--- a/src/HOL/Numeral_Simprocs.thy Sun Oct 30 07:08:33 2011 +0100
+++ b/src/HOL/Numeral_Simprocs.thy Sun Oct 30 09:07:02 2011 +0100
@@ -113,7 +113,9 @@
|"(l::'a::number_ring) - m = n"
|"(l::'a::number_ring) = m - n"
|"(l::'a::number_ring) * m = n"
- |"(l::'a::number_ring) = m * n") =
+ |"(l::'a::number_ring) = m * n"
+ |"- (l::'a::number_ring) = m"
+ |"(l::'a::number_ring) = - m") =
{* fn phi => Numeral_Simprocs.eq_cancel_numerals *}
simproc_setup intless_cancel_numerals
@@ -122,7 +124,9 @@
|"(l::'a::{linordered_idom,number_ring}) - m < n"
|"(l::'a::{linordered_idom,number_ring}) < m - n"
|"(l::'a::{linordered_idom,number_ring}) * m < n"
- |"(l::'a::{linordered_idom,number_ring}) < m * n") =
+ |"(l::'a::{linordered_idom,number_ring}) < m * n"
+ |"- (l::'a::{linordered_idom,number_ring}) < m"
+ |"(l::'a::{linordered_idom,number_ring}) < - m") =
{* fn phi => Numeral_Simprocs.less_cancel_numerals *}
simproc_setup intle_cancel_numerals
@@ -131,7 +135,9 @@
|"(l::'a::{linordered_idom,number_ring}) - m \<le> n"
|"(l::'a::{linordered_idom,number_ring}) \<le> m - n"
|"(l::'a::{linordered_idom,number_ring}) * m \<le> n"
- |"(l::'a::{linordered_idom,number_ring}) \<le> m * n") =
+ |"(l::'a::{linordered_idom,number_ring}) \<le> m * n"
+ |"- (l::'a::{linordered_idom,number_ring}) \<le> m"
+ |"(l::'a::{linordered_idom,number_ring}) \<le> - m") =
{* fn phi => Numeral_Simprocs.le_cancel_numerals *}
simproc_setup ring_eq_cancel_numeral_factor
--- a/src/HOL/Transcendental.thy Sun Oct 30 07:08:33 2011 +0100
+++ b/src/HOL/Transcendental.thy Sun Oct 30 09:07:02 2011 +0100
@@ -1589,10 +1589,7 @@
by simp
lemma m2pi_less_pi: "- (2 * pi) < pi"
-proof -
- have "- (2 * pi) < 0" and "0 < pi" by auto
- from order_less_trans[OF this] show ?thesis .
-qed
+by simp
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
apply (cut_tac x = "pi/2" in sin_cos_squared_add2)
@@ -2351,7 +2348,7 @@
proof -
let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
have nonneg: "0 \<le> ?c"
- by (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
+ by (simp add: cos_ge_zero)
have "0 = cos (pi / 4 + pi / 4)"
by simp
also have "cos (pi / 4 + pi / 4) = ?c\<twosuperior> - ?s\<twosuperior>"