Miscellaneous Isabelle/Isar examples for Higher-Order Logic.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/BasicLogic.thy Fri Apr 16 17:44:29 1999 +0200
@@ -0,0 +1,128 @@
+(* Title: HOL/Isar_examples/BasicLogic.thy
+ ID: $Id$
+ Author: Markus Wenzel, TU Muenchen
+
+Basic propositional and quantifier reasoning.
+*)
+
+theory BasicLogic = Main:;
+
+
+lemma I: "A --> A";
+proof;
+ assume A;
+ show A; .;
+qed;
+
+lemma K: "A --> B --> A";
+proof;
+ assume A;
+ show "B --> A";
+ proof;
+ show A; .;
+ qed;
+qed;
+
+lemma K: "A --> B --> A";
+proof single*;
+ assume A;
+ show A; .;
+qed;
+
+lemma S: "(A --> B --> C) --> (A --> B) --> A --> C";
+proof;
+ assume "A --> B --> C";
+ show "(A --> B) --> A --> C";
+ proof;
+ assume "A --> B";
+ show "A --> C";
+ proof;
+ assume A;
+ show C;
+ proof (rule mp);
+ show "B --> C"; by (rule mp);
+ show B; by (rule mp);
+ qed;
+ qed;
+ qed;
+qed;
+
+
+lemma "A & B --> B & A";
+proof;
+ assume "A & B";
+ show "B & A";
+ proof;
+ show B; by (rule conjunct2);
+ show A; by (rule conjunct1);
+ qed;
+qed;
+
+lemma "A & B --> B & A";
+proof;
+ assume "A & B";
+ then; show "B & A";
+ proof;
+ assume A B;
+ show ??thesis; ..;
+ qed;
+qed;
+
+lemma "A & B --> B & A";
+proof;
+ assume AB: "A & B";
+ from AB; have A: A; ..;
+ from AB; have B: B; ..;
+ from B A; show "B & A"; ..;
+qed;
+
+
+(* propositional proof (from 'Introduction to Isabelle') *)
+
+lemma "P | P --> P";
+proof;
+ assume "P | P";
+ then; show P;
+ proof;
+ assume P;
+ show P; .;
+ show P; .;
+ qed;
+qed;
+
+lemma "P | P --> P";
+proof;
+ assume "P | P";
+ then; show P; ..;
+qed;
+
+
+(* quantifier proof (from 'Introduction to Isabelle') *)
+
+lemma "(EX x. P(f(x))) --> (EX x. P(x))";
+proof;
+ assume "EX x. P(f(x))";
+ then; show "EX x. P(x)";
+ proof (rule exE);
+ fix a;
+ assume "P(f(a))" (is "P(??witness)");
+ show ??thesis; by (rule exI [with P ??witness]);
+ qed;
+qed;
+
+lemma "(EX x. P(f(x))) --> (EX x. P(x))";
+proof;
+ assume "EX x. P(f(x))";
+ then; show "EX x. P(x)";
+ proof;
+ fix a;
+ assume "P(f(a))";
+ show ??thesis; ..;
+ qed;
+qed;
+
+lemma "(EX x. P(f(x))) --> (EX x. P(x))";
+by blast;
+
+
+end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/Cantor.thy Fri Apr 16 17:44:29 1999 +0200
@@ -0,0 +1,13 @@
+(* Title: HOL/Isar_examples/Cantor.thy
+ ID: $Id$
+ Author: Markus Wenzel, TU Muenchen
+
+Cantor's theorem (see also 'Isabelle's Object-Logics').
+*)
+
+theory Cantor = Main:;
+
+theorem cantor: "EX S. S ~: range(f :: 'a => 'a set)";
+by (best elim: equalityCE);
+
+end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/ExprCompiler.thy Fri Apr 16 17:44:29 1999 +0200
@@ -0,0 +1,143 @@
+(* Title: HOL/Isar_examples/ExprCompiler.thy
+ ID: $Id$
+ Author: Markus Wenzel, TU Muenchen
+
+Correctness of a simple expression/stack-machine compiler.
+*)
+
+theory ExprCompiler = Main:;
+
+title
+ "Correctness of a simple expression/stack-machine compiler --- an Isabelle/Isar demonstration"
+ "Markus Wenzel";
+
+
+section "Basics";
+
+text {|
+ First we define a type abbreviation for binary operations over some
+ type @type "'val" of values.
+|};
+
+types
+ 'val binop = "'val => 'val => 'val";
+
+
+section "Machine";
+
+text {|
+ Next we model a simple stack machine, with three instructions.
+|};
+
+datatype ('adr, 'val) instr =
+ Const 'val |
+ Load 'adr |
+ Apply "'val binop";
+
+text {|
+ Execution of a list of stack machine instructions is
+ straight-forward.
+|};
+
+consts
+ exec :: "(('adr, 'val) instr) list => 'val list => ('adr => 'val) => 'val list";
+
+primrec
+ "exec [] stack env = stack"
+ "exec (instr # instrs) stack env =
+ (case instr of
+ Const c => exec instrs (c # stack) env
+ | Load x => exec instrs (env x # stack) env
+ | Apply f => exec instrs (f (hd stack) (hd (tl stack)) # (tl (tl stack))) env)";
+
+constdefs
+ execute :: "(('adr, 'val) instr) list => ('adr => 'val) => 'val"
+ "execute instrs env == hd (exec instrs [] env)";
+
+
+section "Expressions";
+
+text {|
+ We introduce a simple language of expressions: variables ---
+ constants --- binary operations.
+|};
+
+datatype ('adr, 'val) expr =
+ Variable 'adr |
+ Constant 'val |
+ Binop "'val binop" "('adr, 'val) expr" "('adr, 'val) expr";
+
+text {|
+ Evaluation of expressions does not do any unexpected things.
+|};
+
+consts
+ eval :: "('adr, 'val) expr => ('adr => 'val) => 'val";
+
+primrec
+ "eval (Variable x) env = env x"
+ "eval (Constant c) env = c"
+ "eval (Binop f e1 e2) env = f (eval e1 env) (eval e2 env)";
+
+
+section "Compiler";
+
+text {|
+ So we are ready to define the compilation function of expressions to
+ lists of stack machine instructions.
+|};
+
+consts
+ comp :: "('adr, 'val) expr => (('adr, 'val) instr) list";
+
+primrec
+ "comp (Variable x) = [Load x]"
+ "comp (Constant c) = [Const c]"
+ "comp (Binop f e1 e2) = comp e2 @ comp e1 @ [Apply f]";
+
+
+text {|
+ The main result of this developement is the correctness theorem for
+ @term "comp". We first establish some lemmas.
+|};
+
+ML "reset HOL_quantifiers";
+
+lemma exec_append:
+ "ALL stack. exec (xs @ ys) stack env = exec ys (exec xs stack env) env" (is "??P xs");
+proof ("induct" ??P xs type: list);
+ show "??P []"; by simp;
+
+ fix x xs;
+ assume "??P xs";
+ show "??P (x # xs)" (is "??Q x");
+ proof ("induct" ??Q x type: instr);
+ fix val; show "??Q (Const val)"; by brute_force;
+ next;
+ fix adr; show "??Q (Load adr)"; by brute_force;
+ next;
+ fix fun; show "??Q (Apply fun)"; by brute_force;
+ qed;
+qed;
+
+
+lemma exec_comp:
+ "ALL stack. exec (comp e) stack env = eval e env # stack" (is "??P e");
+proof ("induct" ??P e type: expr);
+
+ fix adr; show "??P (Variable adr)"; by brute_force;
+ next;
+ fix val; show "??P (Constant val)"; by brute_force;
+ next;
+ fix fun e1 e2; assume "??P e1" "??P e2"; show "??P (Binop fun e1 e2)";
+ by (brute_force simp add: exec_append);
+qed;
+
+
+text "Main theorem ahead.";
+
+theorem correctness: "execute (comp e) env = eval e env";
+ by (simp add: execute_def exec_comp);
+
+
+end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/Peirce.thy Fri Apr 16 17:44:29 1999 +0200
@@ -0,0 +1,51 @@
+(* Title: HOL/Isar_examples/Peirce.thy
+ ID: $Id$
+ Author: Markus Wenzel, TU Muenchen
+
+Peirce's law: some examples of classical proof.
+*)
+
+theory Peirce = Main:;
+
+lemmas it[elim!] = mp notE; (* FIXME elim!! *)
+
+
+lemma Peirce's_law: "((A --> B) --> A) --> A";
+proof;
+ assume ABA: "(A --> B) --> A";
+ show A;
+ proof (rule classical);
+ assume notA: "~ A";
+
+ have AB: "A --> B";
+ proof;
+ assume A: A;
+ from notA A; show B; ..;
+ qed;
+
+ from ABA AB; show A; ..;
+ qed;
+qed;
+
+
+lemma Peirce's_law: "((A --> B) --> A) --> A";
+proof;
+ assume ABA: "(A --> B) --> A";
+ show A;
+ proof (rule classical);
+
+ assume AB: "A --> B";
+ from ABA AB; show A; ..;
+
+ next;
+ assume notA: "~ A";
+ show "A --> B";
+ proof;
+ assume A: A;
+ from notA A; show B; ..;
+ qed;
+ qed;
+qed;
+
+
+end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/ROOT.ML Fri Apr 16 17:44:29 1999 +0200
@@ -0,0 +1,11 @@
+(* Title: HOL/Isar_examples/ROOT.ML
+ ID: $Id$
+ Author: Markus Wenzel, TU Muenchen
+
+Miscellaneous Isabelle/Isar examples for Higher-Order Logic.
+*)
+
+use_thy "BasicLogic";
+use_thy "Peirce";
+use_thy "Cantor";
+use_thy "ExprCompiler";