--- a/src/HOL/Decision_Procs/Cooper.thy Thu Jun 18 08:45:26 2009 -0700
+++ b/src/HOL/Decision_Procs/Cooper.thy Thu Jun 18 11:52:37 2009 -0700
@@ -1071,8 +1071,8 @@
"plusinf p = p"
recdef \<delta> "measure size"
- "\<delta> (And p q) = zlcm (\<delta> p) (\<delta> q)"
- "\<delta> (Or p q) = zlcm (\<delta> p) (\<delta> q)"
+ "\<delta> (And p q) = lcm (\<delta> p) (\<delta> q)"
+ "\<delta> (Or p q) = lcm (\<delta> p) (\<delta> q)"
"\<delta> (Dvd i (CN 0 c e)) = i"
"\<delta> (NDvd i (CN 0 c e)) = i"
"\<delta> p = 1"
@@ -1104,20 +1104,20 @@
proof (induct p rule: iszlfm.induct)
case (1 p q)
let ?d = "\<delta> (And p q)"
- from prems zlcm_pos have dp: "?d >0" by simp
+ from prems int_lcm_pos have dp: "?d >0" by simp
have d1: "\<delta> p dvd \<delta> (And p q)" using prems by simp
- hence th: "d\<delta> p ?d" using delta_mono prems(3-4) by(simp del:dvd_zlcm_self1)
+ hence th: "d\<delta> p ?d" using delta_mono prems(3-4) by(simp del:int_lcm_dvd1)
have "\<delta> q dvd \<delta> (And p q)" using prems by simp
- hence th': "d\<delta> q ?d" using delta_mono prems by(simp del:dvd_zlcm_self2)
+ hence th': "d\<delta> q ?d" using delta_mono prems by(simp del:int_lcm_dvd2)
from th th' dp show ?case by simp
next
case (2 p q)
let ?d = "\<delta> (And p q)"
- from prems zlcm_pos have dp: "?d >0" by simp
+ from prems int_lcm_pos have dp: "?d >0" by simp
have "\<delta> p dvd \<delta> (And p q)" using prems by simp
- hence th: "d\<delta> p ?d" using delta_mono prems by(simp del:dvd_zlcm_self1)
+ hence th: "d\<delta> p ?d" using delta_mono prems by(simp del:int_lcm_dvd1)
have "\<delta> q dvd \<delta> (And p q)" using prems by simp
- hence th': "d\<delta> q ?d" using delta_mono prems by(simp del:dvd_zlcm_self2)
+ hence th': "d\<delta> q ?d" using delta_mono prems by(simp del:int_lcm_dvd2)
from th th' dp show ?case by simp
qed simp_all
@@ -1156,8 +1156,8 @@
"d\<beta> p = (\<lambda> k. True)"
recdef \<zeta> "measure size"
- "\<zeta> (And p q) = zlcm (\<zeta> p) (\<zeta> q)"
- "\<zeta> (Or p q) = zlcm (\<zeta> p) (\<zeta> q)"
+ "\<zeta> (And p q) = lcm (\<zeta> p) (\<zeta> q)"
+ "\<zeta> (Or p q) = lcm (\<zeta> p) (\<zeta> q)"
"\<zeta> (Eq (CN 0 c e)) = c"
"\<zeta> (NEq (CN 0 c e)) = c"
"\<zeta> (Lt (CN 0 c e)) = c"
@@ -1406,19 +1406,19 @@
using linp
proof(induct p rule: iszlfm.induct)
case (1 p q)
- from prems have dl1: "\<zeta> p dvd zlcm (\<zeta> p) (\<zeta> q)" by simp
- from prems have dl2: "\<zeta> q dvd zlcm (\<zeta> p) (\<zeta> q)" by simp
- from prems d\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="zlcm (\<zeta> p) (\<zeta> q)"]
- d\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="zlcm (\<zeta> p) (\<zeta> q)"]
- dl1 dl2 show ?case by (auto simp add: zlcm_pos)
+ from prems have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" by simp
+ from prems have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" by simp
+ from prems d\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"]
+ d\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"]
+ dl1 dl2 show ?case by (auto simp add: int_lcm_pos)
next
case (2 p q)
- from prems have dl1: "\<zeta> p dvd zlcm (\<zeta> p) (\<zeta> q)" by simp
- from prems have dl2: "\<zeta> q dvd zlcm (\<zeta> p) (\<zeta> q)" by simp
- from prems d\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="zlcm (\<zeta> p) (\<zeta> q)"]
- d\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="zlcm (\<zeta> p) (\<zeta> q)"]
- dl1 dl2 show ?case by (auto simp add: zlcm_pos)
-qed (auto simp add: zlcm_pos)
+ from prems have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" by simp
+ from prems have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" by simp
+ from prems d\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"]
+ d\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"]
+ dl1 dl2 show ?case by (auto simp add: int_lcm_pos)
+qed (auto simp add: int_lcm_pos)
lemma a\<beta>: assumes linp: "iszlfm p" and d: "d\<beta> p l" and lp: "l > 0"
shows "iszlfm (a\<beta> p l) \<and> d\<beta> (a\<beta> p l) 1 \<and> (Ifm bbs (l*x #bs) (a\<beta> p l) = Ifm bbs (x#bs) p)"