Removal of the Primrec example in preparation for making it an AFP entry
authorpaulson <lp15@cam.ac.uk>
Wed, 23 Mar 2022 14:22:56 +0000
changeset 75302 2a916311c376
parent 75301 b95407ce17d5
child 75303 c8a9bf6d9b38
Removal of the Primrec example in preparation for making it an AFP entry
src/HOL/ex/Primrec.thy
--- a/src/HOL/ex/Primrec.thy	Wed Mar 23 10:54:22 2022 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,323 +0,0 @@
-(*  Title:      HOL/ex/Primrec.thy
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1997  University of Cambridge
-*)
-
-section \<open>Ackermann's Function and the Primitive Recursive Functions\<close>
-
-theory Primrec imports Main begin
-
-text \<open>
-  Proof adopted from
-
-  Nora Szasz, A Machine Checked Proof that Ackermann's Function is not
-  Primitive Recursive, In: Huet \& Plotkin, eds., Logical Environments
-  (CUP, 1993), 317-338.
-
-  See also E. Mendelson, Introduction to Mathematical Logic.  (Van
-  Nostrand, 1964), page 250, exercise 11.
-  \medskip
-\<close>
-
-
-subsection\<open>Ackermann's Function\<close>
-
-fun ack :: "[nat,nat] \<Rightarrow> nat" where
-  "ack 0 n =  Suc n"
-| "ack (Suc m) 0 = ack m 1"
-| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
-
-
-text \<open>PROPERTY A 4\<close>
-
-lemma less_ack2 [iff]: "j < ack i j"
-  by (induct i j rule: ack.induct) simp_all
-
-
-text \<open>PROPERTY A 5-, the single-step lemma\<close>
-
-lemma ack_less_ack_Suc2 [iff]: "ack i j < ack i (Suc j)"
-  by (induct i j rule: ack.induct) simp_all
-
-
-text \<open>PROPERTY A 5, monotonicity for \<open><\<close>\<close>
-
-lemma ack_less_mono2: "j < k \<Longrightarrow> ack i j < ack i k"
-  by (simp add: lift_Suc_mono_less)
-
-
-text \<open>PROPERTY A 5', monotonicity for \<open>\<le>\<close>\<close>
-
-lemma ack_le_mono2: "j \<le> k \<Longrightarrow> ack i j \<le> ack i k"
-  by (simp add: ack_less_mono2 less_mono_imp_le_mono)
-
-
-text \<open>PROPERTY A 6\<close>
-
-lemma ack2_le_ack1 [iff]: "ack i (Suc j) \<le> ack (Suc i) j"
-proof (induct j)
-  case 0 show ?case by simp
-next
-  case (Suc j) show ?case
-    by (metis Suc ack.simps(3) ack_le_mono2 le_trans less_ack2 less_eq_Suc_le) 
-qed
-
-
-text \<open>PROPERTY A 7-, the single-step lemma\<close>
-
-lemma ack_less_ack_Suc1 [iff]: "ack i j < ack (Suc i) j"
-  by (blast intro: ack_less_mono2 less_le_trans)
-
-
-text \<open>PROPERTY A 4'? Extra lemma needed for \<^term>\<open>CONSTANT\<close> case, constant functions\<close>
-
-lemma less_ack1 [iff]: "i < ack i j"
-proof (induct i)
-  case 0
-  then show ?case 
-    by simp
-next
-  case (Suc i)
-  then show ?case
-    using less_trans_Suc by blast
-qed
-
-
-text \<open>PROPERTY A 8\<close>
-
-lemma ack_1 [simp]: "ack (Suc 0) j = j + 2"
-  by (induct j) simp_all
-
-
-text \<open>PROPERTY A 9.  The unary \<open>1\<close> and \<open>2\<close> in \<^term>\<open>ack\<close> is essential for the rewriting.\<close>
-
-lemma ack_2 [simp]: "ack (Suc (Suc 0)) j = 2 * j + 3"
-  by (induct j) simp_all
-
-text \<open>Added in 2022 just for fun\<close>
-lemma ack_3: "ack (Suc (Suc (Suc 0))) j = 2 ^ (j+3) - 3"
-proof (induct j)
-  case 0
-  then show ?case by simp
-next
-  case (Suc j)
-  with less_le_trans show ?case
-    by (fastforce simp add: power_add algebra_simps)
-qed
-
-text \<open>PROPERTY A 7, monotonicity for \<open><\<close> [not clear why
-  @{thm [source] ack_1} is now needed first!]\<close>
-
-lemma ack_less_mono1_aux: "ack i k < ack (Suc (i +i')) k"
-proof (induct i k rule: ack.induct)
-  case (1 n) show ?case
-    using less_le_trans by auto
-next
-  case (2 m) thus ?case by simp
-next
-  case (3 m n) thus ?case
-    using ack_less_mono2 less_trans by fastforce
-qed
-
-lemma ack_less_mono1: "i < j \<Longrightarrow> ack i k < ack j k"
-  using ack_less_mono1_aux less_iff_Suc_add by auto
-
-
-text \<open>PROPERTY A 7', monotonicity for \<open>\<le>\<close>\<close>
-
-lemma ack_le_mono1: "i \<le> j \<Longrightarrow> ack i k \<le> ack j k"
-  using ack_less_mono1 le_eq_less_or_eq by auto
-
-
-text \<open>PROPERTY A 10\<close>
-
-lemma ack_nest_bound: "ack i1 (ack i2 j) < ack (2 + (i1 + i2)) j"
-proof -
-  have "ack i1 (ack i2 j) < ack (i1 + i2) (ack (Suc (i1 + i2)) j)"
-    by (meson ack_le_mono1 ack_less_mono1 ack_less_mono2 le_add1 le_trans less_add_Suc2 not_less)
-  also have "... = ack (Suc (i1 + i2)) (Suc j)"
-    by simp
-  also have "... \<le> ack (2 + (i1 + i2)) j"
-    using ack2_le_ack1 add_2_eq_Suc by presburger
-  finally show ?thesis .
-qed
-
-
-
-text \<open>PROPERTY A 11\<close>
-
-lemma ack_add_bound: "ack i1 j + ack i2 j < ack (4 + (i1 + i2)) j"
-proof -
-  have "ack i1 j \<le> ack (i1 + i2) j" "ack i2 j \<le> ack (i1 + i2) j"
-    by (simp_all add: ack_le_mono1)
-  then have "ack i1 j + ack i2 j < ack (Suc (Suc 0)) (ack (i1 + i2) j)"
-    by simp
-  also have "... < ack (4 + (i1 + i2)) j"
-    by (metis ack_nest_bound add.assoc numeral_2_eq_2 numeral_Bit0)
-  finally show ?thesis .
-qed
-
-
-text \<open>PROPERTY A 12.  Article uses existential quantifier but the ALF proof
-  used \<open>k + 4\<close>.  Quantified version must be nested \<open>\<exists>k'. \<forall>i j. ...\<close>\<close>
-
-lemma ack_add_bound2: 
-  assumes "i < ack k j" shows "i + j < ack (4 + k) j"
-proof -
-  have "i + j < ack k j + ack 0 j"
-    using assms by auto
-  also have "... < ack (4 + k) j"
-    by (metis ack_add_bound add.right_neutral)
-  finally show ?thesis .
-qed
-
-
-subsection\<open>Primitive Recursive Functions\<close>
-
-primrec hd0 :: "nat list \<Rightarrow> nat" where
-  "hd0 [] = 0" 
-| "hd0 (m # ms) = m"
-
-
-text \<open>Inductive definition of the set of primitive recursive functions of type \<^typ>\<open>nat list \<Rightarrow> nat\<close>.\<close>
-
-definition SC :: "nat list \<Rightarrow> nat" 
-  where "SC l = Suc (hd0 l)"
-
-definition CONSTANT :: "nat \<Rightarrow> nat list \<Rightarrow> nat" 
-  where "CONSTANT k l = k"
-
-definition PROJ :: "nat \<Rightarrow> nat list \<Rightarrow> nat" 
-  where "PROJ i l = hd0 (drop i l)"
-
-definition COMP :: "[nat list \<Rightarrow> nat, (nat list \<Rightarrow> nat) list, nat list] \<Rightarrow> nat"
-  where "COMP g fs l = g (map (\<lambda>f. f l) fs)"
-
-fun PREC :: "[nat list \<Rightarrow> nat, nat list \<Rightarrow> nat, nat list] \<Rightarrow> nat"
-  where
-    "PREC f g [] = 0"
-  | "PREC f g (x # l) = rec_nat (f l) (\<lambda>y r. g (r # y # l)) x"
-    \<comment> \<open>Note that \<^term>\<open>g\<close> is applied first to \<^term>\<open>PREC f g y\<close> and then to \<^term>\<open>y\<close>!\<close>
-
-inductive PRIMREC :: "(nat list \<Rightarrow> nat) \<Rightarrow> bool" where
-  SC: "PRIMREC SC"
-| CONSTANT: "PRIMREC (CONSTANT k)"
-| PROJ: "PRIMREC (PROJ i)"
-| COMP: "PRIMREC g \<Longrightarrow> \<forall>f \<in> set fs. PRIMREC f \<Longrightarrow> PRIMREC (COMP g fs)"
-| PREC: "PRIMREC f \<Longrightarrow> PRIMREC g \<Longrightarrow> PRIMREC (PREC f g)"
-
-
-text \<open>Useful special cases of evaluation\<close>
-
-lemma SC [simp]: "SC (x # l) = Suc x"
-  by (simp add: SC_def)
-
-lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x"
-  by (simp add: PROJ_def)
-
-lemma COMP_1 [simp]: "COMP g [f] l = g [f l]"
-  by (simp add: COMP_def)
-
-lemma PREC_0: "PREC f g (0 # l) = f l"
-  by simp
-
-lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)"
-  by auto
-
-
-subsection \<open>MAIN RESULT\<close>
-
-lemma SC_case: "SC l < ack 1 (sum_list l)"
-  unfolding SC_def
-  by (induct l) (simp_all add: le_add1 le_imp_less_Suc)
-
-lemma CONSTANT_case: "CONSTANT k l < ack k (sum_list l)"
-  by (simp add: CONSTANT_def)
-
-lemma PROJ_case: "PROJ i l < ack 0 (sum_list l)"
-  unfolding PROJ_def
-proof (induct l arbitrary: i)
-  case Nil
-  then show ?case
-    by simp
-next
-  case (Cons a l)
-  then show ?case
-    by (metis ack.simps(1) add.commute drop_Cons' hd0.simps(2) leD leI lessI not_less_eq sum_list.Cons trans_le_add2)
-qed
-
-
-text \<open>\<^term>\<open>COMP\<close> case\<close>
-
-lemma COMP_map_aux: "\<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (sum_list l))
-  \<Longrightarrow> \<exists>k. \<forall>l. sum_list (map (\<lambda>f. f l) fs) < ack k (sum_list l)"
-proof (induct fs)
-  case Nil
-  then show ?case
-    by auto
-next
-  case (Cons a fs)
-  then show ?case
-    by simp (blast intro: add_less_mono ack_add_bound less_trans)
-qed
-
-lemma COMP_case:
-  assumes 1: "\<forall>l. g l < ack kg (sum_list l)" 
-      and 2: "\<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (sum_list l))"
-  shows "\<exists>k. \<forall>l. COMP g fs  l < ack k (sum_list l)"
-  unfolding COMP_def
-  using 1 COMP_map_aux [OF 2] by (meson ack_less_mono2 ack_nest_bound less_trans)
-
-text \<open>\<^term>\<open>PREC\<close> case\<close>
-
-lemma PREC_case_aux:
-  assumes f: "\<And>l. f l + sum_list l < ack kf (sum_list l)"
-      and g: "\<And>l. g l + sum_list l < ack kg (sum_list l)"
-  shows "PREC f g l + sum_list l < ack (Suc (kf + kg)) (sum_list l)"
-proof (cases l)
-  case Nil
-  then show ?thesis
-    by (simp add: Suc_lessD)
-next
-  case (Cons m l)
-  have "rec_nat (f l) (\<lambda>y r. g (r # y # l)) m + (m + sum_list l) < ack (Suc (kf + kg)) (m + sum_list l)"
-  proof (induct m)
-    case 0
-    then show ?case
-      using ack_less_mono1_aux f less_trans by fastforce
-  next
-    case (Suc m)
-    let ?r = "rec_nat (f l) (\<lambda>y r. g (r # y # l)) m"
-    have "\<not> g (?r # m # l) + sum_list (?r # m # l) < g (?r # m # l) + (m + sum_list l)"
-      by force
-    then have "g (?r # m # l) + (m + sum_list l) < ack kg (sum_list (?r # m # l))"
-      by (meson assms(2) leI less_le_trans)
-    moreover 
-    have "... < ack (kf + kg) (ack (Suc (kf + kg)) (m + sum_list l))"
-      using Suc.hyps by simp (meson ack_le_mono1 ack_less_mono2 le_add2 le_less_trans)
-    ultimately show ?case
-      by auto
-  qed
-  then show ?thesis
-    by (simp add: local.Cons)
-qed
-
-proposition PREC_case:
-  "\<lbrakk>\<And>l. f l < ack kf (sum_list l); \<And>l. g l < ack kg (sum_list l)\<rbrakk> 
-  \<Longrightarrow> \<exists>k. \<forall>l. PREC f g l < ack k (sum_list l)"
-  by (metis le_less_trans [OF le_add1 PREC_case_aux] ack_add_bound2)
-
-lemma ack_bounds_PRIMREC: "PRIMREC f \<Longrightarrow> \<exists>k. \<forall>l. f l < ack k (sum_list l)"
-  by (erule PRIMREC.induct) (blast intro: SC_case CONSTANT_case PROJ_case COMP_case PREC_case)+
-
-theorem ack_not_PRIMREC:
-  "\<not> PRIMREC (\<lambda>l. case l of [] \<Rightarrow> 0 | x # l' \<Rightarrow> ack x x)"
-proof
-  assume *: "PRIMREC (\<lambda>l. case l of [] \<Rightarrow> 0 | x # l' \<Rightarrow> ack x x)"
-  then obtain m where m: "\<And>l. (case l of [] \<Rightarrow> 0 | x # l' \<Rightarrow> ack x x) < ack m (sum_list l)"
-    using ack_bounds_PRIMREC by metis
-  show False
-    using m [of "[m]"] by simp
-qed
-
-end