use deflations over type 'udom u' to represent predomains;
authorhuffman
Sun, 19 Dec 2010 17:37:19 -0800
changeset 41292 2b7bc8d9fd6e
parent 41291 752d81c2ce25
child 41293 59949cf040cb
use deflations over type 'udom u' to represent predomains; removed now-unnecessary class liftdomain;
src/HOL/HOLCF/Domain.thy
src/HOL/HOLCF/Library/Bool_Discrete.thy
src/HOL/HOLCF/Library/Char_Discrete.thy
src/HOL/HOLCF/Library/Defl_Bifinite.thy
src/HOL/HOLCF/Library/Int_Discrete.thy
src/HOL/HOLCF/Library/List_Predomain.thy
src/HOL/HOLCF/Library/Nat_Discrete.thy
src/HOL/HOLCF/Library/Option_Cpo.thy
src/HOL/HOLCF/Library/Sum_Cpo.thy
src/HOL/HOLCF/Powerdomains.thy
src/HOL/HOLCF/Representable.thy
src/HOL/HOLCF/Tools/Domain/domain_isomorphism.ML
src/HOL/HOLCF/Tools/domaindef.ML
src/HOL/HOLCF/ex/Domain_Proofs.thy
--- a/src/HOL/HOLCF/Domain.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Domain.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -89,12 +89,12 @@
   [ (@{const_name defl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom defl"})
   , (@{const_name emb}, SOME @{typ "'a::pcpo \<rightarrow> udom"})
   , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::pcpo"})
-  , (@{const_name liftdefl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom defl"})
-  , (@{const_name liftemb}, SOME @{typ "'a::pcpo u \<rightarrow> udom"})
-  , (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::pcpo u"}) ]
+  , (@{const_name liftdefl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom u defl"})
+  , (@{const_name liftemb}, SOME @{typ "'a::pcpo u \<rightarrow> udom u"})
+  , (@{const_name liftprj}, SOME @{typ "udom u \<rightarrow> 'a::pcpo u"}) ]
 *}
 
-lemma typedef_liftdomain_class:
+lemma typedef_domain_class:
   fixes Rep :: "'a::pcpo \<Rightarrow> udom"
   fixes Abs :: "udom \<Rightarrow> 'a::pcpo"
   fixes t :: "udom defl"
@@ -103,13 +103,11 @@
   assumes emb: "emb \<equiv> (\<Lambda> x. Rep x)"
   assumes prj: "prj \<equiv> (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
   assumes defl: "defl \<equiv> (\<lambda> a::'a itself. t)"
-  assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
-  assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) \<equiv> u_map\<cdot>prj oo u_prj"
-  assumes liftdefl: "(liftdefl :: 'a itself \<Rightarrow> _) \<equiv> (\<lambda>t. u_defl\<cdot>DEFL('a))"
-  shows "OFCLASS('a, liftdomain_class)"
-using liftemb [THEN meta_eq_to_obj_eq]
-using liftprj [THEN meta_eq_to_obj_eq]
-proof (rule liftdomain_class_intro)
+  assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom u) \<equiv> u_map\<cdot>emb"
+  assumes liftprj: "(liftprj :: udom u \<rightarrow> 'a u) \<equiv> u_map\<cdot>prj"
+  assumes liftdefl: "(liftdefl :: 'a itself \<Rightarrow> _) \<equiv> (\<lambda>t. pdefl\<cdot>DEFL('a))"
+  shows "OFCLASS('a, domain_class)"
+proof
   have emb_beta: "\<And>x. emb\<cdot>x = Rep x"
     unfolding emb
     apply (rule beta_cfun)
@@ -135,9 +133,7 @@
     done
   show "cast\<cdot>DEFL('a) = emb oo (prj :: udom \<rightarrow> 'a)"
     by (rule cfun_eqI, simp add: defl emb_prj)
-  show "LIFTDEFL('a) = u_defl\<cdot>DEFL('a)"
-    unfolding liftdefl ..
-qed
+qed (simp_all only: liftemb liftprj liftdefl)
 
 lemma typedef_DEFL:
   assumes "defl \<equiv> (\<lambda>a::'a::pcpo itself. t)"
@@ -151,19 +147,20 @@
   [ (@{const_name defl}, SOME @{typ "'a::domain itself \<Rightarrow> udom defl"})
   , (@{const_name emb}, SOME @{typ "'a::domain \<rightarrow> udom"})
   , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::domain"})
-  , (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> udom defl"})
-  , (@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom"})
-  , (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::predomain u"}) ]
+  , (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> udom u defl"})
+  , (@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom u"})
+  , (@{const_name liftprj}, SOME @{typ "udom u \<rightarrow> 'a::predomain u"}) ]
 *}
 
 use "Tools/domaindef.ML"
 
 subsection {* Isomorphic deflations *}
 
-definition
-  isodefl :: "('a \<rightarrow> 'a) \<Rightarrow> udom defl \<Rightarrow> bool"
-where
-  "isodefl d t \<longleftrightarrow> cast\<cdot>t = emb oo d oo prj"
+definition isodefl :: "('a \<rightarrow> 'a) \<Rightarrow> udom defl \<Rightarrow> bool"
+  where "isodefl d t \<longleftrightarrow> cast\<cdot>t = emb oo d oo prj"
+
+definition isodefl' :: "('a::predomain \<rightarrow> 'a) \<Rightarrow> udom u defl \<Rightarrow> bool"
+  where "isodefl' d t \<longleftrightarrow> cast\<cdot>t = liftemb oo u_map\<cdot>d oo liftprj"
 
 lemma isodeflI: "(\<And>x. cast\<cdot>t\<cdot>x = emb\<cdot>(d\<cdot>(prj\<cdot>x))) \<Longrightarrow> isodefl d t"
 unfolding isodefl_def by (simp add: cfun_eqI)
@@ -191,9 +188,8 @@
 unfolding isodefl_def by (simp add: cast_DEFL)
 
 lemma isodefl_LIFTDEFL:
-  "isodefl (u_map\<cdot>(ID :: 'a \<rightarrow> 'a)) LIFTDEFL('a::predomain)"
-unfolding u_map_ID DEFL_u [symmetric]
-by (rule isodefl_ID_DEFL)
+  "isodefl' (ID :: 'a \<rightarrow> 'a) LIFTDEFL('a::predomain)"
+unfolding isodefl'_def by (simp add: cast_liftdefl u_map_ID)
 
 lemma isodefl_DEFL_imp_ID: "isodefl (d :: 'a \<rightarrow> 'a) DEFL('a) \<Longrightarrow> d = ID"
 unfolding isodefl_def
@@ -237,6 +233,10 @@
 unfolding isodefl_def
 by (simp add: cfun_eq_iff assms prj_emb_prj emb_prj_emb)
 
+lemma isodefl'_pdefl: "isodefl d t \<Longrightarrow> isodefl' d (pdefl\<cdot>t)"
+unfolding isodefl_def isodefl'_def
+by (simp add: cast_pdefl u_map_oo liftemb_eq liftprj_eq)
+
 lemma isodefl_sfun:
   "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow>
     isodefl (sfun_map\<cdot>d1\<cdot>d2) (sfun_defl\<cdot>t1\<cdot>t2)"
@@ -274,12 +274,10 @@
 done
 
 lemma isodefl_u:
-  fixes d :: "'a::liftdomain \<rightarrow> 'a"
-  shows "isodefl (d :: 'a \<rightarrow> 'a) t \<Longrightarrow> isodefl (u_map\<cdot>d) (u_defl\<cdot>t)"
+  "isodefl' d t \<Longrightarrow> isodefl (u_map\<cdot>d) (u_defl\<cdot>t)"
 apply (rule isodeflI)
-apply (simp add: cast_u_defl cast_isodefl)
+apply (simp add: cast_u_defl isodefl'_def)
 apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq)
-apply (simp add: u_map_map)
 done
 
 lemma encode_prod_u_map:
@@ -291,11 +289,11 @@
 done
 
 lemma isodefl_cprod_u:
-  assumes "isodefl (u_map\<cdot>d1) t1" and "isodefl (u_map\<cdot>d2) t2"
-  shows "isodefl (u_map\<cdot>(cprod_map\<cdot>d1\<cdot>d2)) (sprod_defl\<cdot>t1\<cdot>t2)"
-using isodefl_sprod [OF assms] unfolding isodefl_def
-unfolding emb_u_def prj_u_def liftemb_prod_def liftprj_prod_def
-by (simp add: cfcomp1 encode_prod_u_map)
+  assumes "isodefl' d1 t1" and "isodefl' d2 t2"
+  shows "isodefl' (cprod_map\<cdot>d1\<cdot>d2) (prod_liftdefl\<cdot>t1\<cdot>t2)"
+using assms unfolding isodefl'_def
+unfolding liftemb_prod_def liftprj_prod_def
+by (simp add: cast_prod_liftdefl cfcomp1 encode_prod_u_map sprod_map_map)
 
 lemma encode_cfun_map:
   "encode_cfun\<cdot>(cfun_map\<cdot>f\<cdot>g\<cdot>(decode_cfun\<cdot>x))
@@ -328,7 +326,7 @@
 
 lemmas [domain_isodefl] =
   isodefl_u isodefl_sfun isodefl_ssum isodefl_sprod
-  isodefl_cfun isodefl_cprod isodefl_cprod_u
+  isodefl_cfun isodefl_cprod isodefl_cprod_u isodefl'_pdefl
 
 lemmas [domain_deflation] =
   deflation_cfun_map deflation_sfun_map deflation_ssum_map
--- a/src/HOL/HOLCF/Library/Bool_Discrete.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Bool_Discrete.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -29,23 +29,23 @@
 begin
 
 definition
-  "(liftemb :: bool u \<rightarrow> udom) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
+  "(liftemb :: bool u \<rightarrow> udom u) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
 
 definition
-  "(liftprj :: udom \<rightarrow> bool u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
+  "(liftprj :: udom u \<rightarrow> bool u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
 
 definition
   "liftdefl \<equiv> (\<lambda>(t::bool itself). LIFTDEFL(bool discr))"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> bool u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> bool u)"
     unfolding liftemb_bool_def liftprj_bool_def
     apply (rule ep_pair_comp)
     apply (rule ep_pair_u_map)
     apply (simp add: ep_pair.intro)
     apply (rule predomain_ep)
     done
-  show "cast\<cdot>LIFTDEFL(bool) = liftemb oo (liftprj :: udom \<rightarrow> bool u)"
+  show "cast\<cdot>LIFTDEFL(bool) = liftemb oo (liftprj :: udom u \<rightarrow> bool u)"
     unfolding liftemb_bool_def liftprj_bool_def liftdefl_bool_def
     apply (simp add: cast_liftdefl cfcomp1 u_map_map)
     apply (simp add: ID_def [symmetric] u_map_ID)
--- a/src/HOL/HOLCF/Library/Char_Discrete.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Char_Discrete.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -29,23 +29,23 @@
 begin
 
 definition
-  "(liftemb :: nibble u \<rightarrow> udom) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
+  "(liftemb :: nibble u \<rightarrow> udom u) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
 
 definition
-  "(liftprj :: udom \<rightarrow> nibble u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
+  "(liftprj :: udom u \<rightarrow> nibble u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
 
 definition
   "liftdefl \<equiv> (\<lambda>(t::nibble itself). LIFTDEFL(nibble discr))"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> nibble u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> nibble u)"
     unfolding liftemb_nibble_def liftprj_nibble_def
     apply (rule ep_pair_comp)
     apply (rule ep_pair_u_map)
     apply (simp add: ep_pair.intro)
     apply (rule predomain_ep)
     done
-  show "cast\<cdot>LIFTDEFL(nibble) = liftemb oo (liftprj :: udom \<rightarrow> nibble u)"
+  show "cast\<cdot>LIFTDEFL(nibble) = liftemb oo (liftprj :: udom u \<rightarrow> nibble u)"
     unfolding liftemb_nibble_def liftprj_nibble_def liftdefl_nibble_def
     apply (simp add: cast_liftdefl cfcomp1 u_map_map)
     apply (simp add: ID_def [symmetric] u_map_ID)
@@ -75,23 +75,23 @@
 begin
 
 definition
-  "(liftemb :: char u \<rightarrow> udom) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
+  "(liftemb :: char u \<rightarrow> udom u) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
 
 definition
-  "(liftprj :: udom \<rightarrow> char u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
+  "(liftprj :: udom u \<rightarrow> char u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
 
 definition
   "liftdefl \<equiv> (\<lambda>(t::char itself). LIFTDEFL(char discr))"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> char u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> char u)"
     unfolding liftemb_char_def liftprj_char_def
     apply (rule ep_pair_comp)
     apply (rule ep_pair_u_map)
     apply (simp add: ep_pair.intro)
     apply (rule predomain_ep)
     done
-  show "cast\<cdot>LIFTDEFL(char) = liftemb oo (liftprj :: udom \<rightarrow> char u)"
+  show "cast\<cdot>LIFTDEFL(char) = liftemb oo (liftprj :: udom u \<rightarrow> char u)"
     unfolding liftemb_char_def liftprj_char_def liftdefl_char_def
     apply (simp add: cast_liftdefl cfcomp1 u_map_map)
     apply (simp add: ID_def [symmetric] u_map_ID)
--- a/src/HOL/HOLCF/Library/Defl_Bifinite.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Defl_Bifinite.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -637,7 +637,7 @@
 apply (rule someI_ex [OF bifinite])
 done
 
-instantiation defl :: (bifinite) liftdomain
+instantiation defl :: (bifinite) "domain"
 begin
 
 definition
@@ -651,17 +651,15 @@
     (\<Squnion>i. defl_principal (Abs_fin_defl (emb oo defl_approx i oo prj)))"
 
 definition
-  "(liftemb :: 'a defl u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> 'a defl u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: 'a defl u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::'a defl itself) = u_defl\<cdot>DEFL('a defl)"
+  "(liftprj :: udom u \<rightarrow> 'a defl u) = u_map\<cdot>prj"
 
-instance
-using liftemb_defl_def liftprj_defl_def liftdefl_defl_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::'a defl itself) = pdefl\<cdot>DEFL('a defl)"
+
+instance proof
   show ep: "ep_pair emb (prj :: udom \<rightarrow> 'a defl)"
     unfolding emb_defl_def prj_defl_def
     by (rule ep_pair_udom [OF defl_approx])
@@ -682,7 +680,7 @@
     apply (simp add: lub_distribs approx_chain.chain_approx [OF defl_approx]
                      approx_chain.lub_approx [OF defl_approx])
     done
-qed
+qed (fact liftemb_defl_def liftprj_defl_def liftdefl_defl_def)+
 
 end
 
--- a/src/HOL/HOLCF/Library/Int_Discrete.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Int_Discrete.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -29,23 +29,23 @@
 begin
 
 definition
-  "(liftemb :: int u \<rightarrow> udom) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
+  "(liftemb :: int u \<rightarrow> udom u) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
 
 definition
-  "(liftprj :: udom \<rightarrow> int u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
+  "(liftprj :: udom u \<rightarrow> int u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
 
 definition
   "liftdefl \<equiv> (\<lambda>(t::int itself). LIFTDEFL(int discr))"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> int u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> int u)"
     unfolding liftemb_int_def liftprj_int_def
     apply (rule ep_pair_comp)
     apply (rule ep_pair_u_map)
     apply (simp add: ep_pair.intro)
     apply (rule predomain_ep)
     done
-  show "cast\<cdot>LIFTDEFL(int) = liftemb oo (liftprj :: udom \<rightarrow> int u)"
+  show "cast\<cdot>LIFTDEFL(int) = liftemb oo (liftprj :: udom u \<rightarrow> int u)"
     unfolding liftemb_int_def liftprj_int_def liftdefl_int_def
     apply (simp add: cast_liftdefl cfcomp1 u_map_map)
     apply (simp add: ID_def [symmetric] u_map_ID)
--- a/src/HOL/HOLCF/Library/List_Predomain.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/List_Predomain.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -5,13 +5,61 @@
 header {* Predomain class instance for HOL list type *}
 
 theory List_Predomain
-imports List_Cpo
+imports List_Cpo Sum_Cpo
 begin
 
 subsection {* Strict list type *}
 
 domain 'a slist = SNil | SCons "'a" "'a slist"
 
+text {* Polymorphic map function for strict lists. *}
+
+text {* FIXME: The domain package should generate this! *}
+
+fixrec slist_map' :: "('a \<rightarrow> 'b) \<rightarrow> 'a slist \<rightarrow> 'b slist"
+  where "slist_map'\<cdot>f\<cdot>SNil = SNil"
+  | "\<lbrakk>x \<noteq> \<bottom>; xs \<noteq> \<bottom>\<rbrakk> \<Longrightarrow>
+      slist_map'\<cdot>f\<cdot>(SCons\<cdot>x\<cdot>xs) = SCons\<cdot>(f\<cdot>x)\<cdot>(slist_map'\<cdot>f\<cdot>xs)"
+
+lemma slist_map'_strict [simp]: "slist_map'\<cdot>f\<cdot>\<bottom> = \<bottom>"
+by fixrec_simp
+
+lemma slist_map_conv [simp]: "slist_map = slist_map'"
+apply (rule cfun_eqI, rule cfun_eqI, rename_tac f xs)
+apply (induct_tac xs, simp_all)
+apply (subst slist_map_unfold, simp)
+apply (subst slist_map_unfold, simp add: SNil_def)
+apply (subst slist_map_unfold, simp add: SCons_def)
+done
+
+lemma slist_map'_slist_map':
+  "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> slist_map'\<cdot>f\<cdot>(slist_map'\<cdot>g\<cdot>xs) = slist_map'\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
+apply (induct xs, simp, simp)
+apply (case_tac "g\<cdot>a = \<bottom>", simp, simp)
+apply (case_tac "slist_map'\<cdot>g\<cdot>xs = \<bottom>", simp, simp)
+done
+
+lemma slist_map'_oo:
+  "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> slist_map'\<cdot>(f oo g) = slist_map'\<cdot>f oo slist_map'\<cdot>g"
+by (simp add: cfcomp1 slist_map'_slist_map' eta_cfun)
+
+lemma slist_map'_ID: "slist_map'\<cdot>ID = ID"
+by (rule cfun_eqI, induct_tac x, simp_all)
+
+lemma ep_pair_slist_map':
+  "ep_pair e p \<Longrightarrow> ep_pair (slist_map'\<cdot>e) (slist_map'\<cdot>p)"
+apply (rule ep_pair.intro)
+apply (subst slist_map'_slist_map')
+apply (erule pcpo_ep_pair.p_strict [unfolded pcpo_ep_pair_def])
+apply (simp add: ep_pair.e_inverse ID_def [symmetric] slist_map'_ID)
+apply (subst slist_map'_slist_map')
+apply (erule pcpo_ep_pair.e_strict [unfolded pcpo_ep_pair_def])
+apply (rule below_eq_trans [OF _ ID1])
+apply (subst slist_map'_ID [symmetric])
+apply (intro monofun_cfun below_refl)
+apply (simp add: cfun_below_iff ep_pair.e_p_below)
+done
+
 text {*
   Types @{typ "'a list u"}. and @{typ "'a u slist"} are isomorphic.
 *}
@@ -48,34 +96,52 @@
 
 subsection {* Lists are a predomain *}
 
+definition udefl :: "udom defl \<rightarrow> udom u defl"
+  where "udefl = defl_fun1 (strictify\<cdot>up) (fup\<cdot>ID) ID"
+
+lemma cast_udefl:
+  "cast\<cdot>(udefl\<cdot>t) = strictify\<cdot>up oo cast\<cdot>t oo fup\<cdot>ID"
+unfolding udefl_def by (simp add: cast_defl_fun1 ep_pair_strictify_up)
+
+definition list_liftdefl :: "udom u defl \<rightarrow> udom u defl"
+  where "list_liftdefl = (\<Lambda> a. udefl\<cdot>(slist_defl\<cdot>(u_defl\<cdot>a)))"
+
+lemma cast_slist_defl: "cast\<cdot>(slist_defl\<cdot>a) = emb oo slist_map\<cdot>(cast\<cdot>a) oo prj"
+using isodefl_slist [where fa="cast\<cdot>a" and da="a"]
+unfolding isodefl_def by simp
+
+lemma u_emb_bottom: "u_emb\<cdot>\<bottom> = \<bottom>"
+by (rule pcpo_ep_pair.e_strict [unfolded pcpo_ep_pair_def, OF ep_pair_u])
+
 instantiation list :: (predomain) predomain
 begin
 
 definition
-  "liftemb = emb oo encode_list_u"
+  "liftemb = (strictify\<cdot>up oo emb oo slist_map'\<cdot>u_emb) oo slist_map'\<cdot>liftemb oo encode_list_u"
 
 definition
-  "liftprj = decode_list_u oo prj"
+  "liftprj = (decode_list_u oo slist_map'\<cdot>liftprj) oo (slist_map'\<cdot>u_prj oo prj) oo fup\<cdot>ID"
 
 definition
-  "liftdefl (t::('a list) itself) = DEFL(('a\<^sub>\<bottom>) slist)"
+  "liftdefl (t::('a list) itself) = list_liftdefl\<cdot>LIFTDEFL('a)"
 
 instance proof
-  have "ep_pair encode_list_u decode_list_u"
-    by (rule ep_pair.intro, simp_all)
-  thus "ep_pair liftemb (liftprj :: udom \<rightarrow> ('a list) u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> ('a list) u)"
     unfolding liftemb_list_def liftprj_list_def
-    using ep_pair_emb_prj by (rule ep_pair_comp)
-  show "cast\<cdot>LIFTDEFL('a list) = liftemb oo (liftprj :: udom \<rightarrow> ('a list) u)"
+    by (intro ep_pair_comp ep_pair_slist_map' ep_pair_strictify_up
+      ep_pair_emb_prj predomain_ep ep_pair_u, simp add: ep_pair.intro)
+  show "cast\<cdot>LIFTDEFL('a list) = liftemb oo (liftprj :: udom u \<rightarrow> ('a list) u)"
     unfolding liftemb_list_def liftprj_list_def liftdefl_list_def
-    by (simp add: cfcomp1 cast_DEFL)
+    apply (simp add: list_liftdefl_def cast_udefl cast_slist_defl cast_u_defl cast_liftdefl)
+    apply (simp add: slist_map'_oo u_emb_bottom cfun_eq_iff)
+    done
 qed
 
 end
 
 lemma liftdefl_list [domain_defl_simps]:
-  "LIFTDEFL('a::predomain list) = slist_defl\<cdot>LIFTDEFL('a)"
-unfolding liftdefl_list_def by (simp add: domain_defl_simps)
+  "LIFTDEFL('a::predomain list) = list_liftdefl\<cdot>LIFTDEFL('a)"
+by (rule liftdefl_list_def)
 
 subsection {* Continuous map operation for lists *}
 
@@ -105,21 +171,21 @@
 lemma encode_list_u_map:
   "encode_list_u\<cdot>(u_map\<cdot>(list_map\<cdot>f)\<cdot>(decode_list_u\<cdot>xs))
     = slist_map\<cdot>(u_map\<cdot>f)\<cdot>xs"
-apply (induct xs)
-apply (simp, subst slist_map_unfold, simp)
-apply (simp, subst slist_map_unfold, simp add: SNil_def)
+apply (induct xs, simp, simp)
 apply (case_tac a, simp, rename_tac b)
 apply (case_tac "decode_list_u\<cdot>xs")
-apply (drule_tac f="encode_list_u" in cfun_arg_cong, simp)
-by (simp, subst slist_map_unfold, simp add: SCons_def)
+apply (drule_tac f="encode_list_u" in cfun_arg_cong, simp, simp)
+done
 
 lemma isodefl_list_u [domain_isodefl]:
   fixes d :: "'a::predomain \<rightarrow> 'a"
-  assumes "isodefl (u_map\<cdot>d) t"
-  shows "isodefl (u_map\<cdot>(list_map\<cdot>d)) (slist_defl\<cdot>t)"
-using assms [THEN isodefl_slist] unfolding isodefl_def
-unfolding emb_u_def prj_u_def liftemb_list_def liftprj_list_def
-by (simp add: cfcomp1 encode_list_u_map)
+  assumes "isodefl' d t"
+  shows "isodefl' (list_map\<cdot>d) (list_liftdefl\<cdot>t)"
+using assms unfolding isodefl'_def liftemb_list_def liftprj_list_def
+apply (simp add: list_liftdefl_def cast_udefl cast_slist_defl cast_u_defl)
+apply (simp add: cfcomp1 encode_list_u_map)
+apply (simp add: slist_map'_slist_map' u_emb_bottom)
+done
 
 setup {*
   Domain_Take_Proofs.add_rec_type (@{type_name "list"}, [true])
--- a/src/HOL/HOLCF/Library/Nat_Discrete.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Nat_Discrete.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -29,23 +29,23 @@
 begin
 
 definition
-  "(liftemb :: nat u \<rightarrow> udom) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
+  "(liftemb :: nat u \<rightarrow> udom u) \<equiv> liftemb oo u_map\<cdot>(\<Lambda> x. Discr x)"
 
 definition
-  "(liftprj :: udom \<rightarrow> nat u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
+  "(liftprj :: udom u \<rightarrow> nat u) \<equiv> u_map\<cdot>(\<Lambda> y. undiscr y) oo liftprj"
 
 definition
   "liftdefl \<equiv> (\<lambda>(t::nat itself). LIFTDEFL(nat discr))"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> nat u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> nat u)"
     unfolding liftemb_nat_def liftprj_nat_def
     apply (rule ep_pair_comp)
     apply (rule ep_pair_u_map)
     apply (simp add: ep_pair.intro)
     apply (rule predomain_ep)
     done
-  show "cast\<cdot>LIFTDEFL(nat) = liftemb oo (liftprj :: udom \<rightarrow> nat u)"
+  show "cast\<cdot>LIFTDEFL(nat) = liftemb oo (liftprj :: udom u \<rightarrow> nat u)"
     unfolding liftemb_nat_def liftprj_nat_def liftdefl_nat_def
     apply (simp add: cast_liftdefl cfcomp1 u_map_map)
     apply (simp add: ID_def [symmetric] u_map_ID)
--- a/src/HOL/HOLCF/Library/Option_Cpo.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Option_Cpo.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -5,7 +5,7 @@
 header {* Cpo class instance for HOL option type *}
 
 theory Option_Cpo
-imports HOLCF
+imports HOLCF Sum_Cpo
 begin
 
 subsection {* Ordering on option type *}
@@ -209,45 +209,40 @@
 subsection {* Option type is a predomain *}
 
 definition
-  "encode_option_u =
-    (\<Lambda>(up\<cdot>x). case x of None \<Rightarrow> sinl\<cdot>ONE | Some a \<Rightarrow> sinr\<cdot>(up\<cdot>a))"
+  "encode_option = (\<Lambda> x. case x of None \<Rightarrow> Inl () | Some a \<Rightarrow> Inr a)"
 
 definition
-  "decode_option_u = sscase\<cdot>(\<Lambda> ONE. up\<cdot>None)\<cdot>(\<Lambda>(up\<cdot>a). up\<cdot>(Some a))"
-
-lemma decode_encode_option_u [simp]: "decode_option_u\<cdot>(encode_option_u\<cdot>x) = x"
-unfolding decode_option_u_def encode_option_u_def
-by (case_tac x, simp, rename_tac y, case_tac y, simp_all)
+  "decode_option = (\<Lambda> x. case x of Inl (u::unit) \<Rightarrow> None | Inr a \<Rightarrow> Some a)"
 
-lemma encode_decode_option_u [simp]: "encode_option_u\<cdot>(decode_option_u\<cdot>x) = x"
-unfolding decode_option_u_def encode_option_u_def
-apply (case_tac x, simp)
-apply (rename_tac a, case_tac a rule: oneE, simp, simp)
-apply (rename_tac b, case_tac b, simp, simp)
-done
+lemma decode_encode_option [simp]: "decode_option\<cdot>(encode_option\<cdot>x) = x"
+unfolding decode_option_def encode_option_def
+by (cases x, simp_all)
+
+lemma encode_decode_option [simp]: "encode_option\<cdot>(decode_option\<cdot>x) = x"
+unfolding decode_option_def encode_option_def
+by (cases x, simp_all)
 
 instantiation option :: (predomain) predomain
 begin
 
 definition
-  "liftemb = emb oo encode_option_u"
+  "liftemb = liftemb oo u_map\<cdot>encode_option"
 
 definition
-  "liftprj = decode_option_u oo prj"
+  "liftprj = u_map\<cdot>decode_option oo liftprj"
 
 definition
-  "liftdefl (t::('a option) itself) = DEFL(one \<oplus> 'a u)"
+  "liftdefl (t::('a option) itself) = LIFTDEFL(unit + 'a)"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> ('a option) u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> ('a option) u)"
     unfolding liftemb_option_def liftprj_option_def
-    apply (rule ep_pair_comp)
+    apply (intro ep_pair_comp ep_pair_u_map predomain_ep)
     apply (rule ep_pair.intro, simp, simp)
-    apply (rule ep_pair_emb_prj)
     done
-  show "cast\<cdot>LIFTDEFL('a option) = liftemb oo (liftprj :: udom \<rightarrow> ('a option) u)"
+  show "cast\<cdot>LIFTDEFL('a option) = liftemb oo (liftprj :: udom u \<rightarrow> ('a option) u)"
     unfolding liftemb_option_def liftprj_option_def liftdefl_option_def
-    by (simp add: cast_DEFL cfcomp1)
+    by (simp add: cast_liftdefl cfcomp1 u_map_map ID_def [symmetric] u_map_ID)
 qed
 
 end
--- a/src/HOL/HOLCF/Library/Sum_Cpo.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Library/Sum_Cpo.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -260,28 +260,43 @@
 apply (rename_tac b, case_tac b, simp, simp)
 done
 
+lemma ep_pair_strictify_up:
+  "ep_pair (strictify\<cdot>up) (fup\<cdot>ID)"
+apply (rule ep_pair.intro)
+apply (simp add: strictify_conv_if)
+apply (case_tac y, simp, simp add: strictify_conv_if)
+done
+
+definition sum_liftdefl :: "udom u defl \<rightarrow> udom u defl \<rightarrow> udom u defl"
+  where "sum_liftdefl = defl_fun2 (u_map\<cdot>emb oo strictify\<cdot>up)
+    (fup\<cdot>ID oo u_map\<cdot>prj) ssum_map"
+
 instantiation sum :: (predomain, predomain) predomain
 begin
 
 definition
-  "liftemb = emb oo encode_sum_u"
+  "liftemb = (u_map\<cdot>emb oo strictify\<cdot>up) oo
+    (ssum_map\<cdot>liftemb\<cdot>liftemb oo encode_sum_u)"
 
 definition
-  "liftprj = decode_sum_u oo prj"
+  "liftprj = (decode_sum_u oo ssum_map\<cdot>liftprj\<cdot>liftprj) oo
+    (fup\<cdot>ID oo u_map\<cdot>prj)"
 
 definition
-  "liftdefl (t::('a + 'b) itself) = DEFL('a u \<oplus> 'b u)"
+  "liftdefl (t::('a + 'b) itself) = sum_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> ('a + 'b) u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> ('a + 'b) u)"
     unfolding liftemb_sum_def liftprj_sum_def
-    apply (rule ep_pair_comp)
-    apply (rule ep_pair.intro, simp, simp)
-    apply (rule ep_pair_emb_prj)
-    done
-  show "cast\<cdot>LIFTDEFL('a + 'b) = liftemb oo (liftprj :: udom \<rightarrow> ('a + 'b) u)"
+    by (intro ep_pair_comp ep_pair_ssum_map ep_pair_u_map ep_pair_emb_prj
+       ep_pair_strictify_up predomain_ep, simp add: ep_pair.intro)
+  show "cast\<cdot>LIFTDEFL('a + 'b) = liftemb oo (liftprj :: udom u \<rightarrow> ('a + 'b) u)"
     unfolding liftemb_sum_def liftprj_sum_def liftdefl_sum_def
-    by (simp add: cast_DEFL cfcomp1)
+    apply (subst sum_liftdefl_def, subst cast_defl_fun2)
+    apply (intro ep_pair_comp ep_pair_u_map ep_pair_emb_prj
+        ep_pair_strictify_up)
+    apply (erule (1) finite_deflation_ssum_map)
+    by (simp add: cast_liftdefl cfcomp1 ssum_map_map)
 qed
 
 end
--- a/src/HOL/HOLCF/Powerdomains.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Powerdomains.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -59,7 +59,7 @@
 
 subsection {* Domain class instances *}
 
-instantiation upper_pd :: ("domain") liftdomain
+instantiation upper_pd :: ("domain") "domain"
 begin
 
 definition
@@ -72,17 +72,15 @@
   "defl (t::'a upper_pd itself) = upper_defl\<cdot>DEFL('a)"
 
 definition
-  "(liftemb :: 'a upper_pd u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> 'a upper_pd u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: 'a upper_pd u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::'a upper_pd itself) = u_defl\<cdot>DEFL('a upper_pd)"
+  "(liftprj :: udom u \<rightarrow> 'a upper_pd u) = u_map\<cdot>prj"
 
-instance
-using liftemb_upper_pd_def liftprj_upper_pd_def liftdefl_upper_pd_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::'a upper_pd itself) = pdefl\<cdot>DEFL('a upper_pd)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a upper_pd)"
     unfolding emb_upper_pd_def prj_upper_pd_def
     by (intro ep_pair_comp ep_pair_upper ep_pair_upper_map ep_pair_emb_prj)
@@ -90,11 +88,11 @@
   show "cast\<cdot>DEFL('a upper_pd) = emb oo (prj :: udom \<rightarrow> 'a upper_pd)"
     unfolding emb_upper_pd_def prj_upper_pd_def defl_upper_pd_def cast_upper_defl
     by (simp add: cast_DEFL oo_def cfun_eq_iff upper_map_map)
-qed
+qed (fact liftemb_upper_pd_def liftprj_upper_pd_def liftdefl_upper_pd_def)+
 
 end
 
-instantiation lower_pd :: ("domain") liftdomain
+instantiation lower_pd :: ("domain") "domain"
 begin
 
 definition
@@ -107,17 +105,15 @@
   "defl (t::'a lower_pd itself) = lower_defl\<cdot>DEFL('a)"
 
 definition
-  "(liftemb :: 'a lower_pd u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> 'a lower_pd u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: 'a lower_pd u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::'a lower_pd itself) = u_defl\<cdot>DEFL('a lower_pd)"
+  "(liftprj :: udom u \<rightarrow> 'a lower_pd u) = u_map\<cdot>prj"
 
-instance
-using liftemb_lower_pd_def liftprj_lower_pd_def liftdefl_lower_pd_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::'a lower_pd itself) = pdefl\<cdot>DEFL('a lower_pd)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a lower_pd)"
     unfolding emb_lower_pd_def prj_lower_pd_def
     by (intro ep_pair_comp ep_pair_lower ep_pair_lower_map ep_pair_emb_prj)
@@ -125,11 +121,11 @@
   show "cast\<cdot>DEFL('a lower_pd) = emb oo (prj :: udom \<rightarrow> 'a lower_pd)"
     unfolding emb_lower_pd_def prj_lower_pd_def defl_lower_pd_def cast_lower_defl
     by (simp add: cast_DEFL oo_def cfun_eq_iff lower_map_map)
-qed
+qed (fact liftemb_lower_pd_def liftprj_lower_pd_def liftdefl_lower_pd_def)+
 
 end
 
-instantiation convex_pd :: ("domain") liftdomain
+instantiation convex_pd :: ("domain") "domain"
 begin
 
 definition
@@ -142,17 +138,15 @@
   "defl (t::'a convex_pd itself) = convex_defl\<cdot>DEFL('a)"
 
 definition
-  "(liftemb :: 'a convex_pd u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> 'a convex_pd u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: 'a convex_pd u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::'a convex_pd itself) = u_defl\<cdot>DEFL('a convex_pd)"
+  "(liftprj :: udom u \<rightarrow> 'a convex_pd u) = u_map\<cdot>prj"
 
-instance
-using liftemb_convex_pd_def liftprj_convex_pd_def liftdefl_convex_pd_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::'a convex_pd itself) = pdefl\<cdot>DEFL('a convex_pd)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a convex_pd)"
     unfolding emb_convex_pd_def prj_convex_pd_def
     by (intro ep_pair_comp ep_pair_convex ep_pair_convex_map ep_pair_emb_prj)
@@ -160,7 +154,7 @@
   show "cast\<cdot>DEFL('a convex_pd) = emb oo (prj :: udom \<rightarrow> 'a convex_pd)"
     unfolding emb_convex_pd_def prj_convex_pd_def defl_convex_pd_def cast_convex_defl
     by (simp add: cast_DEFL oo_def cfun_eq_iff convex_map_map)
-qed
+qed (fact liftemb_convex_pd_def liftprj_convex_pd_def liftdefl_convex_pd_def)+
 
 end
 
--- a/src/HOL/HOLCF/Representable.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Representable.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -8,6 +8,8 @@
 imports Algebraic Map_Functions Countable
 begin
 
+default_sort cpo
+
 subsection {* Class of representable domains *}
 
 text {*
@@ -16,31 +18,67 @@
   to being omega-bifinite.
 
   A predomain is a cpo that, when lifted, becomes a domain.
+  Predomains are represented by deflations over a lifted universal
+  domain type.
 *}
 
-class predomain = cpo +
-  fixes liftdefl :: "('a::cpo) itself \<Rightarrow> udom defl"
-  fixes liftemb :: "'a\<^sub>\<bottom> \<rightarrow> udom"
-  fixes liftprj :: "udom \<rightarrow> 'a\<^sub>\<bottom>"
+class predomain_syn = cpo +
+  fixes liftemb :: "'a\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>"
+  fixes liftprj :: "udom\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>"
+  fixes liftdefl :: "'a itself \<Rightarrow> udom u defl"
+
+class predomain = predomain_syn +
   assumes predomain_ep: "ep_pair liftemb liftprj"
-  assumes cast_liftdefl: "cast\<cdot>(liftdefl TYPE('a::cpo)) = liftemb oo liftprj"
+  assumes cast_liftdefl: "cast\<cdot>(liftdefl TYPE('a)) = liftemb oo liftprj"
 
 syntax "_LIFTDEFL" :: "type \<Rightarrow> logic"  ("(1LIFTDEFL/(1'(_')))")
 translations "LIFTDEFL('t)" \<rightleftharpoons> "CONST liftdefl TYPE('t)"
 
-class "domain" = predomain + pcpo +
-  fixes emb :: "'a::cpo \<rightarrow> udom"
-  fixes prj :: "udom \<rightarrow> 'a::cpo"
+definition pdefl :: "udom defl \<rightarrow> udom u defl"
+  where "pdefl = defl_fun1 ID ID u_map"
+
+lemma cast_pdefl: "cast\<cdot>(pdefl\<cdot>t) = u_map\<cdot>(cast\<cdot>t)"
+by (simp add: pdefl_def cast_defl_fun1 ep_pair_def finite_deflation_u_map)
+
+class "domain" = predomain_syn + pcpo +
+  fixes emb :: "'a \<rightarrow> udom"
+  fixes prj :: "udom \<rightarrow> 'a"
   fixes defl :: "'a itself \<Rightarrow> udom defl"
   assumes ep_pair_emb_prj: "ep_pair emb prj"
   assumes cast_DEFL: "cast\<cdot>(defl TYPE('a)) = emb oo prj"
+  assumes liftemb_eq: "liftemb = u_map\<cdot>emb"
+  assumes liftprj_eq: "liftprj = u_map\<cdot>prj"
+  assumes liftdefl_eq: "liftdefl TYPE('a) = pdefl\<cdot>(defl TYPE('a))"
 
 syntax "_DEFL" :: "type \<Rightarrow> logic"  ("(1DEFL/(1'(_')))")
 translations "DEFL('t)" \<rightleftharpoons> "CONST defl TYPE('t)"
 
+instance "domain" \<subseteq> predomain
+proof
+  show "ep_pair liftemb (liftprj::udom\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>)"
+    unfolding liftemb_eq liftprj_eq
+    by (intro ep_pair_u_map ep_pair_emb_prj)
+  show "cast\<cdot>LIFTDEFL('a) = liftemb oo (liftprj::udom\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>)"
+    unfolding liftemb_eq liftprj_eq liftdefl_eq
+    by (simp add: cast_pdefl cast_DEFL u_map_oo)
+qed
+
+text {*
+  Constants @{const liftemb} and @{const liftprj} imply class predomain.
+*}
+
+setup {*
+  fold Sign.add_const_constraint
+  [(@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom u"}),
+   (@{const_name liftprj}, SOME @{typ "udom u \<rightarrow> 'a::predomain u"}),
+   (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> udom u defl"})]
+*}
+
+interpretation predomain: pcpo_ep_pair liftemb liftprj
+  unfolding pcpo_ep_pair_def by (rule predomain_ep)
+
 interpretation "domain": pcpo_ep_pair emb prj
-  unfolding pcpo_ep_pair_def
-  by (rule ep_pair_emb_prj)
+  unfolding pcpo_ep_pair_def by (rule ep_pair_emb_prj)
 
 lemmas emb_inverse = domain.e_inverse
 lemmas emb_prj_below = domain.e_p_below
@@ -51,7 +89,7 @@
 subsection {* Domains are bifinite *}
 
 lemma approx_chain_ep_cast:
-  assumes ep: "ep_pair (e::'a::pcpo \<rightarrow> udom) (p::udom \<rightarrow> 'a)"
+  assumes ep: "ep_pair (e::'a::pcpo \<rightarrow> 'b::bifinite) (p::'b \<rightarrow> 'a)"
   assumes cast_t: "cast\<cdot>t = e oo p"
   shows "\<exists>(a::nat \<Rightarrow> 'a::pcpo \<rightarrow> 'a). approx_chain a"
 proof -
@@ -125,8 +163,8 @@
 
 subsection {* Type combinators *}
 
-definition u_defl :: "udom defl \<rightarrow> udom defl"
-  where "u_defl = defl_fun1 u_emb u_prj u_map"
+definition u_defl :: "udom u defl \<rightarrow> udom defl"
+  where "u_defl = defl_fun1 u_emb u_prj ID"
 
 definition prod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
   where "prod_defl = defl_fun2 prod_emb prod_prj cprod_map"
@@ -141,9 +179,8 @@
   where "sfun_defl = defl_fun2 sfun_emb sfun_prj sfun_map"
 
 lemma cast_u_defl:
-  "cast\<cdot>(u_defl\<cdot>A) = u_emb oo u_map\<cdot>(cast\<cdot>A) oo u_prj"
-using ep_pair_u finite_deflation_u_map
-unfolding u_defl_def by (rule cast_defl_fun1)
+  "cast\<cdot>(u_defl\<cdot>A) = u_emb oo cast\<cdot>A oo u_prj"
+unfolding u_defl_def by (simp add: cast_defl_fun1 ep_pair_u)
 
 lemma cast_prod_defl:
   "cast\<cdot>(prod_defl\<cdot>A\<cdot>B) =
@@ -169,66 +206,11 @@
 using ep_pair_sfun finite_deflation_sfun_map
 unfolding sfun_defl_def by (rule cast_defl_fun2)
 
-subsection {* Lemma for proving domain instances *}
-
-text {*
-  A class of domains where @{const liftemb}, @{const liftprj},
-  and @{const liftdefl} are all defined in the standard way.
-*}
-
-class liftdomain = "domain" +
-  assumes liftemb_eq: "liftemb = u_emb oo u_map\<cdot>emb"
-  assumes liftprj_eq: "liftprj = u_map\<cdot>prj oo u_prj"
-  assumes liftdefl_eq: "liftdefl TYPE('a::cpo) = u_defl\<cdot>DEFL('a)"
-
-text {* Temporarily relax type constraints. *}
-
-setup {*
-  fold Sign.add_const_constraint
-  [ (@{const_name defl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom defl"})
-  , (@{const_name emb}, SOME @{typ "'a::pcpo \<rightarrow> udom"})
-  , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::pcpo"})
-  , (@{const_name liftdefl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom defl"})
-  , (@{const_name liftemb}, SOME @{typ "'a::pcpo u \<rightarrow> udom"})
-  , (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::pcpo u"}) ]
-*}
-
-default_sort pcpo
-
-lemma liftdomain_class_intro:
-  assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-  assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) = u_map\<cdot>prj oo u_prj"
-  assumes liftdefl: "liftdefl TYPE('a) = u_defl\<cdot>DEFL('a)"
-  assumes ep_pair: "ep_pair emb (prj :: udom \<rightarrow> 'a)"
-  assumes cast_defl: "cast\<cdot>DEFL('a) = emb oo (prj :: udom \<rightarrow> 'a)"
-  shows "OFCLASS('a, liftdomain_class)"
-proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> 'a u)"
-    unfolding liftemb liftprj
-    by (intro ep_pair_comp ep_pair_u_map ep_pair ep_pair_u)
-  show "cast\<cdot>LIFTDEFL('a) = liftemb oo (liftprj :: udom \<rightarrow> 'a u)"
-    unfolding liftemb liftprj liftdefl
-    by (simp add: cfcomp1 cast_u_defl cast_defl u_map_map)
-next
-qed fact+
-
-text {* Restore original type constraints. *}
-
-setup {*
-  fold Sign.add_const_constraint
-  [ (@{const_name defl}, SOME @{typ "'a::domain itself \<Rightarrow> udom defl"})
-  , (@{const_name emb}, SOME @{typ "'a::domain \<rightarrow> udom"})
-  , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::domain"})
-  , (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> udom defl"})
-  , (@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom"})
-  , (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::predomain u"}) ]
-*}
-
 subsection {* Class instance proofs *}
 
 subsubsection {* Universal domain *}
 
-instantiation udom :: liftdomain
+instantiation udom :: "domain"
 begin
 
 definition [simp]:
@@ -241,17 +223,15 @@
   "defl (t::udom itself) = (\<Squnion>i. defl_principal (Abs_fin_defl (udom_approx i)))"
 
 definition
-  "(liftemb :: udom u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> udom u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: udom u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::udom itself) = u_defl\<cdot>DEFL(udom)"
+  "(liftprj :: udom u \<rightarrow> udom u) = u_map\<cdot>prj"
 
-instance
-using liftemb_udom_def liftprj_udom_def liftdefl_udom_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::udom itself) = pdefl\<cdot>DEFL(udom)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> udom)"
     by (simp add: ep_pair.intro)
   show "cast\<cdot>DEFL(udom) = emb oo (prj :: udom \<rightarrow> udom)"
@@ -266,52 +246,50 @@
     apply (subst cast_defl_principal)
     apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx)
     done
-qed
+qed (fact liftemb_udom_def liftprj_udom_def liftdefl_udom_def)+
 
 end
 
 subsubsection {* Lifted cpo *}
 
-instantiation u :: (predomain) liftdomain
+instantiation u :: (predomain) "domain"
 begin
 
 definition
-  "emb = liftemb"
+  "emb = u_emb oo liftemb"
 
 definition
-  "prj = liftprj"
+  "prj = liftprj oo u_prj"
 
 definition
-  "defl (t::'a u itself) = LIFTDEFL('a)"
+  "defl (t::'a u itself) = u_defl\<cdot>LIFTDEFL('a)"
 
 definition
-  "(liftemb :: 'a u u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
+  "(liftemb :: 'a u u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "(liftprj :: udom \<rightarrow> 'a u u) = u_map\<cdot>prj oo u_prj"
+  "(liftprj :: udom u \<rightarrow> 'a u u) = u_map\<cdot>prj"
 
 definition
-  "liftdefl (t::'a u itself) = u_defl\<cdot>DEFL('a u)"
+  "liftdefl (t::'a u itself) = pdefl\<cdot>DEFL('a u)"
 
-instance
-using liftemb_u_def liftprj_u_def liftdefl_u_def
-proof (rule liftdomain_class_intro)
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a u)"
     unfolding emb_u_def prj_u_def
-    by (rule predomain_ep)
+    by (intro ep_pair_comp ep_pair_u predomain_ep)
   show "cast\<cdot>DEFL('a u) = emb oo (prj :: udom \<rightarrow> 'a u)"
     unfolding emb_u_def prj_u_def defl_u_def
-    by (rule cast_liftdefl)
-qed
+    by (simp add: cast_u_defl cast_liftdefl assoc_oo)
+qed (fact liftemb_u_def liftprj_u_def liftdefl_u_def)+
 
 end
 
-lemma DEFL_u: "DEFL('a::predomain u) = LIFTDEFL('a)"
+lemma DEFL_u: "DEFL('a::predomain u) = u_defl\<cdot>LIFTDEFL('a)"
 by (rule defl_u_def)
 
 subsubsection {* Strict function space *}
 
-instantiation sfun :: ("domain", "domain") liftdomain
+instantiation sfun :: ("domain", "domain") "domain"
 begin
 
 definition
@@ -324,24 +302,22 @@
   "defl (t::('a \<rightarrow>! 'b) itself) = sfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 
 definition
-  "(liftemb :: ('a \<rightarrow>! 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> ('a \<rightarrow>! 'b) u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: ('a \<rightarrow>! 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::('a \<rightarrow>! 'b) itself) = u_defl\<cdot>DEFL('a \<rightarrow>! 'b)"
+  "(liftprj :: udom u \<rightarrow> ('a \<rightarrow>! 'b) u) = u_map\<cdot>prj"
 
-instance
-using liftemb_sfun_def liftprj_sfun_def liftdefl_sfun_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::('a \<rightarrow>! 'b) itself) = pdefl\<cdot>DEFL('a \<rightarrow>! 'b)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow>! 'b)"
     unfolding emb_sfun_def prj_sfun_def
     by (intro ep_pair_comp ep_pair_sfun ep_pair_sfun_map ep_pair_emb_prj)
   show "cast\<cdot>DEFL('a \<rightarrow>! 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow>! 'b)"
     unfolding emb_sfun_def prj_sfun_def defl_sfun_def cast_sfun_defl
     by (simp add: cast_DEFL oo_def sfun_eq_iff sfun_map_map)
-qed
+qed (fact liftemb_sfun_def liftprj_sfun_def liftdefl_sfun_def)+
 
 end
 
@@ -351,7 +327,7 @@
 
 subsubsection {* Continuous function space *}
 
-instantiation cfun :: (predomain, "domain") liftdomain
+instantiation cfun :: (predomain, "domain") "domain"
 begin
 
 definition
@@ -364,17 +340,15 @@
   "defl (t::('a \<rightarrow> 'b) itself) = DEFL('a u \<rightarrow>! 'b)"
 
 definition
-  "(liftemb :: ('a \<rightarrow> 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> ('a \<rightarrow> 'b) u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: ('a \<rightarrow> 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::('a \<rightarrow> 'b) itself) = u_defl\<cdot>DEFL('a \<rightarrow> 'b)"
+  "(liftprj :: udom u \<rightarrow> ('a \<rightarrow> 'b) u) = u_map\<cdot>prj"
 
-instance
-using liftemb_cfun_def liftprj_cfun_def liftdefl_cfun_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::('a \<rightarrow> 'b) itself) = pdefl\<cdot>DEFL('a \<rightarrow> 'b)"
+
+instance proof
   have "ep_pair encode_cfun decode_cfun"
     by (rule ep_pair.intro, simp_all)
   thus "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
@@ -383,7 +357,7 @@
   show "cast\<cdot>DEFL('a \<rightarrow> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
     unfolding emb_cfun_def prj_cfun_def defl_cfun_def
     by (simp add: cast_DEFL cfcomp1)
-qed
+qed (fact liftemb_cfun_def liftprj_cfun_def liftdefl_cfun_def)+
 
 end
 
@@ -393,7 +367,7 @@
 
 subsubsection {* Strict product *}
 
-instantiation sprod :: ("domain", "domain") liftdomain
+instantiation sprod :: ("domain", "domain") "domain"
 begin
 
 definition
@@ -406,25 +380,22 @@
   "defl (t::('a \<otimes> 'b) itself) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 
 definition
-  "(liftemb :: ('a \<otimes> 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> ('a \<otimes> 'b) u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: ('a \<otimes> 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::('a \<otimes> 'b) itself) = u_defl\<cdot>DEFL('a \<otimes> 'b)"
+  "(liftprj :: udom u \<rightarrow> ('a \<otimes> 'b) u) = u_map\<cdot>prj"
 
-instance
-using liftemb_sprod_def liftprj_sprod_def liftdefl_sprod_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::('a \<otimes> 'b) itself) = pdefl\<cdot>DEFL('a \<otimes> 'b)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
     unfolding emb_sprod_def prj_sprod_def
     by (intro ep_pair_comp ep_pair_sprod ep_pair_sprod_map ep_pair_emb_prj)
-next
   show "cast\<cdot>DEFL('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
     unfolding emb_sprod_def prj_sprod_def defl_sprod_def cast_sprod_defl
     by (simp add: cast_DEFL oo_def cfun_eq_iff sprod_map_map)
-qed
+qed (fact liftemb_sprod_def liftprj_sprod_def liftdefl_sprod_def)+
 
 end
 
@@ -434,27 +405,43 @@
 
 subsubsection {* Cartesian product *}
 
+definition prod_liftdefl :: "udom u defl \<rightarrow> udom u defl \<rightarrow> udom u defl"
+  where "prod_liftdefl = defl_fun2 (u_map\<cdot>prod_emb oo decode_prod_u)
+    (encode_prod_u oo u_map\<cdot>prod_prj) sprod_map"
+
+lemma cast_prod_liftdefl:
+  "cast\<cdot>(prod_liftdefl\<cdot>a\<cdot>b) =
+    (u_map\<cdot>prod_emb oo decode_prod_u) oo sprod_map\<cdot>(cast\<cdot>a)\<cdot>(cast\<cdot>b) oo
+      (encode_prod_u oo u_map\<cdot>prod_prj)"
+unfolding prod_liftdefl_def
+apply (rule cast_defl_fun2)
+apply (intro ep_pair_comp ep_pair_u_map ep_pair_prod)
+apply (simp add: ep_pair.intro)
+apply (erule (1) finite_deflation_sprod_map)
+done
+
 instantiation prod :: (predomain, predomain) predomain
 begin
 
 definition
-  "liftemb = emb oo encode_prod_u"
+  "liftemb = (u_map\<cdot>prod_emb oo decode_prod_u) oo
+    (sprod_map\<cdot>liftemb\<cdot>liftemb oo encode_prod_u)"
 
 definition
-  "liftprj = decode_prod_u oo prj"
+  "liftprj = (decode_prod_u oo sprod_map\<cdot>liftprj\<cdot>liftprj) oo
+    (encode_prod_u oo u_map\<cdot>prod_prj)"
 
 definition
-  "liftdefl (t::('a \<times> 'b) itself) = DEFL('a\<^sub>\<bottom> \<otimes> 'b\<^sub>\<bottom>)"
+  "liftdefl (t::('a \<times> 'b) itself) = prod_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
 
 instance proof
-  have "ep_pair encode_prod_u decode_prod_u"
-    by (rule ep_pair.intro, simp_all)
-  thus "ep_pair liftemb (liftprj :: udom \<rightarrow> ('a \<times> 'b) u)"
+  show "ep_pair liftemb (liftprj :: udom u \<rightarrow> ('a \<times> 'b) u)"
     unfolding liftemb_prod_def liftprj_prod_def
-    using ep_pair_emb_prj by (rule ep_pair_comp)
-  show "cast\<cdot>LIFTDEFL('a \<times> 'b) = liftemb oo (liftprj :: udom \<rightarrow> ('a \<times> 'b) u)"
+    by (intro ep_pair_comp ep_pair_sprod_map ep_pair_u_map
+       ep_pair_prod predomain_ep, simp_all add: ep_pair.intro)
+  show "cast\<cdot>LIFTDEFL('a \<times> 'b) = liftemb oo (liftprj :: udom u \<rightarrow> ('a \<times> 'b) u)"
     unfolding liftemb_prod_def liftprj_prod_def liftdefl_prod_def
-    by (simp add: cast_DEFL cfcomp1)
+    by (simp add: cast_prod_liftdefl cast_liftdefl cfcomp1 sprod_map_map)
 qed
 
 end
@@ -472,13 +459,25 @@
   "defl (t::('a \<times> 'b) itself) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 
 instance proof
-  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
+  show 1: "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
     unfolding emb_prod_def prj_prod_def
     by (intro ep_pair_comp ep_pair_prod ep_pair_cprod_map ep_pair_emb_prj)
-next
-  show "cast\<cdot>DEFL('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
+  show 2: "cast\<cdot>DEFL('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
     unfolding emb_prod_def prj_prod_def defl_prod_def cast_prod_defl
     by (simp add: cast_DEFL oo_def cfun_eq_iff cprod_map_map)
+  show 3: "liftemb = u_map\<cdot>(emb :: 'a \<times> 'b \<rightarrow> udom)"
+    unfolding emb_prod_def liftemb_prod_def liftemb_eq
+    unfolding encode_prod_u_def decode_prod_u_def
+    by (rule cfun_eqI, case_tac x, simp, clarsimp)
+  show 4: "liftprj = u_map\<cdot>(prj :: udom \<rightarrow> 'a \<times> 'b)"
+    unfolding prj_prod_def liftprj_prod_def liftprj_eq
+    unfolding encode_prod_u_def decode_prod_u_def
+    apply (rule cfun_eqI, case_tac x, simp)
+    apply (rename_tac y, case_tac "prod_prj\<cdot>y", simp)
+    done
+  show 5: "LIFTDEFL('a \<times> 'b) = pdefl\<cdot>DEFL('a \<times> 'b)"
+    by (rule cast_eq_imp_eq)
+      (simp add: cast_liftdefl cast_pdefl cast_DEFL 2 3 4 u_map_oo)
 qed
 
 end
@@ -488,12 +487,13 @@
 by (rule defl_prod_def)
 
 lemma LIFTDEFL_prod:
-  "LIFTDEFL('a::predomain \<times> 'b::predomain) = DEFL('a u \<otimes> 'b u)"
+  "LIFTDEFL('a::predomain \<times> 'b::predomain) =
+    prod_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
 by (rule liftdefl_prod_def)
 
 subsubsection {* Unit type *}
 
-instantiation unit :: liftdomain
+instantiation unit :: "domain"
 begin
 
 definition
@@ -506,24 +506,21 @@
   "defl (t::unit itself) = \<bottom>"
 
 definition
-  "(liftemb :: unit u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> unit u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: unit u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::unit itself) = u_defl\<cdot>DEFL(unit)"
+  "(liftprj :: udom u \<rightarrow> unit u) = u_map\<cdot>prj"
 
-instance
-using liftemb_unit_def liftprj_unit_def liftdefl_unit_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::unit itself) = pdefl\<cdot>DEFL(unit)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> unit)"
     unfolding emb_unit_def prj_unit_def
     by (simp add: ep_pair.intro)
-next
   show "cast\<cdot>DEFL(unit) = emb oo (prj :: udom \<rightarrow> unit)"
     unfolding emb_unit_def prj_unit_def defl_unit_def by simp
-qed
+qed (fact liftemb_unit_def liftprj_unit_def liftdefl_unit_def)+
 
 end
 
@@ -533,34 +530,38 @@
 begin
 
 definition
-  "(liftemb :: 'a discr u \<rightarrow> udom) = udom_emb discr_approx"
+  "(liftemb :: 'a discr u \<rightarrow> udom u) = strictify\<cdot>up oo udom_emb discr_approx"
 
 definition
-  "(liftprj :: udom \<rightarrow> 'a discr u) = udom_prj discr_approx"
+  "(liftprj :: udom u \<rightarrow> 'a discr u) = udom_prj discr_approx oo fup\<cdot>ID"
 
 definition
   "liftdefl (t::'a discr itself) =
-    (\<Squnion>i. defl_principal (Abs_fin_defl (liftemb oo discr_approx i oo (liftprj::udom \<rightarrow> 'a discr u))))"
+    (\<Squnion>i. defl_principal (Abs_fin_defl (liftemb oo discr_approx i oo (liftprj::udom u \<rightarrow> 'a discr u))))"
 
 instance proof
-  show "ep_pair liftemb (liftprj :: udom \<rightarrow> 'a discr u)"
+  show 1: "ep_pair liftemb (liftprj :: udom u \<rightarrow> 'a discr u)"
     unfolding liftemb_discr_def liftprj_discr_def
-    by (rule ep_pair_udom [OF discr_approx])
-  show "cast\<cdot>LIFTDEFL('a discr) = liftemb oo (liftprj :: udom \<rightarrow> 'a discr u)"
-    unfolding liftemb_discr_def liftprj_discr_def liftdefl_discr_def
+    apply (intro ep_pair_comp ep_pair_udom [OF discr_approx])
+    apply (rule ep_pair.intro)
+    apply (simp add: strictify_conv_if)
+    apply (case_tac y, simp, simp add: strictify_conv_if)
+    done
+  show "cast\<cdot>LIFTDEFL('a discr) = liftemb oo (liftprj :: udom u \<rightarrow> 'a discr u)"
+    unfolding liftdefl_discr_def
     apply (subst contlub_cfun_arg)
     apply (rule chainI)
     apply (rule defl.principal_mono)
     apply (simp add: below_fin_defl_def)
     apply (simp add: Abs_fin_defl_inverse
-        ep_pair.finite_deflation_e_d_p [OF ep_pair_udom [OF discr_approx]]
+        ep_pair.finite_deflation_e_d_p [OF 1]
         approx_chain.finite_deflation_approx [OF discr_approx])
     apply (intro monofun_cfun below_refl)
     apply (rule chainE)
     apply (rule chain_discr_approx)
     apply (subst cast_defl_principal)
     apply (simp add: Abs_fin_defl_inverse
-        ep_pair.finite_deflation_e_d_p [OF ep_pair_udom [OF discr_approx]]
+        ep_pair.finite_deflation_e_d_p [OF 1]
         approx_chain.finite_deflation_approx [OF discr_approx])
     apply (simp add: lub_distribs)
     done
@@ -570,7 +571,7 @@
 
 subsubsection {* Strict sum *}
 
-instantiation ssum :: ("domain", "domain") liftdomain
+instantiation ssum :: ("domain", "domain") "domain"
 begin
 
 definition
@@ -583,24 +584,22 @@
   "defl (t::('a \<oplus> 'b) itself) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 
 definition
-  "(liftemb :: ('a \<oplus> 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> ('a \<oplus> 'b) u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: ('a \<oplus> 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::('a \<oplus> 'b) itself) = u_defl\<cdot>DEFL('a \<oplus> 'b)"
+  "(liftprj :: udom u \<rightarrow> ('a \<oplus> 'b) u) = u_map\<cdot>prj"
 
-instance
-using liftemb_ssum_def liftprj_ssum_def liftdefl_ssum_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::('a \<oplus> 'b) itself) = pdefl\<cdot>DEFL('a \<oplus> 'b)"
+
+instance proof
   show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
     unfolding emb_ssum_def prj_ssum_def
     by (intro ep_pair_comp ep_pair_ssum ep_pair_ssum_map ep_pair_emb_prj)
   show "cast\<cdot>DEFL('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
     unfolding emb_ssum_def prj_ssum_def defl_ssum_def cast_ssum_defl
     by (simp add: cast_DEFL oo_def cfun_eq_iff ssum_map_map)
-qed
+qed (fact liftemb_ssum_def liftprj_ssum_def liftdefl_ssum_def)+
 
 end
 
@@ -610,7 +609,7 @@
 
 subsubsection {* Lifted HOL type *}
 
-instantiation lift :: (countable) liftdomain
+instantiation lift :: (countable) "domain"
 begin
 
 definition
@@ -623,17 +622,15 @@
   "defl (t::'a lift itself) = DEFL('a discr u)"
 
 definition
-  "(liftemb :: 'a lift u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
-
-definition
-  "(liftprj :: udom \<rightarrow> 'a lift u) = u_map\<cdot>prj oo u_prj"
+  "(liftemb :: 'a lift u \<rightarrow> udom u) = u_map\<cdot>emb"
 
 definition
-  "liftdefl (t::'a lift itself) = u_defl\<cdot>DEFL('a lift)"
+  "(liftprj :: udom u \<rightarrow> 'a lift u) = u_map\<cdot>prj"
 
-instance
-using liftemb_lift_def liftprj_lift_def liftdefl_lift_def
-proof (rule liftdomain_class_intro)
+definition
+  "liftdefl (t::'a lift itself) = pdefl\<cdot>DEFL('a lift)"
+
+instance proof
   note [simp] = cont_Rep_lift cont_Abs_lift Rep_lift_inverse Abs_lift_inverse
   have "ep_pair (\<Lambda>(x::'a lift). Rep_lift x) (\<Lambda> y. Abs_lift y)"
     by (simp add: ep_pair_def)
@@ -643,7 +640,7 @@
   show "cast\<cdot>DEFL('a lift) = emb oo (prj :: udom \<rightarrow> 'a lift)"
     unfolding emb_lift_def prj_lift_def defl_lift_def cast_DEFL
     by (simp add: cfcomp1)
-qed
+qed (fact liftemb_lift_def liftprj_lift_def liftdefl_lift_def)+
 
 end
 
--- a/src/HOL/HOLCF/Tools/Domain/domain_isomorphism.ML	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Tools/Domain/domain_isomorphism.ML	Sun Dec 19 17:37:19 2010 -0800
@@ -69,6 +69,7 @@
 
 val udomT = @{typ udom}
 val deflT = @{typ "udom defl"}
+val udeflT = @{typ "udom u defl"}
 
 fun mk_DEFL T =
   Const (@{const_name defl}, Term.itselfT T --> deflT) $ Logic.mk_type T
@@ -77,7 +78,7 @@
   | dest_DEFL t = raise TERM ("dest_DEFL", [t])
 
 fun mk_LIFTDEFL T =
-  Const (@{const_name liftdefl}, Term.itselfT T --> deflT) $ Logic.mk_type T
+  Const (@{const_name liftdefl}, Term.itselfT T --> udeflT) $ Logic.mk_type T
 
 fun dest_LIFTDEFL (Const (@{const_name liftdefl}, _) $ t) = Logic.dest_type t
   | dest_LIFTDEFL t = raise TERM ("dest_LIFTDEFL", [t])
@@ -100,6 +101,9 @@
 fun isodefl_const T =
   Const (@{const_name isodefl}, (T ->> T) --> deflT --> HOLogic.boolT)
 
+fun isodefl'_const T =
+  Const (@{const_name isodefl'}, (T ->> T) --> udeflT --> HOLogic.boolT)
+
 fun mk_deflation t =
   Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t
 
@@ -218,7 +222,7 @@
       | _ => NONE) handle TERM _ => NONE
     fun proc2 t =
       (case dest_LIFTDEFL t of
-        TFree (a, _) => SOME (Free ("p" ^ Library.unprefix "'" a, deflT))
+        TFree (a, _) => SOME (Free ("p" ^ Library.unprefix "'" a, udeflT))
       | _ => NONE) handle TERM _ => NONE
   in
     Pattern.rewrite_term thy (rules @ rules') [proc1, proc2] (mk_DEFL T)
@@ -492,7 +496,7 @@
       let
         val defl_bind = Binding.suffix_name "_defl" tbind
         val defl_type =
-          map Term.itselfT typeTs ---> map (K deflT) defl_args -->> deflT
+          map Term.itselfT typeTs ---> map fastype_of defl_args -->> deflT
       in
         Sign.declare_const ((defl_bind, defl_type), NoSyn) thy
       end
@@ -614,11 +618,11 @@
       let
         fun unprime a = Library.unprefix "'" a
         fun mk_d T = Free ("d" ^ unprime (fst (dest_TFree T)), deflT)
-        fun mk_p T = Free ("p" ^ unprime (fst (dest_TFree T)), deflT)
+        fun mk_p T = Free ("p" ^ unprime (fst (dest_TFree T)), udeflT)
         fun mk_f T = Free ("f" ^ unprime (fst (dest_TFree T)), T ->> T)
         fun mk_assm t =
           case try dest_LIFTDEFL t of
-            SOME T => mk_trp (isodefl_const (mk_upT T) $ mk_u_map (mk_f T) $ mk_p T)
+            SOME T => mk_trp (isodefl'_const T $ mk_f T $ mk_p T)
           | NONE =>
             let val T = dest_DEFL t
             in mk_trp (isodefl_const T $ mk_f T $ mk_d T) end
--- a/src/HOL/HOLCF/Tools/domaindef.ML	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/Tools/domaindef.ML	Sun Dec 19 17:37:19 2010 -0800
@@ -50,12 +50,13 @@
 
 val udomT = @{typ udom}
 val deflT = @{typ "udom defl"}
+val udeflT = @{typ "udom u defl"}
 fun emb_const T = Const (@{const_name emb}, T ->> udomT)
 fun prj_const T = Const (@{const_name prj}, udomT ->> T)
 fun defl_const T = Const (@{const_name defl}, Term.itselfT T --> deflT)
-fun liftemb_const T = Const (@{const_name liftemb}, mk_upT T ->> udomT)
-fun liftprj_const T = Const (@{const_name liftprj}, udomT ->> mk_upT T)
-fun liftdefl_const T = Const (@{const_name liftdefl}, Term.itselfT T --> deflT)
+fun liftemb_const T = Const (@{const_name liftemb}, mk_upT T ->> mk_upT udomT)
+fun liftprj_const T = Const (@{const_name liftprj}, mk_upT udomT ->> mk_upT T)
+fun liftdefl_const T = Const (@{const_name liftdefl}, Term.itselfT T --> udeflT)
 
 fun mk_u_map t =
   let
@@ -129,15 +130,13 @@
     val defl_eqn = Logic.mk_equals (defl_const newT,
       Abs ("x", Term.itselfT newT, defl))
     val liftemb_eqn =
-      Logic.mk_equals (liftemb_const newT,
-      mk_cfcomp (@{const u_emb}, mk_u_map (emb_const newT)))
+      Logic.mk_equals (liftemb_const newT, mk_u_map (emb_const newT))
     val liftprj_eqn =
-      Logic.mk_equals (liftprj_const newT,
-      mk_cfcomp (mk_u_map (prj_const newT), @{const u_prj}))
+      Logic.mk_equals (liftprj_const newT, mk_u_map (prj_const newT))
     val liftdefl_eqn =
       Logic.mk_equals (liftdefl_const newT,
         Abs ("t", Term.itselfT newT,
-          mk_capply (@{const u_defl}, defl_const newT $ Logic.mk_type newT)))
+          mk_capply (@{const pdefl}, defl_const newT $ Logic.mk_type newT)))
 
     val name_def = Binding.suffix_name "_def" name
     val emb_bind = (Binding.prefix_name "emb_" name_def, [])
@@ -149,7 +148,7 @@
 
     (*instantiate class rep*)
     val lthy = thy
-      |> Class.instantiation ([full_tname], lhs_tfrees, @{sort liftdomain})
+      |> Class.instantiation ([full_tname], lhs_tfrees, @{sort domain})
     val ((_, (_, emb_ldef)), lthy) =
         Specification.definition (NONE, (emb_bind, emb_eqn)) lthy
     val ((_, (_, prj_ldef)), lthy) =
@@ -178,7 +177,7 @@
       liftemb_def, liftprj_def, liftdefl_def]
     val thy = lthy
       |> Class.prove_instantiation_instance
-          (K (Tactic.rtac (@{thm typedef_liftdomain_class} OF typedef_thms) 1))
+          (K (Tactic.rtac (@{thm typedef_domain_class} OF typedef_thms) 1))
       |> Local_Theory.exit_global
 
     (*other theorems*)
--- a/src/HOL/HOLCF/ex/Domain_Proofs.thy	Sun Dec 19 10:33:46 2010 -0800
+++ b/src/HOL/HOLCF/ex/Domain_Proofs.thy	Sun Dec 19 17:37:19 2010 -0800
@@ -17,9 +17,6 @@
    and 'a bar = Bar (lazy "'a baz \<rightarrow> tr")
    and 'a baz = Baz (lazy "'a foo convex_pd \<rightarrow> tr")
 
-TODO: add another type parameter that is strict,
-to show the different handling of LIFTDEFL vs. DEFL.
-
 *)
 
 (********************************************************************)
@@ -33,15 +30,15 @@
     "udom defl \<rightarrow> udom defl \<times> udom defl \<times> udom defl \<rightarrow> udom defl \<times> udom defl \<times> udom defl"
 where
   "foo_bar_baz_deflF = (\<Lambda> a. Abs_cfun (\<lambda>(t1, t2, t3). 
-    ( ssum_defl\<cdot>DEFL(one)\<cdot>(sprod_defl\<cdot>a\<cdot>(u_defl\<cdot>t2))
-    , u_defl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>t3)\<cdot>DEFL(tr))
-    , u_defl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(convex_defl\<cdot>t1))\<cdot>DEFL(tr)))))"
+    ( ssum_defl\<cdot>DEFL(one)\<cdot>(sprod_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>a))\<cdot>(u_defl\<cdot>(pdefl\<cdot>t2)))
+    , u_defl\<cdot>(pdefl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>t3))\<cdot>DEFL(tr)))
+    , u_defl\<cdot>(pdefl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>(convex_defl\<cdot>t1)))\<cdot>DEFL(tr))))))"
 
 lemma foo_bar_baz_deflF_beta:
   "foo_bar_baz_deflF\<cdot>a\<cdot>t =
-    ( ssum_defl\<cdot>DEFL(one)\<cdot>(sprod_defl\<cdot>a\<cdot>(u_defl\<cdot>(fst (snd t))))
-    , u_defl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(snd (snd t)))\<cdot>DEFL(tr))
-    , u_defl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(convex_defl\<cdot>(fst t)))\<cdot>DEFL(tr)))"
+    ( ssum_defl\<cdot>DEFL(one)\<cdot>(sprod_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>a))\<cdot>(u_defl\<cdot>(pdefl\<cdot>(fst (snd t)))))
+    , u_defl\<cdot>(pdefl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>(snd (snd t))))\<cdot>DEFL(tr)))
+    , u_defl\<cdot>(pdefl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>(convex_defl\<cdot>(fst t))))\<cdot>DEFL(tr))))"
 unfolding foo_bar_baz_deflF_def
 by (simp add: split_def)
 
@@ -65,13 +62,13 @@
 text {* Unfold rules for each combinator. *}
 
 lemma foo_defl_unfold:
-  "foo_defl\<cdot>a = ssum_defl\<cdot>DEFL(one)\<cdot>(sprod_defl\<cdot>a\<cdot>(u_defl\<cdot>(bar_defl\<cdot>a)))"
+  "foo_defl\<cdot>a = ssum_defl\<cdot>DEFL(one)\<cdot>(sprod_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>a))\<cdot>(u_defl\<cdot>(pdefl\<cdot>(bar_defl\<cdot>a))))"
 unfolding defl_apply_thms by (subst fix_eq, simp add: foo_bar_baz_deflF_beta)
 
-lemma bar_defl_unfold: "bar_defl\<cdot>a = u_defl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(baz_defl\<cdot>a))\<cdot>DEFL(tr))"
+lemma bar_defl_unfold: "bar_defl\<cdot>a = u_defl\<cdot>(pdefl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>(baz_defl\<cdot>a)))\<cdot>DEFL(tr)))"
 unfolding defl_apply_thms by (subst fix_eq, simp add: foo_bar_baz_deflF_beta)
 
-lemma baz_defl_unfold: "baz_defl\<cdot>a = u_defl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(convex_defl\<cdot>(foo_defl\<cdot>a)))\<cdot>DEFL(tr))"
+lemma baz_defl_unfold: "baz_defl\<cdot>a = u_defl\<cdot>(pdefl\<cdot>(sfun_defl\<cdot>(u_defl\<cdot>(pdefl\<cdot>(convex_defl\<cdot>(foo_defl\<cdot>a))))\<cdot>DEFL(tr)))"
 unfolding defl_apply_thms by (subst fix_eq, simp add: foo_bar_baz_deflF_beta)
 
 text "The automation for the previous steps will be quite similar to
@@ -83,40 +80,40 @@
 
 text {* Use @{text pcpodef} with the appropriate type combinator. *}
 
-pcpodef (open) 'a foo = "defl_set (foo_defl\<cdot>LIFTDEFL('a))"
+pcpodef (open) 'a foo = "defl_set (foo_defl\<cdot>DEFL('a))"
 by (rule defl_set_bottom, rule adm_defl_set)
 
-pcpodef (open) 'a bar = "defl_set (bar_defl\<cdot>LIFTDEFL('a))"
+pcpodef (open) 'a bar = "defl_set (bar_defl\<cdot>DEFL('a))"
 by (rule defl_set_bottom, rule adm_defl_set)
 
-pcpodef (open) 'a baz = "defl_set (baz_defl\<cdot>LIFTDEFL('a))"
+pcpodef (open) 'a baz = "defl_set (baz_defl\<cdot>DEFL('a))"
 by (rule defl_set_bottom, rule adm_defl_set)
 
 text {* Prove rep instance using lemma @{text typedef_rep_class}. *}
 
-instantiation foo :: ("domain") liftdomain
+instantiation foo :: ("domain") "domain"
 begin
 
 definition emb_foo :: "'a foo \<rightarrow> udom"
 where "emb_foo \<equiv> (\<Lambda> x. Rep_foo x)"
 
 definition prj_foo :: "udom \<rightarrow> 'a foo"
-where "prj_foo \<equiv> (\<Lambda> y. Abs_foo (cast\<cdot>(foo_defl\<cdot>LIFTDEFL('a))\<cdot>y))"
+where "prj_foo \<equiv> (\<Lambda> y. Abs_foo (cast\<cdot>(foo_defl\<cdot>DEFL('a))\<cdot>y))"
 
 definition defl_foo :: "'a foo itself \<Rightarrow> udom defl"
-where "defl_foo \<equiv> \<lambda>a. foo_defl\<cdot>LIFTDEFL('a)"
+where "defl_foo \<equiv> \<lambda>a. foo_defl\<cdot>DEFL('a)"
 
 definition
-  "(liftemb :: 'a foo u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
+  "(liftemb :: 'a foo u \<rightarrow> udom u) \<equiv> u_map\<cdot>emb"
 
 definition
-  "(liftprj :: udom \<rightarrow> 'a foo u) \<equiv> u_map\<cdot>prj oo u_prj"
+  "(liftprj :: udom u \<rightarrow> 'a foo u) \<equiv> u_map\<cdot>prj"
 
 definition
-  "liftdefl \<equiv> \<lambda>(t::'a foo itself). u_defl\<cdot>DEFL('a foo)"
+  "liftdefl \<equiv> \<lambda>(t::'a foo itself). pdefl\<cdot>DEFL('a foo)"
 
 instance
-apply (rule typedef_liftdomain_class)
+apply (rule typedef_domain_class)
 apply (rule type_definition_foo)
 apply (rule below_foo_def)
 apply (rule emb_foo_def)
@@ -129,29 +126,29 @@
 
 end
 
-instantiation bar :: ("domain") liftdomain
+instantiation bar :: ("domain") "domain"
 begin
 
 definition emb_bar :: "'a bar \<rightarrow> udom"
 where "emb_bar \<equiv> (\<Lambda> x. Rep_bar x)"
 
 definition prj_bar :: "udom \<rightarrow> 'a bar"
-where "prj_bar \<equiv> (\<Lambda> y. Abs_bar (cast\<cdot>(bar_defl\<cdot>LIFTDEFL('a))\<cdot>y))"
+where "prj_bar \<equiv> (\<Lambda> y. Abs_bar (cast\<cdot>(bar_defl\<cdot>DEFL('a))\<cdot>y))"
 
 definition defl_bar :: "'a bar itself \<Rightarrow> udom defl"
-where "defl_bar \<equiv> \<lambda>a. bar_defl\<cdot>LIFTDEFL('a)"
+where "defl_bar \<equiv> \<lambda>a. bar_defl\<cdot>DEFL('a)"
 
 definition
-  "(liftemb :: 'a bar u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
+  "(liftemb :: 'a bar u \<rightarrow> udom u) \<equiv> u_map\<cdot>emb"
 
 definition
-  "(liftprj :: udom \<rightarrow> 'a bar u) \<equiv> u_map\<cdot>prj oo u_prj"
+  "(liftprj :: udom u \<rightarrow> 'a bar u) \<equiv> u_map\<cdot>prj"
 
 definition
-  "liftdefl \<equiv> \<lambda>(t::'a bar itself). u_defl\<cdot>DEFL('a bar)"
+  "liftdefl \<equiv> \<lambda>(t::'a bar itself). pdefl\<cdot>DEFL('a bar)"
 
 instance
-apply (rule typedef_liftdomain_class)
+apply (rule typedef_domain_class)
 apply (rule type_definition_bar)
 apply (rule below_bar_def)
 apply (rule emb_bar_def)
@@ -164,29 +161,29 @@
 
 end
 
-instantiation baz :: ("domain") liftdomain
+instantiation baz :: ("domain") "domain"
 begin
 
 definition emb_baz :: "'a baz \<rightarrow> udom"
 where "emb_baz \<equiv> (\<Lambda> x. Rep_baz x)"
 
 definition prj_baz :: "udom \<rightarrow> 'a baz"
-where "prj_baz \<equiv> (\<Lambda> y. Abs_baz (cast\<cdot>(baz_defl\<cdot>LIFTDEFL('a))\<cdot>y))"
+where "prj_baz \<equiv> (\<Lambda> y. Abs_baz (cast\<cdot>(baz_defl\<cdot>DEFL('a))\<cdot>y))"
 
 definition defl_baz :: "'a baz itself \<Rightarrow> udom defl"
-where "defl_baz \<equiv> \<lambda>a. baz_defl\<cdot>LIFTDEFL('a)"
+where "defl_baz \<equiv> \<lambda>a. baz_defl\<cdot>DEFL('a)"
 
 definition
-  "(liftemb :: 'a baz u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
+  "(liftemb :: 'a baz u \<rightarrow> udom u) \<equiv> u_map\<cdot>emb"
 
 definition
-  "(liftprj :: udom \<rightarrow> 'a baz u) \<equiv> u_map\<cdot>prj oo u_prj"
+  "(liftprj :: udom u \<rightarrow> 'a baz u) \<equiv> u_map\<cdot>prj"
 
 definition
-  "liftdefl \<equiv> \<lambda>(t::'a baz itself). u_defl\<cdot>DEFL('a baz)"
+  "liftdefl \<equiv> \<lambda>(t::'a baz itself). pdefl\<cdot>DEFL('a baz)"
 
 instance
-apply (rule typedef_liftdomain_class)
+apply (rule typedef_domain_class)
 apply (rule type_definition_baz)
 apply (rule below_baz_def)
 apply (rule emb_baz_def)
@@ -201,17 +198,17 @@
 
 text {* Prove DEFL rules using lemma @{text typedef_DEFL}. *}
 
-lemma DEFL_foo: "DEFL('a foo) = foo_defl\<cdot>LIFTDEFL('a)"
+lemma DEFL_foo: "DEFL('a foo) = foo_defl\<cdot>DEFL('a)"
 apply (rule typedef_DEFL)
 apply (rule defl_foo_def)
 done
 
-lemma DEFL_bar: "DEFL('a bar) = bar_defl\<cdot>LIFTDEFL('a)"
+lemma DEFL_bar: "DEFL('a bar) = bar_defl\<cdot>DEFL('a)"
 apply (rule typedef_DEFL)
 apply (rule defl_bar_def)
 done
 
-lemma DEFL_baz: "DEFL('a baz) = baz_defl\<cdot>LIFTDEFL('a)"
+lemma DEFL_baz: "DEFL('a baz) = baz_defl\<cdot>DEFL('a)"
 apply (rule typedef_DEFL)
 apply (rule defl_baz_def)
 done
@@ -348,7 +345,7 @@
 text {* Prove isodefl rules for all map functions simultaneously. *}
 
 lemma isodefl_foo_bar_baz:
-  assumes isodefl_d: "isodefl (u_map\<cdot>d) t"
+  assumes isodefl_d: "isodefl d t"
   shows
   "isodefl (foo_map\<cdot>d) (foo_defl\<cdot>t) \<and>
   isodefl (bar_map\<cdot>d) (bar_defl\<cdot>t) \<and>
@@ -383,21 +380,21 @@
 apply (rule isodefl_DEFL_imp_ID)
 apply (subst DEFL_foo)
 apply (rule isodefl_foo)
-apply (rule isodefl_LIFTDEFL)
+apply (rule isodefl_ID_DEFL)
 done
 
 lemma bar_map_ID: "bar_map\<cdot>ID = ID"
 apply (rule isodefl_DEFL_imp_ID)
 apply (subst DEFL_bar)
 apply (rule isodefl_bar)
-apply (rule isodefl_LIFTDEFL)
+apply (rule isodefl_ID_DEFL)
 done
 
 lemma baz_map_ID: "baz_map\<cdot>ID = ID"
 apply (rule isodefl_DEFL_imp_ID)
 apply (subst DEFL_baz)
 apply (rule isodefl_baz)
-apply (rule isodefl_LIFTDEFL)
+apply (rule isodefl_ID_DEFL)
 done
 
 (********************************************************************)