add Product_Cpo.thy
authorhuffman
Wed, 14 Jan 2009 17:12:21 -0800
changeset 29531 2eb29775b0b6
parent 29530 9905b660612b
child 29532 59bee7985149
add Product_Cpo.thy
src/HOLCF/Product_Cpo.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Product_Cpo.thy	Wed Jan 14 17:12:21 2009 -0800
@@ -0,0 +1,203 @@
+(*  Title:      HOLCF/Product_Cpo.thy
+    Author:     Franz Regensburger
+*)
+
+header {* The cpo of cartesian products *}
+
+theory Product_Cpo
+imports Ffun
+begin
+
+defaultsort cpo
+
+subsection {* Type @{typ unit} is a pcpo *}
+
+instantiation unit :: sq_ord
+begin
+
+definition
+  less_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<equiv> True"
+
+instance ..
+end
+
+instance unit :: discrete_cpo
+by intro_classes simp
+
+instance unit :: finite_po ..
+
+instance unit :: pcpo
+by intro_classes simp
+
+
+subsection {* Product type is a partial order *}
+
+instantiation "*" :: (sq_ord, sq_ord) sq_ord
+begin
+
+definition
+  less_cprod_def: "(op \<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)"
+
+instance ..
+end
+
+instance "*" :: (po, po) po
+proof
+  fix x :: "'a \<times> 'b"
+  show "x \<sqsubseteq> x"
+    unfolding less_cprod_def by simp
+next
+  fix x y :: "'a \<times> 'b"
+  assume "x \<sqsubseteq> y" "y \<sqsubseteq> x" thus "x = y"
+    unfolding less_cprod_def Pair_fst_snd_eq
+    by (fast intro: antisym_less)
+next
+  fix x y z :: "'a \<times> 'b"
+  assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z"
+    unfolding less_cprod_def
+    by (fast intro: trans_less)
+qed
+
+subsection {* Monotonicity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
+
+lemma prod_lessI: "\<lbrakk>fst p \<sqsubseteq> fst q; snd p \<sqsubseteq> snd q\<rbrakk> \<Longrightarrow> p \<sqsubseteq> q"
+unfolding less_cprod_def by simp
+
+lemma Pair_less_iff [simp]: "(a, b) \<sqsubseteq> (c, d) = (a \<sqsubseteq> c \<and> b \<sqsubseteq> d)"
+unfolding less_cprod_def by simp
+
+text {* Pair @{text "(_,_)"}  is monotone in both arguments *}
+
+lemma monofun_pair1: "monofun (\<lambda>x. (x, y))"
+by (simp add: monofun_def)
+
+lemma monofun_pair2: "monofun (\<lambda>y. (x, y))"
+by (simp add: monofun_def)
+
+lemma monofun_pair:
+  "\<lbrakk>x1 \<sqsubseteq> x2; y1 \<sqsubseteq> y2\<rbrakk> \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)"
+by simp
+
+text {* @{term fst} and @{term snd} are monotone *}
+
+lemma monofun_fst: "monofun fst"
+by (simp add: monofun_def less_cprod_def)
+
+lemma monofun_snd: "monofun snd"
+by (simp add: monofun_def less_cprod_def)
+
+subsection {* Product type is a cpo *}
+
+lemma is_lub_Pair:
+  "\<lbrakk>range X <<| x; range Y <<| y\<rbrakk> \<Longrightarrow> range (\<lambda>i. (X i, Y i)) <<| (x, y)"
+apply (rule is_lubI [OF ub_rangeI])
+apply (simp add: less_cprod_def is_ub_lub)
+apply (frule ub2ub_monofun [OF monofun_fst])
+apply (drule ub2ub_monofun [OF monofun_snd])
+apply (simp add: less_cprod_def is_lub_lub)
+done
+
+lemma lub_cprod:
+  fixes S :: "nat \<Rightarrow> ('a::cpo \<times> 'b::cpo)"
+  assumes S: "chain S"
+  shows "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
+proof -
+  have "chain (\<lambda>i. fst (S i))"
+    using monofun_fst S by (rule ch2ch_monofun)
+  hence 1: "range (\<lambda>i. fst (S i)) <<| (\<Squnion>i. fst (S i))"
+    by (rule cpo_lubI)
+  have "chain (\<lambda>i. snd (S i))"
+    using monofun_snd S by (rule ch2ch_monofun)
+  hence 2: "range (\<lambda>i. snd (S i)) <<| (\<Squnion>i. snd (S i))"
+    by (rule cpo_lubI)
+  show "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
+    using is_lub_Pair [OF 1 2] by simp
+qed
+
+lemma thelub_cprod:
+  "chain (S::nat \<Rightarrow> 'a::cpo \<times> 'b::cpo)
+    \<Longrightarrow> (\<Squnion>i. S i) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
+by (rule lub_cprod [THEN thelubI])
+
+instance "*" :: (cpo, cpo) cpo
+proof
+  fix S :: "nat \<Rightarrow> ('a \<times> 'b)"
+  assume "chain S"
+  hence "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
+    by (rule lub_cprod)
+  thus "\<exists>x. range S <<| x" ..
+qed
+
+instance "*" :: (finite_po, finite_po) finite_po ..
+
+instance "*" :: (discrete_cpo, discrete_cpo) discrete_cpo
+proof
+  fix x y :: "'a \<times> 'b"
+  show "x \<sqsubseteq> y \<longleftrightarrow> x = y"
+    unfolding less_cprod_def Pair_fst_snd_eq
+    by simp
+qed
+
+subsection {* Product type is pointed *}
+
+lemma minimal_cprod: "(\<bottom>, \<bottom>) \<sqsubseteq> p"
+by (simp add: less_cprod_def)
+
+instance "*" :: (pcpo, pcpo) pcpo
+by intro_classes (fast intro: minimal_cprod)
+
+lemma inst_cprod_pcpo: "\<bottom> = (\<bottom>, \<bottom>)"
+by (rule minimal_cprod [THEN UU_I, symmetric])
+
+
+subsection {* Continuity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
+
+lemma cont_pair1: "cont (\<lambda>x. (x, y))"
+apply (rule contI)
+apply (rule is_lub_Pair)
+apply (erule cpo_lubI)
+apply (rule lub_const)
+done
+
+lemma cont_pair2: "cont (\<lambda>y. (x, y))"
+apply (rule contI)
+apply (rule is_lub_Pair)
+apply (rule lub_const)
+apply (erule cpo_lubI)
+done
+
+lemma contlub_fst: "contlub fst"
+apply (rule contlubI)
+apply (simp add: thelub_cprod)
+done
+
+lemma contlub_snd: "contlub snd"
+apply (rule contlubI)
+apply (simp add: thelub_cprod)
+done
+
+lemma cont_fst: "cont fst"
+apply (rule monocontlub2cont)
+apply (rule monofun_fst)
+apply (rule contlub_fst)
+done
+
+lemma cont_snd: "cont snd"
+apply (rule monocontlub2cont)
+apply (rule monofun_snd)
+apply (rule contlub_snd)
+done
+
+lemma cont2cont_Pair [cont2cont]:
+  assumes f: "cont (\<lambda>x. f x)"
+  assumes g: "cont (\<lambda>x. g x)"
+  shows "cont (\<lambda>x. (f x, g x))"
+apply (rule cont2cont_app2 [OF cont2cont_lambda cont_pair2 g])
+apply (rule cont2cont_app2 [OF cont_const cont_pair1 f])
+done
+
+lemmas cont2cont_fst [cont2cont] = cont2cont_app3 [OF cont_fst]
+
+lemmas cont2cont_snd [cont2cont] = cont2cont_app3 [OF cont_snd]
+
+end