with `y \<in> x` and `y \<notin> Y` show False by blast
- next
- assume "suc Y \<subseteq> x"
- with `x \<in> X` have "suc Y \<subseteq> \<Union>X" by blast
- with `\<not> suc Y \<subseteq> \<Union>X` show False by contradiction
- qed
- next
- assume "suc x \<subseteq> Y"
- moreover from suc_subset and `y \<in> x` have "y \<in> suc x" by blast
- ultimately show False using `y \<notin> Y` by blast
- qed
- qed
-qed
-
-text {*The elements of @{term \<C>} are totally ordered by the subset relation.*}
-lemma suc_Union_closed_total:
- assumes "X \<in> \<C>" and "Y \<in> \<C>"
- shows "X \<subseteq> Y \<or> Y \<subseteq> X"
-proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y")
- case True
- with suc_Union_closed_total' [OF assms]
- have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast
- then show ?thesis using suc_subset [of Y] by blast
-next
- case False
- then obtain Z
- where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y" by blast
- with suc_Union_closed_subsetD and `Y \<in> \<C>` show ?thesis by blast
-qed
-
-text {*Once we hit a fixed point w.r.t. @{term suc}, all other elements
-of @{term \<C>} are subsets of this fixed point.*}
-lemma suc_Union_closed_suc:
- assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y"
- shows "X \<subseteq> Y"
-using `X \<in> \<C>`
-proof (induct)
- case (suc X)
- with `Y \<in> \<C>` and suc_Union_closed_subsetD
- have "X = Y \<or> suc X \<subseteq> Y" by blast
- then show ?case by (auto simp: `suc Y = Y`)
-qed blast
-
-lemma eq_suc_Union:
- assumes "X \<in> \<C>"
- shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>"
-proof
- assume "suc X = X"
- with suc_Union_closed_suc [OF suc_Union_closed_Union `X \<in> \<C>`]
- have "\<Union>\<C> \<subseteq> X" .
- with `X \<in> \<C>` show "X = \<Union>\<C>" by blast
-next
- from `X \<in> \<C>` have "suc X \<in> \<C>" by (rule suc)
- then have "suc X \<subseteq> \<Union>\<C>" by blast
- moreover assume "X = \<Union>\<C>"
- ultimately have "suc X \<subseteq> X" by simp
- moreover have "X \<subseteq> suc X" by (rule suc_subset)
- ultimately show "suc X = X" ..
-qed
-
-lemma suc_in_carrier:
- assumes "X \<subseteq> A"
- shows "suc X \<subseteq> A"
- using assms
- by (cases "\<not> chain X \<or> maxchain X")
- (auto dest: chain_sucD)
-
-lemma suc_Union_closed_in_carrier:
- assumes "X \<in> \<C>"
- shows "X \<subseteq> A"
- using assms
- by (induct) (auto dest: suc_in_carrier)
-
-text {*All elements of @{term \<C>} are chains.*}
-lemma suc_Union_closed_chain:
- assumes "X \<in> \<C>"
- shows "chain X"
-using assms
-proof (induct)
- case (suc X) then show ?case by (simp add: suc_def) (metis (no_types) not_maxchain_Some)
-next
- case (Union X)
- then have "\<Union>X \<subseteq> A" by (auto dest: suc_Union_closed_in_carrier)
- moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
- proof (intro ballI)
- fix x y
- assume "x \<in> \<Union>X" and "y \<in> \<Union>X"
- then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X" by blast
- with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v" by blast+
- with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u" by blast
- then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
- proof
- assume "u \<subseteq> v"
- from `chain v` show ?thesis
- proof (rule chain_total)
- show "y \<in> v" by fact
- show "x \<in> v" using `u \<subseteq> v` and `x \<in> u` by blast
- qed
- next
- assume "v \<subseteq> u"
- from `chain u` show ?thesis
- proof (rule chain_total)
- show "x \<in> u" by fact
- show "y \<in> u" using `v \<subseteq> u` and `y \<in> v` by blast
- qed
- qed
- qed
- ultimately show ?case unfolding chain_def ..
-qed
-
-subsubsection {* Hausdorff's Maximum Principle *}
-
-text {*There exists a maximal totally ordered subset of @{term A}. (Note that we do not
-require @{term A} to be partially ordered.)*}
-
-theorem Hausdorff: "\<exists>C. maxchain C"
-proof -
- let ?M = "\<Union>\<C>"
- have "maxchain ?M"
- proof (rule ccontr)
- assume "\<not> maxchain ?M"
- then have "suc ?M \<noteq> ?M"
- using suc_not_equals and
- suc_Union_closed_chain [OF suc_Union_closed_Union] by simp
- moreover have "suc ?M = ?M"
- using eq_suc_Union [OF suc_Union_closed_Union] by simp
- ultimately show False by contradiction
- qed
- then show ?thesis by blast
-qed
-
-text {*Make notation @{term \<C>} available again.*}
-no_notation suc_Union_closed ("\<C>")
-
-lemma chain_extend:
- "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)"
- unfolding chain_def by blast
-
-lemma maxchain_imp_chain:
- "maxchain C \<Longrightarrow> chain C"
- by (simp add: maxchain_def)
-
-end
-
-text {*Hide constant @{const pred_on.suc_Union_closed}, which was just needed
-for the proof of Hausforff's maximum principle.*}
-hide_const pred_on.suc_Union_closed
-
-lemma chain_mono:
- assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A; P x y\<rbrakk> \<Longrightarrow> Q x y"
- and "pred_on.chain A P C"
- shows "pred_on.chain A Q C"
- using assms unfolding pred_on.chain_def by blast
-
-subsubsection {* Results for the proper subset relation *}
-
-interpretation subset: pred_on "A" "op \<subset>" for A .
-
-lemma subset_maxchain_max:
- assumes "subset.maxchain A C" and "X \<in> A" and "\<Union>C \<subseteq> X"
- shows "\<Union>C = X"
-proof (rule ccontr)
- let ?C = "{X} \<union> C"
- from `subset.maxchain A C` have "subset.chain A C"
- and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S"
- by (auto simp: subset.maxchain_def)
- moreover have "\<forall>x\<in>C. x \<subseteq> X" using `\<Union>C \<subseteq> X` by auto
- ultimately have "subset.chain A ?C"
- using subset.chain_extend [of A C X] and `X \<in> A` by auto
- moreover assume **: "\<Union>C \<noteq> X"
- moreover from ** have "C \<subset> ?C" using `\<Union>C \<subseteq> X` by auto
- ultimately show False using * by blast
-qed
-
-subsubsection {* Zorn's lemma *}
-
-text {*If every chain has an upper bound, then there is a maximal set.*}
-lemma subset_Zorn:
- assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U"
- shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
-proof -
- from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..
- then have "subset.chain A M" by (rule subset.maxchain_imp_chain)
- with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y" by blast
- moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X"
- proof (intro ballI impI)
- fix X
- assume "X \<in> A" and "Y \<subseteq> X"
- show "Y = X"
- proof (rule ccontr)
- assume "Y \<noteq> X"
- with `Y \<subseteq> X` have "\<not> X \<subseteq> Y" by blast
- from subset.chain_extend [OF `subset.chain A M` `X \<in> A`] and `\<forall>X\<in>M. X \<subseteq> Y`
- have "subset.chain A ({X} \<union> M)" using `Y \<subseteq> X` by auto
- moreover have "M \<subset> {X} \<union> M" using `\<forall>X\<in>M. X \<subseteq> Y` and `\<not> X \<subseteq> Y` by auto
- ultimately show False
- using `subset.maxchain A M` by (auto simp: subset.maxchain_def)
- qed
- qed
- ultimately show ?thesis by metis
-qed
-
-text{*Alternative version of Zorn's lemma for the subset relation.*}
-lemma subset_Zorn':
- assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A"
- shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
-proof -
- from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..
- then have "subset.chain A M" by (rule subset.maxchain_imp_chain)
- with assms have "\<Union>M \<in> A" .
- moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z"
- proof (intro ballI impI)
- fix Z
- assume "Z \<in> A" and "\<Union>M \<subseteq> Z"
- with subset_maxchain_max [OF `subset.maxchain A M`]
- show "\<Union>M = Z" .
- qed
- ultimately show ?thesis by blast
-qed
-
-
-subsection {* Zorn's Lemma for Partial Orders *}
-
-text {*Relate old to new definitions.*}
-
-(* Define globally? In Set.thy? *)
-definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^sub>\<subseteq>") where
- "chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)"
-
-definition chains :: "'a set set \<Rightarrow> 'a set set set" where
- "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"
-
-(* Define globally? In Relation.thy? *)
-definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set" where
- "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"
-
-lemma chains_extend:
- "[| c \<in> chains S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chains S"
- by (unfold chains_def chain_subset_def) blast
-
-lemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s"
- unfolding Chains_def by blast
-
-lemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C"
- unfolding chain_subset_def subset.chain_def by fast
-
-lemma chains_alt_def: "chains A = {C. subset.chain A C}"
- by (simp add: chains_def chain_subset_alt_def subset.chain_def)
-
-lemma Chains_subset:
- "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
- by (force simp add: Chains_def pred_on.chain_def)
-
-lemma Chains_subset':
- assumes "refl r"
- shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r"
- using assms
- by (auto simp add: Chains_def pred_on.chain_def refl_on_def)
-
-lemma Chains_alt_def:
- assumes "refl r"
- shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
- using assms
- by (metis Chains_subset Chains_subset' subset_antisym)
-
-lemma Zorn_Lemma:
- "\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
- using subset_Zorn' [of A] by (force simp: chains_alt_def)
-
-lemma Zorn_Lemma2:
- "\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
- using subset_Zorn [of A] by (auto simp: chains_alt_def)
-
-text{*Various other lemmas*}
-
-lemma chainsD: "[| c \<in> chains S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
-by (unfold chains_def chain_subset_def) blast
-
-lemma chainsD2: "!!(c :: 'a set set). c \<in> chains S ==> c \<subseteq> S"
-by (unfold chains_def) blast
-
-lemma Zorns_po_lemma:
- assumes po: "Partial_order r"
- and u: "\<forall>C\<in>Chains r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r"
- shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"
-proof -
- have "Preorder r" using po by (simp add: partial_order_on_def)
---{* Mirror r in the set of subsets below (wrt r) elements of A*}
- let ?B = "%x. r\<inverse> `` {x}" let ?S = "?B ` Field r"
- {
- fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A"
- let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
- have "C = ?B ` ?A" using 1 by (auto simp: image_def)
- have "?A \<in> Chains r"
- proof (simp add: Chains_def, intro allI impI, elim conjE)
- fix a b
- assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C"
- hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto
- thus "(a, b) \<in> r \<or> (b, a) \<in> r"
- using `Preorder r` and `a \<in> Field r` and `b \<in> Field r`
- by (simp add:subset_Image1_Image1_iff)
- qed
- then obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r" using u by auto
- have "\<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}" (is "?P u")
- proof auto
- fix a B assume aB: "B \<in> C" "a \<in> B"
- with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto
- thus "(a, u) \<in> r" using uA and aB and `Preorder r`
- unfolding preorder_on_def refl_on_def by simp (fast dest: transD)
- qed
- then have "\<exists>u\<in>Field r. ?P u" using `u \<in> Field r` by blast
- }
- then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U"
- by (auto simp: chains_def chain_subset_def)
- from Zorn_Lemma2 [OF this]
- obtain m B where "m \<in> Field r" and "B = r\<inverse> `` {m}"
- and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B"
- by auto
- hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"
- using po and `Preorder r` and `m \<in> Field r`
- by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)
- thus ?thesis using `m \<in> Field r` by blast
-qed
-
-
-subsection {* The Well Ordering Theorem *}
-
-(* The initial segment of a relation appears generally useful.
- Move to Relation.thy?
- Definition correct/most general?
- Naming?
-*)
-definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set" where
- "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"
-
-abbreviation
- initialSegmentOf :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infix "initial'_segment'_of" 55)
-where
- "r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of"
-
-lemma refl_on_init_seg_of [simp]: "r initial_segment_of r"
- by (simp add: init_seg_of_def)
-
-lemma trans_init_seg_of:
- "r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"
- by (simp (no_asm_use) add: init_seg_of_def) blast
-
-lemma antisym_init_seg_of:
- "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s"
- unfolding init_seg_of_def by safe
-
-lemma Chains_init_seg_of_Union:
- "R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"
- by (auto simp: init_seg_of_def Ball_def Chains_def) blast
-
-lemma chain_subset_trans_Union:
- "chain\<^sub>\<subseteq> R \<Longrightarrow> \<forall>r\<in>R. trans r \<Longrightarrow> trans (\<Union>R)"
-apply (auto simp add: chain_subset_def)
-apply (simp (no_asm_use) add: trans_def)
-by (metis subsetD)
-
-lemma chain_subset_antisym_Union:
- "chain\<^sub>\<subseteq> R \<Longrightarrow> \<forall>r\<in>R. antisym r \<Longrightarrow> antisym (\<Union>R)"
-unfolding chain_subset_def antisym_def
-apply simp
-by (metis (no_types) subsetD)
-
-lemma chain_subset_Total_Union:
- assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r"
- shows "Total (\<Union>R)"
-proof (simp add: total_on_def Ball_def, auto del: disjCI)
- fix r s a b assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b"
- from `chain\<^sub>\<subseteq> R` and `r \<in> R` and `s \<in> R` have "r \<subseteq> s \<or> s \<subseteq> r"
- by (auto simp add: chain_subset_def)
- thus "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)"
- proof
- assume "r \<subseteq> s" hence "(a, b) \<in> s \<or> (b, a) \<in> s" using assms(2) A
- by (simp add: total_on_def) (metis (no_types) mono_Field subsetD)
- thus ?thesis using `s \<in> R` by blast
- next
- assume "s \<subseteq> r" hence "(a, b) \<in> r \<or> (b, a) \<in> r" using assms(2) A
- by (simp add: total_on_def) (metis (no_types) mono_Field subsetD)
- thus ?thesis using `r \<in> R` by blast
- qed
-qed
-
-lemma wf_Union_wf_init_segs:
- assumes "R \<in> Chains init_seg_of" and "\<forall>r\<in>R. wf r"
- shows "wf (\<Union>R)"
-proof(simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto)
- fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r"
- then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto
- { fix i have "(f (Suc i), f i) \<in> r"
- proof (induct i)
- case 0 show ?case by fact
- next
- case (Suc i)
- then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s"
- using 1 by auto
- then have "s initial_segment_of r \<or> r initial_segment_of s"
- using assms(1) `r \<in> R` by (simp add: Chains_def)
- with Suc s show ?case by (simp add: init_seg_of_def) blast
- qed
- }
- thus False using assms(2) and `r \<in> R`
- by (simp add: wf_iff_no_infinite_down_chain) blast
-qed
-
-lemma initial_segment_of_Diff:
- "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"
- unfolding init_seg_of_def by blast
-
-lemma Chains_inits_DiffI:
- "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of"
- unfolding Chains_def by (blast intro: initial_segment_of_Diff)
-
-theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV"
-proof -
--- {*The initial segment relation on well-orders: *}
- let ?WO = "{r::'a rel. Well_order r}"
- def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"
- have I_init: "I \<subseteq> init_seg_of" by (auto simp: I_def)
- hence subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"
- unfolding init_seg_of_def chain_subset_def Chains_def by blast
- have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"
- by (simp add: Chains_def I_def) blast
- have FI: "Field I = ?WO" by (auto simp add: I_def init_seg_of_def Field_def)
- hence 0: "Partial_order I"
- by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def
- trans_def I_def elim!: trans_init_seg_of)
--- {*I-chains have upper bounds in ?WO wrt I: their Union*}
- { fix R assume "R \<in> Chains I"
- hence Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast
- have subch: "chain\<^sub>\<subseteq> R" using `R : Chains I` I_init
- by (auto simp: init_seg_of_def chain_subset_def Chains_def)
- have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r"
- and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)"
- using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)
- have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` unfolding refl_on_def by fastforce
- moreover have "trans (\<Union>R)"
- by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])
- moreover have "antisym (\<Union>R)"
- by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])
- moreover have "Total (\<Union>R)"
- by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])
- moreover have "wf ((\<Union>R) - Id)"
- proof -
- have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
- with `\<forall>r\<in>R. wf (r - Id)` and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]
- show ?thesis by fastforce
- qed
- ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs)
- moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris
- by(simp add: Chains_init_seg_of_Union)
- ultimately have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)"
- using mono_Chains [OF I_init] and `R \<in> Chains I`
- by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo)
- }
- hence 1: "\<forall>R \<in> Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast
---{*Zorn's Lemma yields a maximal well-order m:*}
- then obtain m::"'a rel" where "Well_order m" and
- max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m"
- using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce
---{*Now show by contradiction that m covers the whole type:*}
- { fix x::'a assume "x \<notin> Field m"
---{*We assume that x is not covered and extend m at the top with x*}
- have "m \<noteq> {}"
- proof
- assume "m = {}"
- moreover have "Well_order {(x, x)}"
- by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def)
- ultimately show False using max
- by (auto simp: I_def init_seg_of_def simp del: Field_insert)
- qed
- hence "Field m \<noteq> {}" by(auto simp:Field_def)
- moreover have "wf (m - Id)" using `Well_order m`
- by (simp add: well_order_on_def)
---{*The extension of m by x:*}
- let ?s = "{(a, x) | a. a \<in> Field m}"
- let ?m = "insert (x, x) m \<union> ?s"
- have Fm: "Field ?m = insert x (Field m)"
- by (auto simp: Field_def)
- have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"
- using `Well_order m` by (simp_all add: order_on_defs)
---{*We show that the extension is a well-order*}
- have "Refl ?m" using `Refl m` Fm unfolding refl_on_def by blast
- moreover have "trans ?m" using `trans m` and `x \<notin> Field m`
- unfolding trans_def Field_def by blast
- moreover have "antisym ?m" using `antisym m` and `x \<notin> Field m`
- unfolding antisym_def Field_def by blast
- moreover have "Total ?m" using `Total m` and Fm by (auto simp: total_on_def)
- moreover have "wf (?m - Id)"
- proof -
- have "wf ?s" using `x \<notin> Field m`
- by (auto simp add: wf_eq_minimal Field_def) metis
- thus ?thesis using `wf (m - Id)` and `x \<notin> Field m`
- wf_subset [OF `wf ?s` Diff_subset]
- unfolding Un_Diff Field_def by (auto intro: wf_Un)
- qed
- ultimately have "Well_order ?m" by (simp add: order_on_defs)
---{*We show that the extension is above m*}
- moreover have "(m, ?m) \<in> I" using `Well_order ?m` and `Well_order m` and `x \<notin> Field m`
- by (fastforce simp: I_def init_seg_of_def Field_def)
- ultimately
---{*This contradicts maximality of m:*}
- have False using max and `x \<notin> Field m` unfolding Field_def by blast
- }
- hence "Field m = UNIV" by auto
- with `Well_order m` show ?thesis by blast
-qed
-
-corollary well_order_on: "\<exists>r::'a rel. well_order_on A r"
-proof -
- obtain r::"'a rel" where wo: "Well_order r" and univ: "Field r = UNIV"
- using well_ordering [where 'a = "'a"] by blast
- let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
- have 1: "Field ?r = A" using wo univ
- by (fastforce simp: Field_def order_on_defs refl_on_def)
- have "Refl r" and "trans r" and "antisym r" and "Total r" and "wf (r - Id)"
- using `Well_order r` by (simp_all add: order_on_defs)
- have "Refl ?r" using `Refl r` by (auto simp: refl_on_def 1 univ)
- moreover have "trans ?r" using `trans r`
- unfolding trans_def by blast
- moreover have "antisym ?r" using `antisym r`
- unfolding antisym_def by blast
- moreover have "Total ?r" using `Total r` by (simp add:total_on_def 1 univ)
- moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf (r - Id)`]) blast
- ultimately have "Well_order ?r" by (simp add: order_on_defs)
- with 1 show ?thesis by auto
-qed
-
-end
--- a/src/HOL/Main.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/Main.thy Thu Jan 16 16:33:19 2014 +0100
@@ -1,7 +1,7 @@
header {* Main HOL *}
theory Main
-imports Predicate_Compile Nitpick Extraction Lifting_Sum List_Prefix Coinduction Order_Relation
+imports Predicate_Compile Nitpick Extraction Lifting_Sum List_Prefix Coinduction Zorn
begin
text {*
--- a/src/HOL/NSA/Filter.thy Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/NSA/Filter.thy Thu Jan 16 16:33:19 2014 +0100
@@ -7,7 +7,7 @@
header {* Filters and Ultrafilters *}
theory Filter
-imports "~~/src/HOL/Library/Zorn" "~~/src/HOL/Library/Infinite_Set"
+imports "~~/src/HOL/Library/Infinite_Set"
begin
subsection {* Definitions and basic properties *}
--- a/src/HOL/ROOT Thu Jan 16 16:20:17 2014 +0100
+++ b/src/HOL/ROOT Thu Jan 16 16:33:19 2014 +0100
@@ -61,7 +61,7 @@
This is the proof of the Hahn-Banach theorem for real vectorspaces,
following H. Heuser, Funktionalanalysis, p. 228 -232. The Hahn-Banach
- theorem is one of the fundamental theorems of functioal analysis. It is a
+ theorem is one of the fundamental theorems of functional analysis. It is a
conclusion of Zorn's lemma.
Two different formaulations of the theorem are presented, one for general
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Zorn.thy Thu Jan 16 16:33:19 2014 +0100
@@ -0,0 +1,712 @@
+(* Title: HOL/Zorn.thy
+ Author: Jacques D. Fleuriot
+ Author: Tobias Nipkow, TUM
+ Author: Christian Sternagel, JAIST
+
+Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).
+The well-ordering theorem.
+*)
+
+header {* Zorn's Lemma *}
+
+theory Zorn
+imports Order_Relation Hilbert_Choice
+begin
+
+subsection {* Zorn's Lemma for the Subset Relation *}
+
+subsubsection {* Results that do not require an order *}
+
+text {*Let @{text P} be a binary predicate on the set @{text A}.*}
+locale pred_on =
+ fixes A :: "'a set"
+ and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50)
+begin
+
+abbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) where
+ "x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y"
+
+text {*A chain is a totally ordered subset of @{term A}.*}
+definition chain :: "'a set \<Rightarrow> bool" where
+ "chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)"
+
+text {*We call a chain that is a proper superset of some set @{term X},
+but not necessarily a chain itself, a superchain of @{term X}.*}
+abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix "<c" 50) where
+ "X <c C \<equiv> chain C \<and> X \<subset> C"
+
+text {*A maximal chain is a chain that does not have a superchain.*}
+definition maxchain :: "'a set \<Rightarrow> bool" where
+ "maxchain C \<longleftrightarrow> chain C \<and> \<not> (\<exists>S. C <c S)"
+
+text {*We define the successor of a set to be an arbitrary
+superchain, if such exists, or the set itself, otherwise.*}
+definition suc :: "'a set \<Rightarrow> 'a set" where
+ "suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))"
+
+lemma chainI [Pure.intro?]:
+ "\<lbrakk>C \<subseteq> A; \<And>x y. \<lbrakk>x \<in> C; y \<in> C\<rbrakk> \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> chain C"
+ unfolding chain_def by blast
+
+lemma chain_total:
+ "chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
+ by (simp add: chain_def)
+
+lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X"
+ by (simp add: suc_def)
+
+lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X"
+ by (simp add: suc_def)
+
+lemma suc_subset: "X \<subseteq> suc X"
+ by (auto simp: suc_def maxchain_def intro: someI2)
+
+lemma chain_empty [simp]: "chain {}"
+ by (auto simp: chain_def)
+
+lemma not_maxchain_Some:
+ "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)"
+ by (rule someI_ex) (auto simp: maxchain_def)
+
+lemma suc_not_equals:
+ "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C"
+ by (auto simp: suc_def) (metis (no_types) less_irrefl not_maxchain_Some)
+
+lemma subset_suc:
+ assumes "X \<subseteq> Y" shows "X \<subseteq> suc Y"
+ using assms by (rule subset_trans) (rule suc_subset)
+
+text {*We build a set @{term \<C>} that is closed under applications
+of @{term suc} and contains the union of all its subsets.*}
+inductive_set suc_Union_closed ("\<C>") where
+ suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>" |
+ Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>"
+
+text {*Since the empty set as well as the set itself is a subset of
+every set, @{term \<C>} contains at least @{term "{} \<in> \<C>"} and
+@{term "\<Union>\<C> \<in> \<C>"}.*}
+lemma
+ suc_Union_closed_empty: "{} \<in> \<C>" and
+ suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>"
+ using Union [of "{}"] and Union [of "\<C>"] by simp+
+text {*Thus closure under @{term suc} will hit a maximal chain
+eventually, as is shown below.*}
+
+lemma suc_Union_closed_induct [consumes 1, case_names suc Union,
+ induct pred: suc_Union_closed]:
+ assumes "X \<in> \<C>"
+ and "\<And>X. \<lbrakk>X \<in> \<C>; Q X\<rbrakk> \<Longrightarrow> Q (suc X)"
+ and "\<And>X. \<lbrakk>X \<subseteq> \<C>; \<forall>x\<in>X. Q x\<rbrakk> \<Longrightarrow> Q (\<Union>X)"
+ shows "Q X"
+ using assms by (induct) blast+
+
+lemma suc_Union_closed_cases [consumes 1, case_names suc Union,
+ cases pred: suc_Union_closed]:
+ assumes "X \<in> \<C>"
+ and "\<And>Y. \<lbrakk>X = suc Y; Y \<in> \<C>\<rbrakk> \<Longrightarrow> Q"
+ and "\<And>Y. \<lbrakk>X = \<Union>Y; Y \<subseteq> \<C>\<rbrakk> \<Longrightarrow> Q"
+ shows "Q"
+ using assms by (cases) simp+
+
+text {*On chains, @{term suc} yields a chain.*}
+lemma chain_suc:
+ assumes "chain X" shows "chain (suc X)"
+ using assms
+ by (cases "\<not> chain X \<or> maxchain X")
+ (force simp: suc_def dest: not_maxchain_Some)+
+
+lemma chain_sucD:
+ assumes "chain X" shows "suc X \<subseteq> A \<and> chain (suc X)"
+proof -
+ from `chain X` have *: "chain (suc X)" by (rule chain_suc)
+ then have "suc X \<subseteq> A" unfolding chain_def by blast
+ with * show ?thesis by blast
+qed
+
+lemma suc_Union_closed_total':
+ assumes "X \<in> \<C>" and "Y \<in> \<C>"
+ and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y"
+ shows "X \<subseteq> Y \<or> suc Y \<subseteq> X"
+ using `X \<in> \<C>`
+proof (induct)
+ case (suc X)
+ with * show ?case by (blast del: subsetI intro: subset_suc)
+qed blast
+
+lemma suc_Union_closed_subsetD:
+ assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>"
+ shows "X = Y \<or> suc Y \<subseteq> X"
+ using assms(2-, 1)
+proof (induct arbitrary: Y)
+ case (suc X)
+ note * = `\<And>Y. \<lbrakk>Y \<in> \<C>; Y \<subseteq> X\<rbrakk> \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X`
+ with suc_Union_closed_total' [OF `Y \<in> \<C>` `X \<in> \<C>`]
+ have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast
+ then show ?case
+ proof
+ assume "Y \<subseteq> X"
+ with * and `Y \<in> \<C>` have "X = Y \<or> suc Y \<subseteq> X" by blast
+ then show ?thesis
+ proof
+ assume "X = Y" then show ?thesis by simp
+ next
+ assume "suc Y \<subseteq> X"
+ then have "suc Y \<subseteq> suc X" by (rule subset_suc)
+ then show ?thesis by simp
+ qed
+ next
+ assume "suc X \<subseteq> Y"
+ with `Y \<subseteq> suc X` show ?thesis by blast
+ qed
+next
+ case (Union X)
+ show ?case
+ proof (rule ccontr)
+ assume "\<not> ?thesis"
+ with `Y \<subseteq> \<Union>X` obtain x y z
+ where "\<not> suc Y \<subseteq> \<Union>X"
+ and "x \<in> X" and "y \<in> x" and "y \<notin> Y"
+ and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast
+ with `X \<subseteq> \<C>` have "x \<in> \<C>" by blast
+ from Union and `x \<in> X`
+ have *: "\<And>y. \<lbrakk>y \<in> \<C>; y \<subseteq> x\<rbrakk> \<Longrightarrow> x = y \<or> suc y \<subseteq> x" by blast
+ with suc_Union_closed_total' [OF `Y \<in> \<C>` `x \<in> \<C>`]
+ have "Y \<subseteq> x \<or> suc x \<subseteq> Y" by blast
+ then show False
+ proof
+ assume "Y \<subseteq> x"
+ with * [OF `Y \<in> \<C>`] have "x = Y \<or> suc Y \<subseteq> x" by blast
+ then show False
+ proof
+ assume "x = Y" with `y \<in> x` and `y \<notin> Y` show False by blast
+ next
+ assume "suc Y \<subseteq> x"
+ with `x \<in> X` have "suc Y \<subseteq> \<Union>X" by blast
+ with `\<not> suc Y \<subseteq> \<Union>X` show False by contradiction
+ qed
+ next
+ assume "suc x \<subseteq> Y"
+ moreover from suc_subset and `y \<in> x` have "y \<in> suc x" by blast
+ ultimately show False using `y \<notin> Y` by blast
+ qed
+ qed
+qed
+
+text {*The elements of @{term \<C>} are totally ordered by the subset relation.*}
+lemma suc_Union_closed_total:
+ assumes "X \<in> \<C>" and "Y \<in> \<C>"
+ shows "X \<subseteq> Y \<or> Y \<subseteq> X"
+proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y")
+ case True
+ with suc_Union_closed_total' [OF assms]
+ have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast
+ then show ?thesis using suc_subset [of Y] by blast
+next
+ case False
+ then obtain Z
+ where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y" by blast
+ with suc_Union_closed_subsetD and `Y \<in> \<C>` show ?thesis by blast
+qed
+
+text {*Once we hit a fixed point w.r.t. @{term suc}, all other elements
+of @{term \<C>} are subsets of this fixed point.*}
+lemma suc_Union_closed_suc:
+ assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y"
+ shows "X \<subseteq> Y"
+using `X \<in> \<C>`
+proof (induct)
+ case (suc X)
+ with `Y \<in> \<C>` and suc_Union_closed_subsetD
+ have "X = Y \<or> suc X \<subseteq> Y" by blast
+ then show ?case by (auto simp: `suc Y = Y`)
+qed blast
+
+lemma eq_suc_Union:
+ assumes "X \<in> \<C>"
+ shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>"
+proof
+ assume "suc X = X"
+ with suc_Union_closed_suc [OF suc_Union_closed_Union `X \<in> \<C>`]
+ have "\<Union>\<C> \<subseteq> X" .
+ with `X \<in> \<C>` show "X = \<Union>\<C>" by blast
+next
+ from `X \<in> \<C>` have "suc X \<in> \<C>" by (rule suc)
+ then have "suc X \<subseteq> \<Union>\<C>" by blast
+ moreover assume "X = \<Union>\<C>"
+ ultimately have "suc X \<subseteq> X" by simp
+ moreover have "X \<subseteq> suc X" by (rule suc_subset)
+ ultimately show "suc X = X" ..
+qed
+
+lemma suc_in_carrier:
+ assumes "X \<subseteq> A"
+ shows "suc X \<subseteq> A"
+ using assms
+ by (cases "\<not> chain X \<or> maxchain X")
+ (auto dest: chain_sucD)
+
+lemma suc_Union_closed_in_carrier:
+ assumes "X \<in> \<C>"
+ shows "X \<subseteq> A"
+ using assms
+ by (induct) (auto dest: suc_in_carrier)
+
+text {*All elements of @{term \<C>} are chains.*}
+lemma suc_Union_closed_chain:
+ assumes "X \<in> \<C>"
+ shows "chain X"
+using assms
+proof (induct)
+ case (suc X) then show ?case by (simp add: suc_def) (metis (no_types) not_maxchain_Some)
+next
+ case (Union X)
+ then have "\<Union>X \<subseteq> A" by (auto dest: suc_Union_closed_in_carrier)
+ moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
+ proof (intro ballI)
+ fix x y
+ assume "x \<in> \<Union>X" and "y \<in> \<Union>X"
+ then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X" by blast
+ with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v" by blast+
+ with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u" by blast
+ then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
+ proof
+ assume "u \<subseteq> v"
+ from `chain v` show ?thesis
+ proof (rule chain_total)
+ show "y \<in> v" by fact
+ show "x \<in> v" using `u \<subseteq> v` and `x \<in> u` by blast
+ qed
+ next
+ assume "v \<subseteq> u"
+ from `chain u` show ?thesis
+ proof (rule chain_total)
+ show "x \<in> u" by fact
+ show "y \<in> u" using `v \<subseteq> u` and `y \<in> v` by blast
+ qed
+ qed
+ qed
+ ultimately show ?case unfolding chain_def ..
+qed
+
+subsubsection {* Hausdorff's Maximum Principle *}
+
+text {*There exists a maximal totally ordered subset of @{term A}. (Note that we do not
+require @{term A} to be partially ordered.)*}
+
+theorem Hausdorff: "\<exists>C. maxchain C"
+proof -
+ let ?M = "\<Union>\<C>"
+ have "maxchain ?M"
+ proof (rule ccontr)
+ assume "\<not> maxchain ?M"
+ then have "suc ?M \<noteq> ?M"
+ using suc_not_equals and
+ suc_Union_closed_chain [OF suc_Union_closed_Union] by simp
+ moreover have "suc ?M = ?M"
+ using eq_suc_Union [OF suc_Union_closed_Union] by simp
+ ultimately show False by contradiction
+ qed
+ then show ?thesis by blast
+qed
+
+text {*Make notation @{term \<C>} available again.*}
+no_notation suc_Union_closed ("\<C>")
+
+lemma chain_extend:
+ "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)"
+ unfolding chain_def by blast
+
+lemma maxchain_imp_chain:
+ "maxchain C \<Longrightarrow> chain C"
+ by (simp add: maxchain_def)
+
+end
+
+text {*Hide constant @{const pred_on.suc_Union_closed}, which was just needed
+for the proof of Hausforff's maximum principle.*}
+hide_const pred_on.suc_Union_closed
+
+lemma chain_mono:
+ assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A; P x y\<rbrakk> \<Longrightarrow> Q x y"
+ and "pred_on.chain A P C"
+ shows "pred_on.chain A Q C"
+ using assms unfolding pred_on.chain_def by blast
+
+subsubsection {* Results for the proper subset relation *}
+
+interpretation subset: pred_on "A" "op \<subset>" for A .
+
+lemma subset_maxchain_max:
+ assumes "subset.maxchain A C" and "X \<in> A" and "\<Union>C \<subseteq> X"
+ shows "\<Union>C = X"
+proof (rule ccontr)
+ let ?C = "{X} \<union> C"
+ from `subset.maxchain A C` have "subset.chain A C"
+ and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S"
+ by (auto simp: subset.maxchain_def)
+ moreover have "\<forall>x\<in>C. x \<subseteq> X" using `\<Union>C \<subseteq> X` by auto
+ ultimately have "subset.chain A ?C"
+ using subset.chain_extend [of A C X] and `X \<in> A` by auto
+ moreover assume **: "\<Union>C \<noteq> X"
+ moreover from ** have "C \<subset> ?C" using `\<Union>C \<subseteq> X` by auto
+ ultimately show False using * by blast
+qed
+
+subsubsection {* Zorn's lemma *}
+
+text {*If every chain has an upper bound, then there is a maximal set.*}
+lemma subset_Zorn:
+ assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U"
+ shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
+proof -
+ from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..
+ then have "subset.chain A M" by (rule subset.maxchain_imp_chain)
+ with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y" by blast
+ moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X"
+ proof (intro ballI impI)
+ fix X
+ assume "X \<in> A" and "Y \<subseteq> X"
+ show "Y = X"
+ proof (rule ccontr)
+ assume "Y \<noteq> X"
+ with `Y \<subseteq> X` have "\<not> X \<subseteq> Y" by blast
+ from subset.chain_extend [OF `subset.chain A M` `X \<in> A`] and `\<forall>X\<in>M. X \<subseteq> Y`
+ have "subset.chain A ({X} \<union> M)" using `Y \<subseteq> X` by auto
+ moreover have "M \<subset> {X} \<union> M" using `\<forall>X\<in>M. X \<subseteq> Y` and `\<not> X \<subseteq> Y` by auto
+ ultimately show False
+ using `subset.maxchain A M` by (auto simp: subset.maxchain_def)
+ qed
+ qed
+ ultimately show ?thesis by metis
+qed
+
+text{*Alternative version of Zorn's lemma for the subset relation.*}
+lemma subset_Zorn':
+ assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A"
+ shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
+proof -
+ from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..
+ then have "subset.chain A M" by (rule subset.maxchain_imp_chain)
+ with assms have "\<Union>M \<in> A" .
+ moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z"
+ proof (intro ballI impI)
+ fix Z
+ assume "Z \<in> A" and "\<Union>M \<subseteq> Z"
+ with subset_maxchain_max [OF `subset.maxchain A M`]
+ show "\<Union>M = Z" .
+ qed
+ ultimately show ?thesis by blast
+qed
+
+
+subsection {* Zorn's Lemma for Partial Orders *}
+
+text {*Relate old to new definitions.*}
+
+(* Define globally? In Set.thy? *)
+definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^sub>\<subseteq>") where
+ "chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)"
+
+definition chains :: "'a set set \<Rightarrow> 'a set set set" where
+ "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"
+
+(* Define globally? In Relation.thy? *)
+definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set" where
+ "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"
+
+lemma chains_extend:
+ "[| c \<in> chains S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chains S"
+ by (unfold chains_def chain_subset_def) blast
+
+lemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s"
+ unfolding Chains_def by blast
+
+lemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C"
+ unfolding chain_subset_def subset.chain_def by fast
+
+lemma chains_alt_def: "chains A = {C. subset.chain A C}"
+ by (simp add: chains_def chain_subset_alt_def subset.chain_def)
+
+lemma Chains_subset:
+ "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
+ by (force simp add: Chains_def pred_on.chain_def)
+
+lemma Chains_subset':
+ assumes "refl r"
+ shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r"
+ using assms
+ by (auto simp add: Chains_def pred_on.chain_def refl_on_def)
+
+lemma Chains_alt_def:
+ assumes "refl r"
+ shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
+ using assms
+ by (metis Chains_subset Chains_subset' subset_antisym)
+
+lemma Zorn_Lemma:
+ "\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
+ using subset_Zorn' [of A] by (force simp: chains_alt_def)
+
+lemma Zorn_Lemma2:
+ "\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"
+ using subset_Zorn [of A] by (auto simp: chains_alt_def)
+
+text{*Various other lemmas*}
+
+lemma chainsD: "[| c \<in> chains S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
+by (unfold chains_def chain_subset_def) blast
+
+lemma chainsD2: "!!(c :: 'a set set). c \<in> chains S ==> c \<subseteq> S"
+by (unfold chains_def) blast
+
+lemma Zorns_po_lemma:
+ assumes po: "Partial_order r"
+ and u: "\<forall>C\<in>Chains r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r"
+ shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"
+proof -
+ have "Preorder r" using po by (simp add: partial_order_on_def)
+--{* Mirror r in the set of subsets below (wrt r) elements of A*}
+ let ?B = "%x. r\<inverse> `` {x}" let ?S = "?B ` Field r"
+ {
+ fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A"
+ let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
+ have "C = ?B ` ?A" using 1 by (auto simp: image_def)
+ have "?A \<in> Chains r"
+ proof (simp add: Chains_def, intro allI impI, elim conjE)
+ fix a b
+ assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C"
+ hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto
+ thus "(a, b) \<in> r \<or> (b, a) \<in> r"
+ using `Preorder r` and `a \<in> Field r` and `b \<in> Field r`
+ by (simp add:subset_Image1_Image1_iff)
+ qed
+ then obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r" using u by auto
+ have "\<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}" (is "?P u")
+ proof auto
+ fix a B assume aB: "B \<in> C" "a \<in> B"
+ with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto
+ thus "(a, u) \<in> r" using uA and aB and `Preorder r`
+ unfolding preorder_on_def refl_on_def by simp (fast dest: transD)
+ qed
+ then have "\<exists>u\<in>Field r. ?P u" using `u \<in> Field r` by blast
+ }
+ then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U"
+ by (auto simp: chains_def chain_subset_def)
+ from Zorn_Lemma2 [OF this]
+ obtain m B where "m \<in> Field r" and "B = r\<inverse> `` {m}"
+ and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B"
+ by auto
+ hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"
+ using po and `Preorder r` and `m \<in> Field r`
+ by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)
+ thus ?thesis using `m \<in> Field r` by blast
+qed
+
+
+subsection {* The Well Ordering Theorem *}
+
+(* The initial segment of a relation appears generally useful.
+ Move to Relation.thy?
+ Definition correct/most general?
+ Naming?
+*)
+definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set" where
+ "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"
+
+abbreviation
+ initialSegmentOf :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infix "initial'_segment'_of" 55)
+where
+ "r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of"
+
+lemma refl_on_init_seg_of [simp]: "r initial_segment_of r"
+ by (simp add: init_seg_of_def)
+
+lemma trans_init_seg_of:
+ "r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"
+ by (simp (no_asm_use) add: init_seg_of_def) blast
+
+lemma antisym_init_seg_of:
+ "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s"
+ unfolding init_seg_of_def by safe
+
+lemma Chains_init_seg_of_Union:
+ "R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"
+ by (auto simp: init_seg_of_def Ball_def Chains_def) blast
+
+lemma chain_subset_trans_Union:
+ "chain\<^sub>\<subseteq> R \<Longrightarrow> \<forall>r\<in>R. trans r \<Longrightarrow> trans (\<Union>R)"
+apply (auto simp add: chain_subset_def)
+apply (simp (no_asm_use) add: trans_def)
+by (metis subsetD)
+
+lemma chain_subset_antisym_Union:
+ "chain\<^sub>\<subseteq> R \<Longrightarrow> \<forall>r\<in>R. antisym r \<Longrightarrow> antisym (\<Union>R)"
+unfolding chain_subset_def antisym_def
+apply simp
+by (metis (no_types) subsetD)
+
+lemma chain_subset_Total_Union:
+ assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r"
+ shows "Total (\<Union>R)"
+proof (simp add: total_on_def Ball_def, auto del: disjCI)
+ fix r s a b assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b"
+ from `chain\<^sub>\<subseteq> R` and `r \<in> R` and `s \<in> R` have "r \<subseteq> s \<or> s \<subseteq> r"
+ by (auto simp add: chain_subset_def)
+ thus "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)"
+ proof
+ assume "r \<subseteq> s" hence "(a, b) \<in> s \<or> (b, a) \<in> s" using assms(2) A
+ by (simp add: total_on_def) (metis (no_types) mono_Field subsetD)
+ thus ?thesis using `s \<in> R` by blast
+ next
+ assume "s \<subseteq> r" hence "(a, b) \<in> r \<or> (b, a) \<in> r" using assms(2) A
+ by (simp add: total_on_def) (metis (no_types) mono_Field subsetD)
+ thus ?thesis using `r \<in> R` by blast
+ qed
+qed
+
+lemma wf_Union_wf_init_segs:
+ assumes "R \<in> Chains init_seg_of" and "\<forall>r\<in>R. wf r"
+ shows "wf (\<Union>R)"
+proof(simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto)
+ fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r"
+ then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto
+ { fix i have "(f (Suc i), f i) \<in> r"
+ proof (induct i)
+ case 0 show ?case by fact
+ next
+ case (Suc i)
+ then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s"
+ using 1 by auto
+ then have "s initial_segment_of r \<or> r initial_segment_of s"
+ using assms(1) `r \<in> R` by (simp add: Chains_def)
+ with Suc s show ?case by (simp add: init_seg_of_def) blast
+ qed
+ }
+ thus False using assms(2) and `r \<in> R`
+ by (simp add: wf_iff_no_infinite_down_chain) blast
+qed
+
+lemma initial_segment_of_Diff:
+ "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"
+ unfolding init_seg_of_def by blast
+
+lemma Chains_inits_DiffI:
+ "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of"
+ unfolding Chains_def by (blast intro: initial_segment_of_Diff)
+
+theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV"
+proof -
+-- {*The initial segment relation on well-orders: *}
+ let ?WO = "{r::'a rel. Well_order r}"
+ def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"
+ have I_init: "I \<subseteq> init_seg_of" by (auto simp: I_def)
+ hence subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"
+ unfolding init_seg_of_def chain_subset_def Chains_def by blast
+ have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"
+ by (simp add: Chains_def I_def) blast
+ have FI: "Field I = ?WO" by (auto simp add: I_def init_seg_of_def Field_def)
+ hence 0: "Partial_order I"
+ by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def
+ trans_def I_def elim!: trans_init_seg_of)
+-- {*I-chains have upper bounds in ?WO wrt I: their Union*}
+ { fix R assume "R \<in> Chains I"
+ hence Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast
+ have subch: "chain\<^sub>\<subseteq> R" using `R : Chains I` I_init
+ by (auto simp: init_seg_of_def chain_subset_def Chains_def)
+ have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r"
+ and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)"
+ using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)
+ have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` unfolding refl_on_def by fastforce
+ moreover have "trans (\<Union>R)"
+ by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])
+ moreover have "antisym (\<Union>R)"
+ by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])
+ moreover have "Total (\<Union>R)"
+ by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])
+ moreover have "wf ((\<Union>R) - Id)"
+ proof -
+ have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
+ with `\<forall>r\<in>R. wf (r - Id)` and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]
+ show ?thesis by fastforce
+ qed
+ ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs)
+ moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris
+ by(simp add: Chains_init_seg_of_Union)
+ ultimately have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)"
+ using mono_Chains [OF I_init] and `R \<in> Chains I`
+ by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo)
+ }
+ hence 1: "\<forall>R \<in> Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast
+--{*Zorn's Lemma yields a maximal well-order m:*}
+ then obtain m::"'a rel" where "Well_order m" and
+ max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m"
+ using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce
+--{*Now show by contradiction that m covers the whole type:*}
+ { fix x::'a assume "x \<notin> Field m"
+--{*We assume that x is not covered and extend m at the top with x*}
+ have "m \<noteq> {}"
+ proof
+ assume "m = {}"
+ moreover have "Well_order {(x, x)}"
+ by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def)
+ ultimately show False using max
+ by (auto simp: I_def init_seg_of_def simp del: Field_insert)
+ qed
+ hence "Field m \<noteq> {}" by(auto simp:Field_def)
+ moreover have "wf (m - Id)" using `Well_order m`
+ by (simp add: well_order_on_def)
+--{*The extension of m by x:*}
+ let ?s = "{(a, x) | a. a \<in> Field m}"
+ let ?m = "insert (x, x) m \<union> ?s"
+ have Fm: "Field ?m = insert x (Field m)"
+ by (auto simp: Field_def)
+ have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"
+ using `Well_order m` by (simp_all add: order_on_defs)
+--{*We show that the extension is a well-order*}
+ have "Refl ?m" using `Refl m` Fm unfolding refl_on_def by blast
+ moreover have "trans ?m" using `trans m` and `x \<notin> Field m`
+ unfolding trans_def Field_def by blast
+ moreover have "antisym ?m" using `antisym m` and `x \<notin> Field m`
+ unfolding antisym_def Field_def by blast
+ moreover have "Total ?m" using `Total m` and Fm by (auto simp: total_on_def)
+ moreover have "wf (?m - Id)"
+ proof -
+ have "wf ?s" using `x \<notin> Field m`
+ by (auto simp add: wf_eq_minimal Field_def) metis
+ thus ?thesis using `wf (m - Id)` and `x \<notin> Field m`
+ wf_subset [OF `wf ?s` Diff_subset]
+ unfolding Un_Diff Field_def by (auto intro: wf_Un)
+ qed
+ ultimately have "Well_order ?m" by (simp add: order_on_defs)
+--{*We show that the extension is above m*}
+ moreover have "(m, ?m) \<in> I" using `Well_order ?m` and `Well_order m` and `x \<notin> Field m`
+ by (fastforce simp: I_def init_seg_of_def Field_def)
+ ultimately
+--{*This contradicts maximality of m:*}
+ have False using max and `x \<notin> Field m` unfolding Field_def by blast
+ }
+ hence "Field m = UNIV" by auto
+ with `Well_order m` show ?thesis by blast
+qed
+
+corollary well_order_on: "\<exists>r::'a rel. well_order_on A r"
+proof -
+ obtain r::"'a rel" where wo: "Well_order r" and univ: "Field r = UNIV"
+ using well_ordering [where 'a = "'a"] by blast
+ let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
+ have 1: "Field ?r = A" using wo univ
+ by (fastforce simp: Field_def order_on_defs refl_on_def)
+ have "Refl r" and "trans r" and "antisym r" and "Total r" and "wf (r - Id)"
+ using `Well_order r` by (simp_all add: order_on_defs)
+ have "Refl ?r" using `Refl r` by (auto simp: refl_on_def 1 univ)
+ moreover have "trans ?r" using `trans r`
+ unfolding trans_def by blast
+ moreover have "antisym ?r" using `antisym r`
+ unfolding antisym_def by blast
+ moreover have "Total ?r" using `Total r` by (simp add:total_on_def 1 univ)
+ moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf (r - Id)`]) blast
+ ultimately have "Well_order ?r" by (simp add: order_on_defs)
+ with 1 show ?thesis by auto
+qed
+
+end