tuned proofs
authorhaftmann
Sat, 30 Jul 2011 08:24:46 +0200
changeset 44008 2e09299ce807
parent 44007 b5e7594061ce
child 44009 9be0f4a6f155
tuned proofs
src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
src/HOL/SetInterval.thy
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Fri Jul 29 19:47:55 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Sat Jul 30 08:24:46 2011 +0200
@@ -397,10 +397,6 @@
 lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s"
 by (metis affine_affine_hull hull_same mem_def)
 
-lemma setsum_restrict_set'': assumes "finite A"
-  shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
-  unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] ..
-
 subsection {* Some explicit formulations (from Lars Schewe). *}
 
 lemma affine: fixes V::"'a::real_vector set"
--- a/src/HOL/SetInterval.thy	Fri Jul 29 19:47:55 2011 +0200
+++ b/src/HOL/SetInterval.thy	Sat Jul 30 08:24:46 2011 +0200
@@ -14,6 +14,7 @@
 
 context ord
 begin
+
 definition
   lessThan    :: "'a => 'a set" ("(1{..<_})") where
   "{..<u} == {x. x < u}"
@@ -1162,12 +1163,18 @@
           (if m <= n then f m - f(n + 1) else 0)"
 by (induct n, auto simp add: algebra_simps not_le le_Suc_eq)
 
-lemmas setsum_restrict_set' = setsum_restrict_set[unfolded Int_def]
+lemma setsum_restrict_set':
+  "finite A \<Longrightarrow> setsum f {x \<in> A. x \<in> B} = (\<Sum>x\<in>A. if x \<in> B then f x else 0)"
+  by (simp add: setsum_restrict_set [symmetric] Int_def)
+
+lemma setsum_restrict_set'':
+  "finite A \<Longrightarrow> setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
+  by (simp add: setsum_restrict_set' [of A f "{x. P x}", simplified mem_Collect_eq])
 
 lemma setsum_setsum_restrict:
-  "finite S \<Longrightarrow> finite T \<Longrightarrow> setsum (\<lambda>x. setsum (\<lambda>y. f x y) {y. y\<in> T \<and> R x y}) S = setsum (\<lambda>y. setsum (\<lambda>x. f x y) {x. x \<in> S \<and> R x y}) T"
-  by (simp add: setsum_restrict_set'[unfolded mem_def] mem_def)
-     (rule setsum_commute)
+  "finite S \<Longrightarrow> finite T \<Longrightarrow>
+    setsum (\<lambda>x. setsum (\<lambda>y. f x y) {y. y \<in> T \<and> R x y}) S = setsum (\<lambda>y. setsum (\<lambda>x. f x y) {x. x \<in> S \<and> R x y}) T"
+  by (simp add: setsum_restrict_set'') (rule setsum_commute)
 
 lemma setsum_image_gen: assumes fS: "finite S"
   shows "setsum g S = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"