if-then-else syntax for ZF
authorpaulson
Thu, 07 Jan 1999 10:56:05 +0100 (1999-01-07)
changeset 6068 2d8f3e1f1151
parent 6067 0f8ab32093ae
child 6069 a99879bd9f13
if-then-else syntax for ZF
src/ZF/AC/WO1_WO6.ML
src/ZF/AC/WO2_AC16.ML
src/ZF/AC/WO6_WO1.thy
src/ZF/AC/recfunAC16.ML
src/ZF/Arith.ML
src/ZF/Cardinal.ML
src/ZF/CardinalArith.ML
src/ZF/Cardinal_AC.ML
src/ZF/Coind/Map.ML
src/ZF/Coind/Map.thy
src/ZF/Coind/Types.thy
src/ZF/Coind/Values.ML
src/ZF/OrderArith.ML
src/ZF/Perm.ML
src/ZF/Resid/Substitution.ML
src/ZF/Resid/Substitution.thy
src/ZF/Update.ML
src/ZF/ZF.thy
src/ZF/equalities.ML
src/ZF/ex/Mutil.ML
src/ZF/ex/PropLog.ML
src/ZF/ex/PropLog.thy
src/ZF/upair.ML
--- a/src/ZF/AC/WO1_WO6.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/AC/WO1_WO6.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -1,4 +1,4 @@
-(*  Title:      ZF/AC/WO1-WO6.ML
+(*  Title:      ZF/AC/WO1_WO6.ML
     ID:         $Id$
     Author:     Krzysztof Grabczewski
 
--- a/src/ZF/AC/WO2_AC16.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/AC/WO2_AC16.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -544,8 +544,7 @@
 by (resolve_tac [bij_is_fun RS apply_type] 1 THEN (assume_tac 1));
 by (eresolve_tac [Least_le RS lt_trans2 RS ltD] 1 
         THEN REPEAT (ares_tac [lt_Ord, succ_leI] 1));
-(*SLOW!  5 secs?*)
-by (eresolve_tac [lt_Ord RSN (2, LeastI)] 1 THEN (assume_tac 1));
+by (rtac (lt_Ord RSN (2, LeastI)) 1 THEN REPEAT (assume_tac 1));
 qed "main_induct";
 
 (* ********************************************************************** *)
@@ -581,7 +580,8 @@
 by (rtac ex1I 1);
 by (fast_tac (claset() addSIs [OUN_I]) 1);
 by (REPEAT (eresolve_tac [conjE, OUN_E] 1));
-by (eresolve_tac [lt_Ord RSN (2, lt_Ord RS Ord_linear_le)] 1 THEN (assume_tac 1));
+by (eresolve_tac [lt_Ord RSN (2, lt_Ord RS Ord_linear_le)] 1 
+    THEN assume_tac 1);
 by (dresolve_tac [prem4 RS subsetD] 2 THEN (assume_tac 2));
 (** LEVEL 20 **)
 by (fast_tac FOL_cs 2);
--- a/src/ZF/AC/WO6_WO1.thy	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/AC/WO6_WO1.thy	Thu Jan 07 10:56:05 1999 +0100
@@ -31,19 +31,20 @@
                                    domain(uu(f,b,g,d)) lepoll m));      
                d = LEAST d. domain(uu(f,b,g,d)) ~= 0 &                  
                            domain(uu(f,b,g,d)) lepoll m         
-           in  if(f`b ~= 0, domain(uu(f,b,g,d)), 0)"
+           in  if f`b ~= 0 then domain(uu(f,b,g,d)) else 0"
 
   ww1_def "ww1(f,m,b) == f`b - vv1(f,m,b)"
 
-  gg1_def "gg1(f,a,m) == lam b:a++a. if (b<a, vv1(f,m,b), ww1(f,m,b--a))"
+  gg1_def "gg1(f,a,m) == lam b:a++a. if b<a then vv1(f,m,b) else ww1(f,m,b--a)"
   
   (*Definitions for case 2*)
 
   vv2_def "vv2(f,b,g,s) ==   
-           if(f`g ~= 0, {uu(f, b, g, LEAST d. uu(f,b,g,d) ~= 0)`s}, 0)"
+           if f`g ~= 0 then {uu(f, b, g, LEAST d. uu(f,b,g,d) ~= 0)`s} else 0"
 
   ww2_def "ww2(f,b,g,s) == f`g - vv2(f,b,g,s)"
 
-  gg2_def "gg2(f,a,b,s) == lam g:a++a. if (g<a, vv2(f,b,g,s), ww2(f,b,g--a,s))"
+  gg2_def "gg2(f,a,b,s) ==
+	      lam g:a++a. if g<a then vv2(f,b,g,s) else ww2(f,b,g--a,s)"
   
 end
--- a/src/ZF/AC/recfunAC16.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/AC/recfunAC16.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -5,8 +5,6 @@
 Properties of the recursive definition used in the proof of WO2 ==> AC16
 *)
 
-open recfunAC16;
-
 (* ********************************************************************** *)
 (* Basic properties of recfunAC16                                         *)
 (* ********************************************************************** *)
@@ -15,11 +13,13 @@
 by (rtac transrec2_0 1);
 qed "recfunAC16_0";
 
-Goalw [recfunAC16_def] "recfunAC16(f,fa,succ(i),a) =  \
-\       if (EX y:recfunAC16(f,fa,i,a). fa ` i <= y, recfunAC16(f,fa,i,a), \
-\       recfunAC16(f,fa,i,a) Un {f ` (LEAST j. fa ` i <= f ` j &  \
-\       (ALL b<a. (fa`b <= f`j  \
-\       --> (ALL t:recfunAC16(f,fa,i,a). ~ fa`b <= t))))})";
+Goalw [recfunAC16_def]
+     "recfunAC16(f,fa,succ(i),a) =  \
+\     (if (EX y:recfunAC16(f,fa,i,a). fa ` i <= y) then recfunAC16(f,fa,i,a) \
+\      else recfunAC16(f,fa,i,a) Un \
+\           {f ` (LEAST j. fa ` i <= f ` j &  \
+\            (ALL b<a. (fa`b <= f`j  \
+\             --> (ALL t:recfunAC16(f,fa,i,a). ~ fa`b <= t))))})";
 by (rtac transrec2_succ 1);
 qed "recfunAC16_succ";
 
--- a/src/ZF/Arith.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Arith.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -396,10 +396,11 @@
                          div_termination RS ltD, add_diff_inverse]) 1);
 qed "mod_div_equality";
 
-(*** Further facts about mod (mainly for mutilated checkerboard ***)
+
+(*** Further facts about mod (mainly for mutilated chess board) ***)
 
-Goal "[| 0<n;  m:nat;  n:nat |] ==> \
-\           succ(m) mod n = if(succ(m mod n) = n, 0, succ(m mod n))";
+Goal "[| 0<n;  m:nat;  n:nat |] \
+\     ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))";
 by (etac complete_induct 1);
 by (excluded_middle_tac "succ(x)<n" 1);
 (* case succ(x) < n *)
@@ -427,7 +428,7 @@
 qed "mod_less_divisor";
 
 
-Goal "[| k: nat; b<2 |] ==> k mod 2 = b | k mod 2 = if(b=1,0,1)";
+Goal "[| k: nat; b<2 |] ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)";
 by (subgoal_tac "k mod 2: 2" 1);
 by (asm_simp_tac (simpset() addsimps [mod_less_divisor RS ltD]) 2);
 by (dtac ltD 1);
--- a/src/ZF/Cardinal.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Cardinal.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -157,7 +157,7 @@
   "[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)";
 by (safe_tac (claset_of ZF.thy));
 by (swap_res_tac [exI] 1);
-by (res_inst_tac [("a", "lam z:A. if(f`z=m, y, f`z)")] CollectI 1);
+by (res_inst_tac [("a", "lam z:A. if f`z=m then y else f`z")] CollectI 1);
 by (best_tac (claset() addSIs [if_type RS lam_type]
                        addEs [apply_funtype RS succE]) 1);
 (*Proving it's injective*)
@@ -429,7 +429,7 @@
 Goalw [lepoll_def, inj_def]
  "[| cons(u,A) lepoll cons(v,B);  u~:A;  v~:B |] ==> A lepoll B";
 by Safe_tac;
-by (res_inst_tac [("x", "lam x:A. if(f`x=v, f`u, f`x)")] exI 1);
+by (res_inst_tac [("x", "lam x:A. if f`x=v then f`u else f`x")] exI 1);
 by (rtac CollectI 1);
 (*Proving it's in the function space A->B*)
 by (rtac (if_type RS lam_type) 1);
@@ -561,8 +561,8 @@
 Goalw [lepoll_def]
     "[| A lepoll B;  b ~: B |] ==> cons(a,A) lepoll cons(b,B)";
 by Safe_tac;
-by (res_inst_tac [("x", "lam y: cons(a,A).if(y=a, b, f`y)")] exI 1);
-by (res_inst_tac [("d","%z. if(z:B, converse(f)`z, a)")] 
+by (res_inst_tac [("x", "lam y: cons(a,A). if y=a then b else f`y")] exI 1);
+by (res_inst_tac [("d","%z. if z:B then converse(f)`z else a")] 
     lam_injective 1);
 by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_type, cons_iff]
                         setloop etac consE') 1);
@@ -614,8 +614,8 @@
 Goalw [eqpoll_def]
     "[| f: inj(A,B);  A Int B = 0 |] ==> A Un (B - range(f)) eqpoll B";
 by (rtac exI 1);
-by (res_inst_tac [("c", "%x. if(x:A, f`x, x)"),
-                  ("d", "%y. if(y: range(f), converse(f)`y, y)")] 
+by (res_inst_tac [("c", "%x. if x:A then f`x else x"),
+                  ("d", "%y. if y: range(f) then converse(f)`y else y")] 
     lam_bijective 1);
 by (blast_tac (claset() addSIs [if_type, inj_is_fun RS apply_type]) 1);
 by (asm_simp_tac 
@@ -662,11 +662,11 @@
 qed "lepoll_1_is_sing";
 
 Goalw [lepoll_def] "A Un B lepoll A+B";
-by (res_inst_tac [("x","lam x: A Un B. if (x:A,Inl(x),Inr(x))")] exI 1);
+by (res_inst_tac [("x",
+		   "lam x: A Un B. if x:A then Inl(x) else Inr(x)")] exI 1);
 by (res_inst_tac [("d","%z. snd(z)")] lam_injective 1);
-by (split_tac [split_if] 1);
-by (blast_tac (claset() addSIs [InlI, InrI]) 1);
-by (asm_full_simp_tac (simpset() addsimps [Inl_def, Inr_def]) 1);
+by (asm_full_simp_tac (simpset() addsimps [Inl_def, Inr_def]) 2);
+by Auto_tac;
 qed "Un_lepoll_sum";
 
 Goal "[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)";
@@ -676,7 +676,7 @@
 
 (*Krzysztof Grabczewski*)
 Goalw [eqpoll_def] "A Int B = 0 ==> A Un B eqpoll A + B";
-by (res_inst_tac [("x","lam a:A Un B. if(a:A,Inl(a),Inr(a))")] exI 1);
+by (res_inst_tac [("x","lam a:A Un B. if a:A then Inl(a) else Inr(a)")] exI 1);
 by (res_inst_tac [("d","%z. case(%x. x, %x. x, z)")] lam_bijective 1);
 by Auto_tac;
 qed "disj_Un_eqpoll_sum";
--- a/src/ZF/CardinalArith.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/CardinalArith.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -102,8 +102,8 @@
 
 Goalw [eqpoll_def] "succ(A)+B eqpoll succ(A+B)";
 by (rtac exI 1);
-by (res_inst_tac [("c", "%z. if(z=Inl(A),A+B,z)"), 
-                  ("d", "%z. if(z=A+B,Inl(A),z)")] 
+by (res_inst_tac [("c", "%z. if z=Inl(A) then A+B else z"), 
+                  ("d", "%z. if z=A+B then Inl(A) else z")] 
     lam_bijective 1);
 by (ALLGOALS
     (asm_simp_tac (simpset() addsimps [succI2, mem_imp_not_eq]
@@ -268,7 +268,7 @@
 
 Goalw [eqpoll_def] "succ(A)*B eqpoll B + A*B";
 by (rtac exI 1);
-by (res_inst_tac [("c", "%<x,y>. if(x=A, Inl(y), Inr(<x,y>))"), 
+by (res_inst_tac [("c", "%<x,y>. if x=A then Inl(y) else Inr(<x,y>)"), 
                   ("d", "case(%y. <A,y>, %z. z)")] 
     lam_bijective 1);
 by Safe_tac;
@@ -315,17 +315,18 @@
 (*** Infinite Cardinals are Limit Ordinals ***)
 
 (*This proof is modelled upon one assuming nat<=A, with injection
-  lam z:cons(u,A). if(z=u, 0, if(z : nat, succ(z), z))  and inverse
-  %y. if(y:nat, nat_case(u,%z.z,y), y).  If f: inj(nat,A) then
-  range(f) behaves like the natural numbers.*)
-Goalw [lepoll_def]
-    "nat lepoll A ==> cons(u,A) lepoll A";
+  lam z:cons(u,A). if z=u then 0 else if z : nat then succ(z) else z 
+  and inverse %y. if y:nat then nat_case(u, %z. z, y) else y.  \
+  If f: inj(nat,A) then range(f) behaves like the natural numbers.*)
+Goalw [lepoll_def] "nat lepoll A ==> cons(u,A) lepoll A";
 by (etac exE 1);
 by (res_inst_tac [("x",
-    "lam z:cons(u,A). if(z=u, f`0,      \
-\                        if(z: range(f), f`succ(converse(f)`z), z))")] exI 1);
-by (res_inst_tac [("d", "%y. if(y: range(f),    \
-\                               nat_case(u, %z. f`z, converse(f)`y), y)")] 
+    "lam z:cons(u,A). if z=u then f`0      \
+\                     else if z: range(f) then f`succ(converse(f)`z)  \
+\                     else z")] exI 1);
+by (res_inst_tac [("d", "%y. if y: range(f)     \
+\                            then nat_case(u, %z. f`z, converse(f)`y) \
+\                            else y")] 
     lam_injective 1);
 by (fast_tac (claset() addSIs [if_type, apply_type]
                        addIs  [inj_is_fun, inj_converse_fun]) 1);
--- a/src/ZF/Cardinal_AC.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Cardinal_AC.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -162,9 +162,8 @@
 qed "lt_subset_trans";
 
 (*Work backwards along the injection from W into K, given that W~=0.*)
-goal Perm.thy 
-    "!!A. [| f: inj(A,B);  a:A |] ==>           \
-\         (UN x:A. C(x)) <= (UN y:B. C(if(y: range(f), converse(f)`y, a)))";
+Goal "[| f: inj(A,B);  a:A |] ==>           \
+\     (UN x:A. C(x)) <= (UN y:B. C(if y: range(f) then converse(f)`y else a))";
 by (rtac UN_least 1);
 by (res_inst_tac [("x1", "f`x")] (UN_upper RSN (2,subset_trans)) 1);
 by (eresolve_tac [inj_is_fun RS apply_type] 2 THEN assume_tac 2);
--- a/src/ZF/Coind/Map.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Coind/Map.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -33,7 +33,7 @@
 (* Lemmas                                                       *)
 (* ############################################################ *)
 
-Goal "Sigma(A,B)``{a} = if (a:A, B(a), 0)";
+Goal "Sigma(A,B)``{a} = (if a:A then B(a) else 0)";
 by Auto_tac;
 qed "qbeta_if";
 
@@ -194,7 +194,7 @@
 (** Application **)
 
 Goalw [map_app_def,map_owr_def] 
-  "map_app(map_owr(f,a,b),c) = if (c=a, b, map_app(f,c))";
+  "map_app(map_owr(f,a,b),c) = (if c=a then b else map_app(f,c))";
 by (asm_simp_tac (simpset() addsimps [qbeta_if]) 1);
 by (Fast_tac 1);
 qed "map_app_owr";
--- a/src/ZF/Coind/Map.thy	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Coind/Map.thy	Thu Jan 07 10:56:05 1999 +0100
@@ -21,7 +21,8 @@
   map_app :: [i,i]=>i
 defs
   map_emp_def "map_emp == 0"
-  map_owr_def "map_owr(m,a,b) == SUM x:{a} Un domain(m).if(x=a,b,m``{x})"
+  map_owr_def "map_owr(m,a,b) ==
+	         SUM x:{a} Un domain(m). if x=a then b else m``{x}"
   map_app_def "map_app(m,a) == m``{a}"
   
 end
--- a/src/ZF/Coind/Types.thy	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Coind/Types.thy	Thu Jan 07 10:56:05 1999 +0100
@@ -33,7 +33,7 @@
 
 primrec (*lookup up identifiers in the type environment*)
   "te_app (te_emp,x) = 0"
-  "te_app (te_owr(te,y,t),x) = if(x=y, t, te_app(te,x))"
+  "te_app (te_owr(te,y,t),x) = (if x=y then t else te_app(te,x))"
 
 end
 
--- a/src/ZF/Coind/Values.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Coind/Values.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -92,7 +92,8 @@
 by (rtac Un_commute 1);
 qed "ve_dom_owr";
 
-Goal "ve:ValEnv ==> ve_app(ve_owr(ve,y,v),x) = if(x=y, v, ve_app(ve,x))"; 
+Goal "ve:ValEnv \
+\     ==> ve_app(ve_owr(ve,y,v),x) = (if x=y then v else ve_app(ve,x))"; 
 by (etac ValEnvE 1);
 by (asm_simp_tac (simpset() addsimps [map_app_owr]) 1);
 qed "ve_app_owr";
--- a/src/ZF/OrderArith.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/OrderArith.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -132,7 +132,7 @@
      ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
 Goal "A Int B = 0 ==>     \
 \           (lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)";
-by (res_inst_tac [("d", "%z. if(z:A, Inl(z), Inr(z))")] 
+by (res_inst_tac [("d", "%z. if z:A then Inl(z) else Inr(z)")] 
     lam_bijective 1);
 by (blast_tac (claset() addSIs [if_type]) 2);
 by (DEPTH_SOLVE_1 (eresolve_tac [case_type, UnI1, UnI2] 1));
--- a/src/ZF/Perm.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Perm.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -463,8 +463,8 @@
 
 (*Theorem by KG, proof by LCP*)
 Goal "[| f: inj(A,B);  g: inj(C,D);  B Int D = 0 |] \
-\     ==> (lam a: A Un C. if(a:A, f`a, g`a)) : inj(A Un C, B Un D)";
-by (res_inst_tac [("d","%z. if(z:B, converse(f)`z, converse(g)`z)")]
+\     ==> (lam a: A Un C. if a:A then f`a else g`a) : inj(A Un C, B Un D)";
+by (res_inst_tac [("d","%z. if z:B then converse(f)`z else converse(g)`z")]
         lam_injective 1);
 by (ALLGOALS 
     (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_type, left_inverse] 
--- a/src/ZF/Resid/Substitution.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Resid/Substitution.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -10,25 +10,25 @@
 (* ------------------------------------------------------------------------- *)
 
 goal Arith.thy
-    "!!m.[| p < n; n:nat|]==> n~=p";
+    "!!m.[| p < n; n:nat|] ==> n~=p";
 by (Fast_tac 1);
 qed "gt_not_eq";
 
 val succ_pred = prove_goal Arith.thy 
-    "!!i.[|j:nat; i:nat|]==> i < j --> succ(j #- 1) = j"
+    "!!i.[|j:nat; i:nat|] ==> i < j --> succ(j #- 1) = j"
  (fn prems =>[(etac nat_induct 1),
               (Fast_tac 1),
               (Asm_simp_tac 1)]);
 
 goal Arith.thy 
-    "!!i.[|succ(x)<n; n:nat; x:nat|]==> x < n #- 1 ";
+    "!!i.[|succ(x)<n; n:nat; x:nat|] ==> x < n #- 1 ";
 by (rtac succ_leE 1);
 by (forward_tac [nat_into_Ord RS le_refl RS lt_trans] 1 THEN assume_tac 1);
 by (asm_simp_tac (simpset() addsimps [succ_pred]) 1);
 qed "lt_pred";
 
 goal Arith.thy 
-    "!!i.[|n < succ(x); p<n; p:nat; n:nat; x:nat|]==> n #- 1 < x ";
+    "!!i.[|n < succ(x); p<n; p:nat; n:nat; x:nat|] ==> n #- 1 < x ";
 by (rtac succ_leE 1);
 by (asm_simp_tac (simpset() addsimps [succ_pred]) 1);
 qed "gt_pred";
@@ -40,24 +40,25 @@
 (* ------------------------------------------------------------------------- *)
 (*     lift_rec equality rules                                               *)
 (* ------------------------------------------------------------------------- *)
-Goal "[|n:nat; i:nat|]==> lift_rec(Var(i),n) =if(i<n,Var(i),Var(succ(i)))";
+Goal "[|n:nat; i:nat|] \
+\     ==> lift_rec(Var(i),n) = (if i<n then Var(i) else Var(succ(i)))";
 by (asm_simp_tac (simpset() addsimps [lift_rec_def]) 1);
 qed "lift_rec_Var";
 
-Goal "[|n:nat; i:nat; k:nat; k le i|]==> lift_rec(Var(i),k) = Var(succ(i))";
+Goal "[|n:nat; i:nat; k:nat; k le i|] ==> lift_rec(Var(i),k) = Var(succ(i))";
 by (asm_simp_tac (simpset() addsimps [lift_rec_def]) 1);
 qed "lift_rec_le";
 
-Goal "[|i:nat; k:nat; i<k |]==> lift_rec(Var(i),k) = Var(i)";
+Goal "[|i:nat; k:nat; i<k |] ==> lift_rec(Var(i),k) = Var(i)";
 by (asm_simp_tac (simpset() addsimps [lift_rec_def]) 1);
 qed "lift_rec_gt";
 
-Goal "[|n:nat; k:nat|]==>   \
+Goal "[|n:nat; k:nat|] ==>   \
 \        lift_rec(Fun(t),k) = Fun(lift_rec(t,succ(k)))";
 by (asm_simp_tac (simpset() addsimps [lift_rec_def]) 1);
 qed "lift_rec_Fun";
 
-Goal "[|n:nat; k:nat|]==>   \
+Goal "[|n:nat; k:nat|] ==>   \
 \        lift_rec(App(b,f,a),k) = App(b,lift_rec(f,k),lift_rec(a,k))";
 by (asm_simp_tac (simpset() addsimps [lift_rec_def]) 1);
 qed "lift_rec_App";
@@ -67,31 +68,32 @@
 (*    substitution quality rules                                             *)
 (* ------------------------------------------------------------------------- *)
 
-Goal "[|i:nat; k:nat; u:redexes|]==>  \
-\     subst_rec(u,Var(i),k) = if(k<i,Var(i #- 1),if(k=i,u,Var(i)))";
+Goal "[|i:nat; k:nat; u:redexes|]  \
+\     ==> subst_rec(u,Var(i),k) =  \
+\         (if k<i then Var(i #- 1) else if k=i then u else Var(i))";
 by (asm_simp_tac (simpset() addsimps [subst_rec_def, gt_not_eq, leI]) 1);
 qed "subst_Var";
 
-Goal "[|n:nat; u:redexes|]==> subst_rec(u,Var(n),n) = u";
+Goal "[|n:nat; u:redexes|] ==> subst_rec(u,Var(n),n) = u";
 by (asm_simp_tac (simpset() addsimps [subst_rec_def]) 1);
 qed "subst_eq";
 
-Goal "[|n:nat; u:redexes; p:nat; p<n|]==>  \
+Goal "[|n:nat; u:redexes; p:nat; p<n|] ==>  \
 \     subst_rec(u,Var(n),p) = Var(n #- 1)";
 by (asm_simp_tac (simpset() addsimps [subst_rec_def]) 1);
 qed "subst_gt";
 
-Goal "[|n:nat; u:redexes; p:nat; n<p|]==>  \
+Goal "[|n:nat; u:redexes; p:nat; n<p|] ==>  \
 \     subst_rec(u,Var(n),p) = Var(n)";
 by (asm_simp_tac (simpset() addsimps [subst_rec_def, gt_not_eq, leI]) 1);
 qed "subst_lt";
 
-Goal "[|p:nat; u:redexes|]==>  \
+Goal "[|p:nat; u:redexes|] ==>  \
 \     subst_rec(u,Fun(t),p) = Fun(subst_rec(lift(u),t,succ(p))) ";
 by (asm_simp_tac (simpset() addsimps [subst_rec_def]) 1);
 qed "subst_Fun";
 
-Goal "[|p:nat; u:redexes|]==>  \
+Goal "[|p:nat; u:redexes|] ==>  \
 \     subst_rec(u,App(b,f,a),p) = App(b,subst_rec(u,f,p),subst_rec(u,a,p))";
 by (asm_simp_tac (simpset() addsimps [subst_rec_def]) 1);
 qed "subst_App";
@@ -133,7 +135,7 @@
 by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [lift_rec_Var, leI])));
 qed "lift_lift_rec";
 
-Goal "[|u:redexes; n:nat|]==>  \
+Goal "[|u:redexes; n:nat|] ==>  \
 \      lift_rec(lift(u),succ(n)) = lift(lift_rec(u,n))";
 by (asm_simp_tac (simpset() addsimps [lift_lift_rec]) 1);
 qed "lift_lift";
@@ -158,7 +160,7 @@
 by (asm_simp_tac (simpset() addsimps [leI]) 1);
 qed "lift_rec_subst_rec";
 
-Goal "[|v:redexes; u:redexes; n:nat|]==>  \
+Goal "[|v:redexes; u:redexes; n:nat|] ==>  \
 \        lift_rec(u/v,n) = lift_rec(u,n)/lift_rec(v,succ(n))";
 by (asm_simp_tac (simpset() addsimps [lift_rec_subst_rec]) 1);
 qed "lift_subst";
@@ -221,7 +223,7 @@
 qed "subst_rec_subst_rec";
 
 
-Goal "[|v:redexes; u:redexes; w:redexes; n:nat|]==>  \
+Goal "[|v:redexes; u:redexes; w:redexes; n:nat|] ==>  \
 \       subst_rec(w,u,n)/subst_rec(lift(w),v,succ(n)) = subst_rec(w,u/v,n)";
 by (asm_simp_tac (simpset() addsimps [subst_rec_subst_rec]) 1);
 qed "substitution";
@@ -232,7 +234,7 @@
 (* ------------------------------------------------------------------------- *)
 
 
-Goal "[|n:nat; u ~ v|]==> ALL m:nat. lift_rec(u,m) ~ lift_rec(v,m)";
+Goal "[|n:nat; u ~ v|] ==> ALL m:nat. lift_rec(u,m) ~ lift_rec(v,m)";
 by (etac Scomp.induct 1);
 by (ALLGOALS(asm_simp_tac (simpset() addsimps [comp_refl])));
 qed "lift_rec_preserve_comp";
--- a/src/ZF/Resid/Substitution.thy	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Resid/Substitution.thy	Thu Jan 07 10:56:05 1999 +0100
@@ -17,7 +17,7 @@
   lift_rec      :: [i,i]=> i
     "lift_rec(r,k) == lift_aux(r)`k"
 
-  subst_rec     :: [i,i,i]=> i
+  subst_rec     :: [i,i,i]=> i	(**NOTE THE ARGUMENT ORDER BELOW**)
     "subst_rec(u,r,k) == subst_aux(r)`u`k"
 
 translations
@@ -29,7 +29,7 @@
     in the recursive calls ***)
 
 primrec
-  "lift_aux(Var(i)) = (lam k:nat. if(i<k, Var(i), Var(succ(i))))"
+  "lift_aux(Var(i)) = (lam k:nat. if i<k then Var(i) else Var(succ(i)))"
 
   "lift_aux(Fun(t)) = (lam k:nat. Fun(lift_aux(t) ` succ(k)))"
 
@@ -38,17 +38,9 @@
 
   
 primrec
-(* subst_aux(u,Var(i),k)     = if k<i then Var(i-1)
-                               else if k=i then u
-                                    else Var(i)
-   subst_aux(u,Fun(t),k)     = Fun(subst_aux(lift(u),t,succ(k)))
-   subst_aux(u,App(b,f,a),k) = App(b,subst_aux(u,f,p),subst_aux(u,a,p))
-
-*)
-
   "subst_aux(Var(i)) =
-     (lam r:redexes. lam k:nat. if(k<i, Var(i #- 1),   
-				   if(k=i, r, Var(i))))"
+     (lam r:redexes. lam k:nat. if k<i then Var(i #- 1) 
+				else if k=i then r else Var(i))"
   "subst_aux(Fun(t)) =
      (lam r:redexes. lam k:nat. Fun(subst_rec(lift(r), t, succ(k))))"
 
--- a/src/ZF/Update.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/Update.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -8,7 +8,7 @@
 
 open Update;
 
-Goal "f(x:=y) ` z = if(z=x, y, f`z)";
+Goal "f(x:=y) ` z = (if z=x then y else f`z)";
 by (simp_tac (simpset() addsimps [update_def]) 1);
 by (case_tac "z : domain(f)" 1);
 by (Asm_simp_tac 1);
--- a/src/ZF/ZF.thy	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/ZF.thy	Thu Jan 07 10:56:05 1999 +0100
@@ -40,8 +40,16 @@
   (* Descriptions *)
 
   The         :: (i => o) => i      (binder "THE " 10)
-  if          :: [o, i, i] => i
+  If          :: [o, i, i] => i     ("(if (_)/ then (_)/ else (_))" [10] 10)
+
+syntax
+  old_if      :: [o, i, i] => i   ("if '(_,_,_')")
 
+translations
+  "if(P,a,b)" => "If(P,a,b)"
+
+
+consts
   (* Finite Sets *)
 
   Upair, cons :: [i, i] => i
--- a/src/ZF/equalities.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/equalities.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -602,7 +602,8 @@
 by (Blast_tac 1);
 qed "Collect_Diff";
 
-Goal "{x:cons(a,B). P(x)} = if(P(a), cons(a, {x:B. P(x)}), {x:B. P(x)})";
+Goal "{x:cons(a,B). P(x)} = \
+\     (if P(a) then cons(a, {x:B. P(x)}) else {x:B. P(x)})";
 by (simp_tac (simpset() addsplits [split_if]) 1);
 by (Blast_tac 1);
 qed "Collect_cons";
--- a/src/ZF/ex/Mutil.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/ex/Mutil.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -32,7 +32,7 @@
 
 Goalw [evnodd_def]
     "evnodd(cons(<i,j>,C), b) = \
-\    if((i#+j) mod 2 = b, cons(<i,j>, evnodd(C,b)), evnodd(C,b))";
+\    (if (i#+j) mod 2 = b then cons(<i,j>, evnodd(C,b)) else evnodd(C,b))";
 by (asm_simp_tac (simpset() addsimps [evnodd_def, Collect_cons]) 1);
 qed "evnodd_cons";
 
--- a/src/ZF/ex/PropLog.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/ex/PropLog.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -126,7 +126,7 @@
 qed "Imp_Fls";
 
 (*Typical example of strengthening the induction formula*)
-Goal "p: prop ==> hyps(p,t) |- if(is_true(p,t), p, p=>Fls)";
+Goal "p: prop ==> hyps(p,t) |- (if is_true(p,t) then p else p=>Fls)";
 by (Simp_tac 1);
 by (etac prop.induct 1);
 by (ALLGOALS (asm_simp_tac (simpset() addsimps [thms_I, thms.H])));
--- a/src/ZF/ex/PropLog.thy	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/ex/PropLog.thy	Thu Jan 07 10:56:05 1999 +0100
@@ -56,12 +56,13 @@
 
 primrec (** A finite set of hypotheses from t and the Vars in p **)
   "hyps(Fls, t)    = 0"
-  "hyps(Var(v), t) = if(v:t, {#v}, {#v=>Fls})"
+  "hyps(Var(v), t) = (if v:t then {#v} else {#v=>Fls})"
   "hyps(p=>q, t)   = hyps(p,t) Un hyps(q,t)"
  
 primrec (** Semantics of propositional logic **)
   "is_true_fun(Fls, t)    = 0"
-  "is_true_fun(Var(v), t) = if(v:t, 1, 0)"
-  "is_true_fun(p=>q, t)   = if(is_true_fun(p,t)=1, is_true_fun(q,t), 1)"
+  "is_true_fun(Var(v), t) = (if v:t then 1 else 0)"
+  "is_true_fun(p=>q, t)   = (if is_true_fun(p,t)=1 then is_true_fun(q,t)
+			     else 1)"
 
 end
--- a/src/ZF/upair.ML	Wed Jan 06 15:00:12 1999 +0100
+++ b/src/ZF/upair.ML	Thu Jan 07 10:56:05 1999 +0100
@@ -234,34 +234,35 @@
 
 (*** if -- a conditional expression for formulae ***)
 
-Goalw [if_def] "if(True,a,b) = a";
+Goalw [if_def] "(if True then a else b) = a";
 by (Blast_tac 1);
 qed "if_true";
 
-Goalw [if_def] "if(False,a,b) = b";
+Goalw [if_def] "(if False then a else b) = b";
 by (Blast_tac 1);
 qed "if_false";
 
 (*Never use with case splitting, or if P is known to be true or false*)
 val prems = Goalw [if_def]
-    "[| P<->Q;  Q ==> a=c;  ~Q ==> b=d |] ==> if(P,a,b) = if(Q,c,d)";
+    "[| P<->Q;  Q ==> a=c;  ~Q ==> b=d |] \
+\    ==> (if P then a else b) = (if Q then c else d)";
 by (simp_tac (simpset() addsimps prems addcongs [conj_cong]) 1);
 qed "if_cong";
 
 (*Not needed for rewriting, since P would rewrite to True anyway*)
-Goalw [if_def] "P ==> if(P,a,b) = a";
+Goalw [if_def] "P ==> (if P then a else b) = a";
 by (Blast_tac 1);
 qed "if_P";
 
 (*Not needed for rewriting, since P would rewrite to False anyway*)
-Goalw [if_def] "~P ==> if(P,a,b) = b";
+Goalw [if_def] "~P ==> (if P then a else b) = b";
 by (Blast_tac 1);
 qed "if_not_P";
 
 Addsimps [if_true, if_false];
 
 qed_goal "split_if" thy
-    "P(if(Q,x,y)) <-> ((Q --> P(x)) & (~Q --> P(y)))"
+    "P(if Q then x else y) <-> ((Q --> P(x)) & (~Q --> P(y)))"
  (fn _=> [ (case_tac "Q" 1),
            (Asm_simp_tac 1),
            (Asm_simp_tac 1) ]);
@@ -280,11 +281,11 @@
 		 split_if_mem1, split_if_mem2];
 
 (*Logically equivalent to split_if_mem2*)
-qed_goal "if_iff" thy "a: if(P,x,y) <-> P & a:x | ~P & a:y"
+qed_goal "if_iff" thy "a: (if P then x else y) <-> P & a:x | ~P & a:y"
  (fn _=> [ (simp_tac (simpset() addsplits [split_if]) 1) ]);
 
 qed_goal "if_type" thy
-    "[| P ==> a: A;  ~P ==> b: A |] ==> if(P,a,b): A"
+    "[| P ==> a: A;  ~P ==> b: A |] ==> (if P then a else b): A"
  (fn prems=> [ (simp_tac 
                 (simpset() addsimps prems addsplits [split_if]) 1) ]);