merged
authornipkow
Mon, 09 Mar 2009 12:24:19 +0100
changeset 30385 8befa897bebb
parent 30380 50eec112ca1c (diff)
parent 30384 2f24531b2d3e (current diff)
child 30386 3934d42344e0
child 30387 0affb9975547
merged
--- a/src/HOL/IsaMakefile	Mon Mar 09 12:24:01 2009 +0100
+++ b/src/HOL/IsaMakefile	Mon Mar 09 12:24:19 2009 +0100
@@ -836,7 +836,8 @@
   ex/Serbian.thy ex/Sqrt.thy ex/Sqrt_Script.thy ex/Subarray.thy		\
   ex/Sublist.thy ex/Sudoku.thy ex/Tarski.thy ex/Term_Of_Syntax.thy	\
   ex/Termination.thy ex/Unification.thy ex/document/root.bib		\
-  ex/document/root.tex ex/set.thy ex/svc_funcs.ML ex/svc_test.thy
+  ex/document/root.tex ex/set.thy ex/svc_funcs.ML ex/svc_test.thy \
+  ex/Predicate_Compile.thy ex/predicate_compile.ML
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL ex
 
 
--- a/src/HOL/Library/Lattice_Syntax.thy	Mon Mar 09 12:24:01 2009 +0100
+++ b/src/HOL/Library/Lattice_Syntax.thy	Mon Mar 09 12:24:19 2009 +0100
@@ -11,7 +11,9 @@
   inf  (infixl "\<sqinter>" 70) and
   sup  (infixl "\<squnion>" 65) and
   Inf  ("\<Sqinter>_" [900] 900) and
-  Sup  ("\<Squnion>_" [900] 900)
+  Sup  ("\<Squnion>_" [900] 900) and
+  top ("\<top>") and
+  bot ("\<bottom>")
 
 end
 (*>*)
\ No newline at end of file
--- a/src/HOL/Library/normarith.ML	Mon Mar 09 12:24:01 2009 +0100
+++ b/src/HOL/Library/normarith.ML	Mon Mar 09 12:24:19 2009 +0100
@@ -873,7 +873,7 @@
 fun solve (vs,eqs) = case (vs,eqs) of
   ([],[]) => SOME (Intfunc.onefunc (0,Rat.one))
  |(_,eq::oeqs) => 
-   (case vs inter (Intfunc.dom eq) of
+   (case filter (member (op =) vs) (Intfunc.dom eq) of (*FIXME use find_first here*)
      [] => NONE
     | v::_ => 
        if Intfunc.defined eq v 
--- a/src/HOL/Predicate.thy	Mon Mar 09 12:24:01 2009 +0100
+++ b/src/HOL/Predicate.thy	Mon Mar 09 12:24:19 2009 +0100
@@ -470,9 +470,6 @@
 definition if_pred :: "bool \<Rightarrow> unit pred" where
   if_pred_eq: "if_pred b = (if b then single () else \<bottom>)"
 
-definition eq_pred :: "'a \<Rightarrow> 'a \<Rightarrow> unit pred" where
-  eq_pred_eq: "eq_pred a b = if_pred (a = b)"
-
 definition not_pred :: "unit pred \<Rightarrow> unit pred" where
   not_pred_eq: "not_pred P = (if eval P () then \<bottom> else single ())"
 
@@ -482,12 +479,6 @@
 lemma if_predE: "eval (if_pred b) x \<Longrightarrow> (b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P"
   unfolding if_pred_eq by (cases b) (auto elim: botE)
 
-lemma eq_predI: "eval (eq_pred a a) ()"
-  unfolding eq_pred_eq if_pred_eq by (auto intro: singleI)
-
-lemma eq_predE: "eval (eq_pred a b) x \<Longrightarrow> (a = b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P"
-  unfolding eq_pred_eq by (erule if_predE)
-
 lemma not_predI: "\<not> P \<Longrightarrow> eval (not_pred (Pred (\<lambda>u. P))) ()"
   unfolding not_pred_eq eval_pred by (auto intro: singleI)
 
@@ -568,15 +559,24 @@
   "\<bottom> = Seq (\<lambda>u. Empty)"
   unfolding Seq_def by simp
 
+primrec adjunct :: "'a pred \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where
+    "adjunct P Empty = Join P Empty"
+  | "adjunct P (Insert x Q) = Insert x (Q \<squnion> P)"
+  | "adjunct P (Join Q xq) = Join Q (adjunct P xq)"
+
+lemma adjunct_sup:
+  "pred_of_seq (adjunct P xq) = P \<squnion> pred_of_seq xq"
+  by (induct xq) (simp_all add: sup_assoc sup_commute sup_left_commute)
+
 lemma sup_code [code]:
   "Seq f \<squnion> Seq g = Seq (\<lambda>u. case f ()
     of Empty \<Rightarrow> g ()
      | Insert x P \<Rightarrow> Insert x (P \<squnion> Seq g)
-     | Join P xq \<Rightarrow> Join (Seq g) (Join P xq))" (*FIXME order!?*)
+     | Join P xq \<Rightarrow> adjunct (Seq g) (Join P xq))"
 proof (cases "f ()")
   case Empty
   thus ?thesis
-    unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"] sup_bot)
+    unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"]  sup_bot)
 next
   case Insert
   thus ?thesis
@@ -584,10 +584,10 @@
 next
   case Join
   thus ?thesis
-    unfolding Seq_def by (simp add: sup_commute [of "pred_of_seq (g ())"] sup_assoc)
+    unfolding Seq_def
+    by (simp add: adjunct_sup sup_assoc sup_commute sup_left_commute)
 qed
 
-
 declare eq_pred_def [code, code del]
 
 no_notation
@@ -600,7 +600,7 @@
   bind (infixl "\<guillemotright>=" 70)
 
 hide (open) type pred seq
-hide (open) const Pred eval single bind if_pred eq_pred not_pred
-  Empty Insert Join Seq member "apply"
+hide (open) const Pred eval single bind if_pred not_pred
+  Empty Insert Join Seq member "apply" adjunct
 
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Predicate_Compile.thy	Mon Mar 09 12:24:19 2009 +0100
@@ -0,0 +1,21 @@
+theory Predicate_Compile
+imports Complex_Main Lattice_Syntax
+uses "predicate_compile.ML"
+begin
+
+setup {* Predicate_Compile.setup *}
+
+primrec "next" :: "('a Predicate.pred \<Rightarrow> ('a \<times> 'a Predicate.pred) option)
+  \<Rightarrow> 'a Predicate.seq \<Rightarrow> ('a \<times> 'a Predicate.pred) option" where
+    "next yield Predicate.Empty = None"
+  | "next yield (Predicate.Insert x P) = Some (x, P)"
+  | "next yield (Predicate.Join P xq) = (case yield P
+   of None \<Rightarrow> next yield xq | Some (x, Q) \<Rightarrow> Some (x, Predicate.Seq (\<lambda>_. Predicate.Join Q xq)))"
+
+primrec pull :: "('a Predicate.pred \<Rightarrow> ('a \<times> 'a Predicate.pred) option)
+  \<Rightarrow> nat \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a list \<times> 'a Predicate.pred" where
+    "pull yield 0 P = ([], \<bottom>)"
+  | "pull yield (Suc n) P = (case yield P
+      of None \<Rightarrow> ([], \<bottom>) | Some (x, Q) \<Rightarrow> let (xs, R) = pull yield n Q in (x # xs, R))"
+
+end
\ No newline at end of file
--- a/src/HOL/ex/ROOT.ML	Mon Mar 09 12:24:01 2009 +0100
+++ b/src/HOL/ex/ROOT.ML	Mon Mar 09 12:24:19 2009 +0100
@@ -15,7 +15,8 @@
   "Codegenerator",
   "Codegenerator_Pretty",
   "NormalForm",
-  "../NumberTheory/Factorization"
+  "../NumberTheory/Factorization",
+  "Predicate_Compile"
 ];
 
 use_thys [
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/predicate_compile.ML	Mon Mar 09 12:24:19 2009 +0100
@@ -0,0 +1,1346 @@
+(* Author: Lukas Bulwahn
+
+(Prototype of) A compiler from predicates specified by intro/elim rules
+to equations.
+*)
+
+signature PREDICATE_COMPILE =
+sig
+  val create_def_equation': string -> (int list option list * int list) option -> theory -> theory
+  val create_def_equation: string -> theory -> theory
+  val intro_rule: theory -> string -> (int list option list * int list) -> thm
+  val elim_rule: theory -> string -> (int list option list * int list) -> thm
+  val strip_intro_concl : term -> int -> (term * (term list * term list))
+  val code_ind_intros_attrib : attribute
+  val code_ind_cases_attrib : attribute
+  val setup : theory -> theory
+  val print_alternative_rules : theory -> theory
+  val do_proofs: bool ref
+end;
+
+structure Predicate_Compile: PREDICATE_COMPILE =
+struct
+
+structure PredModetab = TableFun(
+  type key = (string * (int list option list * int list))
+  val ord = prod_ord fast_string_ord (prod_ord
+            (list_ord (option_ord (list_ord int_ord))) (list_ord int_ord)))
+
+
+structure IndCodegenData = TheoryDataFun
+(
+  type T = {names : string PredModetab.table,
+            modes : ((int list option list * int list) list) Symtab.table,
+            function_defs : Thm.thm Symtab.table,
+            function_intros : Thm.thm Symtab.table,
+            function_elims : Thm.thm Symtab.table,
+            intro_rules : (Thm.thm list) Symtab.table,
+            elim_rules : Thm.thm Symtab.table,
+            nparams : int Symtab.table
+           };
+      (* names: map from inductive predicate and mode to function name (string).
+         modes: map from inductive predicates to modes
+         function_defs: map from function name to definition
+         function_intros: map from function name to intro rule
+         function_elims: map from function name to elim rule
+         intro_rules: map from inductive predicate to alternative intro rules
+         elim_rules: map from inductive predicate to alternative elimination rule
+         nparams: map from const name to number of parameters (* assuming there exist intro and elimination rules *) 
+       *)
+  val empty = {names = PredModetab.empty,
+               modes = Symtab.empty,
+               function_defs = Symtab.empty,
+               function_intros = Symtab.empty,
+               function_elims = Symtab.empty,
+               intro_rules = Symtab.empty,
+               elim_rules = Symtab.empty,
+               nparams = Symtab.empty};
+  val copy = I;
+  val extend = I;
+  fun merge _ r = {names = PredModetab.merge (op =) (pairself #names r),
+                   modes = Symtab.merge (op =) (pairself #modes r),
+                   function_defs = Symtab.merge Thm.eq_thm (pairself #function_defs r),
+                   function_intros = Symtab.merge Thm.eq_thm (pairself #function_intros r),
+                   function_elims = Symtab.merge Thm.eq_thm (pairself #function_elims r),
+                   intro_rules = Symtab.merge ((forall Thm.eq_thm) o (op ~~)) (pairself #intro_rules r),
+                   elim_rules = Symtab.merge Thm.eq_thm (pairself #elim_rules r),
+                   nparams = Symtab.merge (op =) (pairself #nparams r)};
+);
+
+  fun map_names f thy = IndCodegenData.map
+    (fn x => {names = f (#names x), modes = #modes x, function_defs = #function_defs x,
+            function_intros = #function_intros x, function_elims = #function_elims x,
+            intro_rules = #intro_rules x, elim_rules = #elim_rules x,
+            nparams = #nparams x}) thy
+
+  fun map_modes f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = f (#modes x), function_defs = #function_defs x,
+            function_intros = #function_intros x, function_elims = #function_elims x,
+            intro_rules = #intro_rules x, elim_rules = #elim_rules x,
+            nparams = #nparams x}) thy
+
+  fun map_function_defs f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = #modes x, function_defs = f (#function_defs x),
+            function_intros = #function_intros x, function_elims = #function_elims x,
+            intro_rules = #intro_rules x, elim_rules = #elim_rules x,
+            nparams = #nparams x}) thy 
+  
+  fun map_function_elims f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = #modes x, function_defs = #function_defs x,
+            function_intros = #function_intros x, function_elims = f (#function_elims x),
+            intro_rules = #intro_rules x, elim_rules = #elim_rules x,
+            nparams = #nparams x}) thy
+
+  fun map_function_intros f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = #modes x, function_defs = #function_defs x,
+            function_intros = f (#function_intros x), function_elims = #function_elims x,
+            intro_rules = #intro_rules x, elim_rules = #elim_rules x,
+            nparams = #nparams x}) thy
+
+  fun map_intro_rules f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = #modes x, function_defs = #function_defs x,
+            function_intros = #function_intros x, function_elims = #function_elims x,
+            intro_rules = f (#intro_rules x), elim_rules = #elim_rules x,
+            nparams = #nparams x}) thy 
+  
+  fun map_elim_rules f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = #modes x, function_defs = #function_defs x,
+            function_intros = #function_intros x, function_elims = #function_elims x,
+            intro_rules = #intro_rules x, elim_rules = f (#elim_rules x),
+            nparams = #nparams x}) thy
+
+  fun map_nparams f thy = IndCodegenData.map
+    (fn x => {names = #names x, modes = #modes x, function_defs = #function_defs x,
+            function_intros = #function_intros x, function_elims = #function_elims x,
+            intro_rules = #intro_rules x, elim_rules = #elim_rules x,
+            nparams = f (#nparams x)}) thy
+
+(* Debug stuff and tactics ***********************************************************)
+
+fun tracing s = (if ! Toplevel.debug then Output.tracing s else ());
+fun print_tac s = (if ! Toplevel.debug then Tactical.print_tac s else Seq.single);
+
+fun debug_tac msg = (fn st =>
+     (tracing msg; Seq.single st));
+
+(* removes first subgoal *)
+fun mycheat_tac thy i st =
+  (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) i) st
+
+val (do_proofs : bool ref) = ref true;
+
+(* Lightweight mode analysis **********************************************)
+
+(* Hack for message from old code generator *)
+val message = tracing;
+
+
+(**************************************************************************)
+(* source code from old code generator ************************************)
+
+(**** check if a term contains only constructor functions ****)
+
+fun is_constrt thy =
+  let
+    val cnstrs = flat (maps
+      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
+      (Symtab.dest (DatatypePackage.get_datatypes thy)));
+    fun check t = (case strip_comb t of
+        (Free _, []) => true
+      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
+            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
+          | _ => false)
+      | _ => false)
+  in check end;
+
+(**** check if a type is an equality type (i.e. doesn't contain fun) ****)
+
+fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
+  | is_eqT _ = true;
+
+(**** mode inference ****)
+
+fun string_of_mode (iss, is) = space_implode " -> " (map
+  (fn NONE => "X"
+    | SOME js => enclose "[" "]" (commas (map string_of_int js)))
+       (iss @ [SOME is]));
+
+fun print_modes modes = message ("Inferred modes:\n" ^
+  cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
+    string_of_mode ms)) modes));
+
+fun term_vs tm = fold_aterms (fn Free (x, T) => cons x | _ => I) tm [];
+val terms_vs = distinct (op =) o maps term_vs;
+
+(** collect all Frees in a term (with duplicates!) **)
+fun term_vTs tm =
+  fold_aterms (fn Free xT => cons xT | _ => I) tm [];
+
+fun get_args is ts = let
+  fun get_args' _ _ [] = ([], [])
+    | get_args' is i (t::ts) = (if i mem is then apfst else apsnd) (cons t)
+        (get_args' is (i+1) ts)
+in get_args' is 1 ts end
+
+fun merge xs [] = xs
+  | merge [] ys = ys
+  | merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
+      else y::merge (x::xs) ys;
+
+fun subsets i j = if i <= j then
+       let val is = subsets (i+1) j
+       in merge (map (fn ks => i::ks) is) is end
+     else [[]];
+
+fun cprod ([], ys) = []
+  | cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
+
+fun cprods xss = foldr (map op :: o cprod) [[]] xss;
+
+datatype mode = Mode of (int list option list * int list) * int list * mode option list;
+
+fun modes_of modes t =
+  let
+    val ks = 1 upto length (binder_types (fastype_of t));
+    val default = [Mode (([], ks), ks, [])];
+    fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+        let
+          val (args1, args2) =
+            if length args < length iss then
+              error ("Too few arguments for inductive predicate " ^ name)
+            else chop (length iss) args;
+          val k = length args2;
+          val prfx = 1 upto k
+        in
+          if not (is_prefix op = prfx is) then [] else
+          let val is' = map (fn i => i - k) (List.drop (is, k))
+          in map (fn x => Mode (m, is', x)) (cprods (map
+            (fn (NONE, _) => [NONE]
+              | (SOME js, arg) => map SOME (filter
+                  (fn Mode (_, js', _) => js=js') (modes_of modes arg)))
+                    (iss ~~ args1)))
+          end
+        end)) (AList.lookup op = modes name)
+
+  in (case strip_comb t of
+      (Const (name, _), args) => the_default default (mk_modes name args)
+    | (Var ((name, _), _), args) => the (mk_modes name args)
+    | (Free (name, _), args) => the (mk_modes name args)
+    | _ => default)
+  end
+
+datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term;
+
+fun select_mode_prem thy modes vs ps =
+  find_first (is_some o snd) (ps ~~ map
+    (fn Prem (us, t) => find_first (fn Mode (_, is, _) =>
+          let
+            val (in_ts, out_ts) = get_args is us;
+            val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts;
+            val vTs = maps term_vTs out_ts';
+            val dupTs = map snd (duplicates (op =) vTs) @
+              List.mapPartial (AList.lookup (op =) vTs) vs;
+          in
+            terms_vs (in_ts @ in_ts') subset vs andalso
+            forall (is_eqT o fastype_of) in_ts' andalso
+            term_vs t subset vs andalso
+            forall is_eqT dupTs
+          end)
+            (modes_of modes t handle Option =>
+               error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+      | Negprem (us, t) => find_first (fn Mode (_, is, _) =>
+            length us = length is andalso
+            terms_vs us subset vs andalso
+            term_vs t subset vs)
+            (modes_of modes t handle Option =>
+               error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+      | Sidecond t => if term_vs t subset vs then SOME (Mode (([], []), [], []))
+          else NONE
+      ) ps);
+
+fun check_mode_clause thy param_vs modes (iss, is) (ts, ps) =
+  let
+    val modes' = modes @ List.mapPartial
+      (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+        (param_vs ~~ iss); 
+    fun check_mode_prems vs [] = SOME vs
+      | check_mode_prems vs ps = (case select_mode_prem thy modes' vs ps of
+          NONE => NONE
+        | SOME (x, _) => check_mode_prems
+            (case x of Prem (us, _) => vs union terms_vs us | _ => vs)
+            (filter_out (equal x) ps))
+    val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (get_args is ts));
+    val in_vs = terms_vs in_ts;
+    val concl_vs = terms_vs ts
+  in
+    forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
+    forall (is_eqT o fastype_of) in_ts' andalso
+    (case check_mode_prems (param_vs union in_vs) ps of
+       NONE => false
+     | SOME vs => concl_vs subset vs)
+  end;
+
+fun check_modes_pred thy param_vs preds modes (p, ms) =
+  let val SOME rs = AList.lookup (op =) preds p
+  in (p, List.filter (fn m => case find_index
+    (not o check_mode_clause thy param_vs modes m) rs of
+      ~1 => true
+    | i => (message ("Clause " ^ string_of_int (i+1) ^ " of " ^
+      p ^ " violates mode " ^ string_of_mode m); false)) ms)
+  end;
+
+fun fixp f (x : (string * (int list option list * int list) list) list) =
+  let val y = f x
+  in if x = y then x else fixp f y end;
+
+fun infer_modes thy extra_modes arities param_vs preds = fixp (fn modes =>
+  map (check_modes_pred thy param_vs preds (modes @ extra_modes)) modes)
+    (map (fn (s, (ks, k)) => (s, cprod (cprods (map
+      (fn NONE => [NONE]
+        | SOME k' => map SOME (subsets 1 k')) ks),
+      subsets 1 k))) arities);
+
+
+(*****************************************************************************************)
+(**** end of old source code *************************************************************)
+(*****************************************************************************************)
+(**** term construction ****)
+
+fun mk_eq (x, xs) =
+  let fun mk_eqs _ [] = []
+        | mk_eqs a (b::cs) =
+            HOLogic.mk_eq (Free (a, fastype_of b), b) :: mk_eqs a cs
+  in mk_eqs x xs end;
+
+fun mk_tuple [] = HOLogic.unit
+  | mk_tuple ts = foldr1 HOLogic.mk_prod ts;
+
+fun dest_tuple (Const (@{const_name Product_Type.Unity}, _)) = []
+  | dest_tuple (Const (@{const_name Pair}, _) $ t1 $ t2) = t1 :: (dest_tuple t2)
+  | dest_tuple t = [t]
+
+fun mk_tupleT [] = HOLogic.unitT
+  | mk_tupleT Ts = foldr1 HOLogic.mk_prodT Ts;
+
+fun mk_pred_enumT T = Type ("Predicate.pred", [T])
+
+fun dest_pred_enumT (Type ("Predicate.pred", [T])) = T
+  | dest_pred_enumT T = raise TYPE ("dest_pred_enumT", [T], []);
+
+fun mk_single t =
+  let val T = fastype_of t
+  in Const(@{const_name Predicate.single}, T --> mk_pred_enumT T) $ t end;
+
+fun mk_empty T = Const (@{const_name Orderings.bot}, mk_pred_enumT T);
+
+fun mk_if_predenum cond = Const (@{const_name Predicate.if_pred},
+                          HOLogic.boolT --> mk_pred_enumT HOLogic.unitT) 
+                         $ cond
+
+fun mk_not_pred t = let val T = mk_pred_enumT HOLogic.unitT
+  in Const (@{const_name Predicate.not_pred}, T --> T) $ t end
+
+fun mk_bind (x, f) =
+  let val T as Type ("fun", [_, U]) = fastype_of f
+  in
+    Const (@{const_name Predicate.bind}, fastype_of x --> T --> U) $ x $ f
+  end;
+
+fun mk_Enum f =
+  let val T as Type ("fun", [T', _]) = fastype_of f
+  in
+    Const (@{const_name Predicate.Pred}, T --> mk_pred_enumT T') $ f    
+  end;
+
+fun mk_Eval (f, x) =
+  let val T = fastype_of x
+  in
+    Const (@{const_name Predicate.eval}, mk_pred_enumT T --> T --> HOLogic.boolT) $ f $ x
+  end;
+
+fun mk_Eval' f =
+  let val T = fastype_of f
+  in
+    Const (@{const_name Predicate.eval}, T --> dest_pred_enumT T --> HOLogic.boolT) $ f
+  end; 
+
+val mk_sup = HOLogic.mk_binop @{const_name sup};
+
+(* for simple modes (e.g. parameters) only: better call it param_funT *)
+(* or even better: remove it and only use funT'_of - some modifications to funT'_of necessary *) 
+fun funT_of T NONE = T
+  | funT_of T (SOME mode) = let
+     val Ts = binder_types T;
+     val (Us1, Us2) = get_args mode Ts
+   in Us1 ---> (mk_pred_enumT (mk_tupleT Us2)) end;
+
+fun funT'_of (iss, is) T = let
+    val Ts = binder_types T
+    val (paramTs, argTs) = chop (length iss) Ts
+    val paramTs' = map2 (fn SOME is => funT'_of ([], is) | NONE => I) iss paramTs 
+    val (inargTs, outargTs) = get_args is argTs
+  in
+    (paramTs' @ inargTs) ---> (mk_pred_enumT (mk_tupleT outargTs))
+  end; 
+
+
+fun mk_v (names, vs) s T = (case AList.lookup (op =) vs s of
+      NONE => ((names, (s, [])::vs), Free (s, T))
+    | SOME xs =>
+        let
+          val s' = Name.variant names s;
+          val v = Free (s', T)
+        in
+          ((s'::names, AList.update (op =) (s, v::xs) vs), v)
+        end);
+
+fun distinct_v (nvs, Free (s, T)) = mk_v nvs s T
+  | distinct_v (nvs, t $ u) =
+      let
+        val (nvs', t') = distinct_v (nvs, t);
+        val (nvs'', u') = distinct_v (nvs', u);
+      in (nvs'', t' $ u') end
+  | distinct_v x = x;
+
+fun compile_match thy eqs eqs' out_ts success_t =
+  let 
+    val eqs'' = maps mk_eq eqs @ eqs'
+    val names = fold Term.add_free_names (success_t :: eqs'' @ out_ts) [];
+    val name = Name.variant names "x";
+    val name' = Name.variant (name :: names) "y";
+    val T = mk_tupleT (map fastype_of out_ts);
+    val U = fastype_of success_t;
+    val U' = dest_pred_enumT U;
+    val v = Free (name, T);
+    val v' = Free (name', T);
+  in
+    lambda v (fst (DatatypePackage.make_case
+      (ProofContext.init thy) false [] v
+      [(mk_tuple out_ts,
+        if null eqs'' then success_t
+        else Const (@{const_name HOL.If}, HOLogic.boolT --> U --> U --> U) $
+          foldr1 HOLogic.mk_conj eqs'' $ success_t $
+            mk_empty U'),
+       (v', mk_empty U')]))
+  end;
+
+fun modename thy name mode = let
+    val v = (PredModetab.lookup (#names (IndCodegenData.get thy)) (name, mode))
+  in if (is_some v) then the v
+     else error ("fun modename - definition not found: name: " ^ name ^ " mode: " ^  (makestring mode))
+  end
+
+(* function can be removed *)
+fun mk_funcomp f t =
+  let
+    val names = Term.add_free_names t [];
+    val Ts = binder_types (fastype_of t);
+    val vs = map Free
+      (Name.variant_list names (replicate (length Ts) "x") ~~ Ts)
+  in
+    fold_rev lambda vs (f (list_comb (t, vs)))
+  end;
+
+fun compile_param thy modes (NONE, t) = t
+  | compile_param thy modes (m as SOME (Mode ((iss, is'), is, ms)), t) = let
+    val (f, args) = strip_comb t
+    val (params, args') = chop (length ms) args
+    val params' = map (compile_param thy modes) (ms ~~ params)
+    val f' = case f of
+        Const (name, T) =>
+          if AList.defined op = modes name then
+            Const (modename thy name (iss, is'), funT'_of (iss, is') T)
+          else error "compile param: Not an inductive predicate with correct mode"
+      | Free (name, T) => Free (name, funT_of T (SOME is'))
+    in list_comb (f', params' @ args') end
+  | compile_param _ _ _ = error "compile params"
+
+fun compile_expr thy modes (SOME (Mode (mode, is, ms)), t) =
+      (case strip_comb t of
+         (Const (name, T), params) =>
+           if AList.defined op = modes name then
+             let
+               val (Ts, Us) = get_args is
+                 (curry Library.drop (length ms) (fst (strip_type T)))
+               val params' = map (compile_param thy modes) (ms ~~ params)
+               val mode_id = modename thy name mode
+             in list_comb (Const (mode_id, ((map fastype_of params') @ Ts) --->
+               mk_pred_enumT (mk_tupleT Us)), params')
+             end
+           else error "not a valid inductive expression"
+       | (Free (name, T), args) =>
+         (*if name mem param_vs then *)
+         (* Higher order mode call *)
+         let val r = Free (name, funT_of T (SOME is))
+         in list_comb (r, args) end)
+  | compile_expr _ _ _ = error "not a valid inductive expression"
+
+
+fun compile_clause thy all_vs param_vs modes (iss, is) (ts, ps) inp =
+  let
+    val modes' = modes @ List.mapPartial
+      (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+        (param_vs ~~ iss);
+    fun check_constrt ((names, eqs), t) =
+      if is_constrt thy t then ((names, eqs), t) else
+        let
+          val s = Name.variant names "x";
+          val v = Free (s, fastype_of t)
+        in ((s::names, HOLogic.mk_eq (v, t)::eqs), v) end;
+
+    val (in_ts, out_ts) = get_args is ts;
+    val ((all_vs', eqs), in_ts') =
+      (*FIXME*) Library.foldl_map check_constrt ((all_vs, []), in_ts);
+
+    fun compile_prems out_ts' vs names [] =
+          let
+            val ((names', eqs'), out_ts'') =
+              (*FIXME*) Library.foldl_map check_constrt ((names, []), out_ts');
+            val (nvs, out_ts''') = (*FIXME*) Library.foldl_map distinct_v
+              ((names', map (rpair []) vs), out_ts'');
+          in
+            compile_match thy (snd nvs) (eqs @ eqs') out_ts'''
+              (mk_single (mk_tuple out_ts))
+          end
+      | compile_prems out_ts vs names ps =
+          let
+            val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
+            val SOME (p, mode as SOME (Mode (_, js, _))) =
+              select_mode_prem thy modes' vs' ps
+            val ps' = filter_out (equal p) ps
+            val ((names', eqs), out_ts') =
+              (*FIXME*) Library.foldl_map check_constrt ((names, []), out_ts)
+            val (nvs, out_ts'') = (*FIXME*) Library.foldl_map distinct_v
+              ((names', map (rpair []) vs), out_ts')
+            val (compiled_clause, rest) = case p of
+               Prem (us, t) =>
+                 let
+                   val (in_ts, out_ts''') = get_args js us;
+                   val u = list_comb (compile_expr thy modes (mode, t), in_ts)
+                   val rest = compile_prems out_ts''' vs' (fst nvs) ps'
+                 in
+                   (u, rest)
+                 end
+             | Negprem (us, t) =>
+                 let
+                   val (in_ts, out_ts''') = get_args js us
+                   val u = list_comb (compile_expr thy modes (mode, t), in_ts)
+                   val rest = compile_prems out_ts''' vs' (fst nvs) ps'
+                 in
+                   (mk_not_pred u, rest)
+                 end
+             | Sidecond t =>
+                 let
+                   val rest = compile_prems [] vs' (fst nvs) ps';
+                 in
+                   (mk_if_predenum t, rest)
+                 end
+          in
+            compile_match thy (snd nvs) eqs out_ts'' 
+              (mk_bind (compiled_clause, rest))
+          end
+    val prem_t = compile_prems in_ts' param_vs all_vs' ps;
+  in
+    mk_bind (mk_single inp, prem_t)
+  end
+
+fun compile_pred thy all_vs param_vs modes s T cls mode =
+  let
+    val Ts = binder_types T;
+    val (Ts1, Ts2) = chop (length param_vs) Ts;
+    val Ts1' = map2 funT_of Ts1 (fst mode)
+    val (Us1, Us2) = get_args (snd mode) Ts2;
+    val xnames = Name.variant_list param_vs
+      (map (fn i => "x" ^ string_of_int i) (snd mode));
+    val xs = map2 (fn s => fn T => Free (s, T)) xnames Us1;
+    val cl_ts =
+      map (fn cl => compile_clause thy
+        all_vs param_vs modes mode cl (mk_tuple xs)) cls;
+    val mode_id = modename thy s mode
+  in
+    HOLogic.mk_Trueprop (HOLogic.mk_eq
+      (list_comb (Const (mode_id, (Ts1' @ Us1) --->
+           mk_pred_enumT (mk_tupleT Us2)),
+         map2 (fn s => fn T => Free (s, T)) param_vs Ts1' @ xs),
+       foldr1 mk_sup cl_ts))
+  end;
+
+fun compile_preds thy all_vs param_vs modes preds =
+  map (fn (s, (T, cls)) =>
+    map (compile_pred thy all_vs param_vs modes s T cls)
+      ((the o AList.lookup (op =) modes) s)) preds;
+
+(* end of term construction ******************************************************)
+
+(* special setup for simpset *)                  
+val HOL_basic_ss' = HOL_basic_ss setSolver 
+  (mk_solver "all_tac_solver" (fn _ => fn _ => all_tac))
+
+
+(* misc: constructing and proving tupleE rules ***********************************)
+
+
+(* Creating definitions of functional programs 
+   and proving intro and elim rules **********************************************) 
+
+fun is_ind_pred thy c = 
+  (can (InductivePackage.the_inductive (ProofContext.init thy)) c) orelse
+  (c mem_string (Symtab.keys (#intro_rules (IndCodegenData.get thy))))
+
+fun get_name_of_ind_calls_of_clauses thy preds intrs =
+    fold Term.add_consts intrs [] |> map fst
+    |> filter_out (member (op =) preds) |> filter (is_ind_pred thy)
+
+fun print_arities arities = message ("Arities:\n" ^
+  cat_lines (map (fn (s, (ks, k)) => s ^ ": " ^
+    space_implode " -> " (map
+      (fn NONE => "X" | SOME k' => string_of_int k')
+        (ks @ [SOME k]))) arities));
+
+fun mk_Eval_of ((x, T), NONE) names = (x, names)
+  | mk_Eval_of ((x, T), SOME mode) names = let
+  val Ts = binder_types T
+  val argnames = Name.variant_list names
+        (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+  val args = map Free (argnames ~~ Ts)
+  val (inargs, outargs) = get_args mode args
+  val r = mk_Eval (list_comb (x, inargs), mk_tuple outargs)
+  val t = fold_rev lambda args r 
+in
+  (t, argnames @ names)
+end;
+
+fun create_intro_rule nparams mode defthm mode_id funT pred thy =
+let
+  val Ts = binder_types (fastype_of pred)
+  val funtrm = Const (mode_id, funT)
+  val argnames = Name.variant_list []
+        (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+  val (Ts1, Ts2) = chop nparams Ts;
+  val Ts1' = map2 funT_of Ts1 (fst mode)
+  val args = map Free (argnames ~~ (Ts1' @ Ts2))
+  val (params, io_args) = chop nparams args
+  val (inargs, outargs) = get_args (snd mode) io_args
+  val (params', names) = fold_map mk_Eval_of ((params ~~ Ts1) ~~ (fst mode)) []
+  val predprop = HOLogic.mk_Trueprop (list_comb (pred, params' @ io_args))
+  val funargs = params @ inargs
+  val funpropE = HOLogic.mk_Trueprop (mk_Eval (list_comb (funtrm, funargs),
+                  if null outargs then Free("y", HOLogic.unitT) else mk_tuple outargs))
+  val funpropI = HOLogic.mk_Trueprop (mk_Eval (list_comb (funtrm, funargs),
+                   mk_tuple outargs))
+  val introtrm = Logic.mk_implies (predprop, funpropI)
+  val simprules = [defthm, @{thm eval_pred},
+                   @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}]
+  val unfolddef_tac = (Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1)
+  val introthm = Goal.prove (ProofContext.init thy) (argnames @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
+  val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT));
+  val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predprop, P)], P)
+  val elimthm = Goal.prove (ProofContext.init thy) (argnames @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
+in
+  map_function_intros (Symtab.update_new (mode_id, introthm)) thy
+  |> map_function_elims (Symtab.update_new (mode_id, elimthm))
+  |> PureThy.store_thm (Binding.name (NameSpace.base_name mode_id ^ "I"), introthm) |> snd
+  |> PureThy.store_thm (Binding.name (NameSpace.base_name mode_id ^ "E"), elimthm)  |> snd
+end;
+
+fun create_definitions preds nparams (name, modes) thy =
+  let
+    val _ = tracing "create definitions"
+    val T = AList.lookup (op =) preds name |> the
+    fun create_definition mode thy = let
+      fun string_of_mode mode = if null mode then "0"
+        else space_implode "_" (map string_of_int mode)
+      val HOmode = let
+        fun string_of_HOmode m s = case m of NONE => s | SOME mode => s ^ "__" ^ (string_of_mode mode)    
+        in (fold string_of_HOmode (fst mode) "") end;
+      val mode_id = name ^ (if HOmode = "" then "_" else HOmode ^ "___")
+        ^ (string_of_mode (snd mode))
+      val Ts = binder_types T;
+      val (Ts1, Ts2) = chop nparams Ts;
+      val Ts1' = map2 funT_of Ts1 (fst mode)
+      val (Us1, Us2) = get_args (snd mode) Ts2;
+      val names = Name.variant_list []
+        (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+      val xs = map Free (names ~~ (Ts1' @ Ts2));
+      val (xparams, xargs) = chop nparams xs;
+      val (xparams', names') = fold_map mk_Eval_of ((xparams ~~ Ts1) ~~ (fst mode)) names
+      val (xins, xouts) = get_args (snd mode) xargs;
+      fun mk_split_lambda [] t = lambda (Free (Name.variant names' "x", HOLogic.unitT)) t
+       | mk_split_lambda [x] t = lambda x t
+       | mk_split_lambda xs t = let
+         fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
+           | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
+         in mk_split_lambda' xs t end;
+      val predterm = mk_Enum (mk_split_lambda xouts (list_comb (Const (name, T), xparams' @ xargs)))
+      val funT = (Ts1' @ Us1) ---> (mk_pred_enumT (mk_tupleT Us2))
+      val mode_id = Sign.full_bname thy (NameSpace.base_name mode_id)
+      val lhs = list_comb (Const (mode_id, funT), xparams @ xins)
+      val def = Logic.mk_equals (lhs, predterm)
+      val ([defthm], thy') = thy |>
+        Sign.add_consts_i [(Binding.name (NameSpace.base_name mode_id), funT, NoSyn)] |>
+        PureThy.add_defs false [((Binding.name (NameSpace.base_name mode_id ^ "_def"), def), [])]
+      in thy' |> map_names (PredModetab.update_new ((name, mode), mode_id))
+           |> map_function_defs (Symtab.update_new (mode_id, defthm))
+           |> create_intro_rule nparams mode defthm mode_id funT (Const (name, T))
+      end;
+  in
+    fold create_definition modes thy
+  end;
+
+(**************************************************************************************)
+(* Proving equivalence of term *)
+
+
+fun intro_rule thy pred mode = modename thy pred mode
+    |> Symtab.lookup (#function_intros (IndCodegenData.get thy)) |> the
+
+fun elim_rule thy pred mode = modename thy pred mode
+    |> Symtab.lookup (#function_elims (IndCodegenData.get thy)) |> the
+
+fun pred_intros thy predname = let
+    fun is_intro_of pred intro = let
+      val const = fst (strip_comb (HOLogic.dest_Trueprop (concl_of intro)))
+    in (fst (dest_Const const) = pred) end;
+    val d = IndCodegenData.get thy
+  in
+    if (Symtab.defined (#intro_rules d) predname) then
+      rev (Symtab.lookup_list (#intro_rules d) predname)
+    else
+      InductivePackage.the_inductive (ProofContext.init thy) predname
+      |> snd |> #intrs |> filter (is_intro_of predname)
+  end
+
+fun function_definition thy pred mode =
+  modename thy pred mode |> Symtab.lookup (#function_defs (IndCodegenData.get thy)) |> the
+
+fun is_Type (Type _) = true
+  | is_Type _ = false
+
+fun imp_prems_conv cv ct =
+  case Thm.term_of ct of
+    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
+  | _ => Conv.all_conv ct
+
+fun Trueprop_conv cv ct =
+  case Thm.term_of ct of
+    Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct  
+  | _ => error "Trueprop_conv"
+
+fun preprocess_intro thy rule = Thm.transfer thy rule (*FIXME preprocessor
+  Conv.fconv_rule
+    (imp_prems_conv
+      (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @ {thm Predicate.eq_is_eq})))))
+    (Thm.transfer thy rule) *)
+
+fun preprocess_elim thy nargs elimrule = (*FIXME preprocessor -- let
+   fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
+      HOLogic.mk_Trueprop (Const (@ {const_name Predicate.eq}, T) $ lhs $ rhs)
+    | replace_eqs t = t
+   fun preprocess_case t = let
+     val params = Logic.strip_params t
+     val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
+     val assums_hyp' = assums1 @ (map replace_eqs assums2)
+     in list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t)) end
+   val prems = Thm.prems_of elimrule
+   val cases' = map preprocess_case (tl prems)
+   val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
+ in
+   Thm.equal_elim
+     (Thm.symmetric (Conv.implies_concl_conv (MetaSimplifier.rewrite true [@ {thm eq_is_eq}])
+        (cterm_of thy elimrule')))
+     elimrule
+ end*) elimrule;
+
+
+(* returns true if t is an application of an datatype constructor *)
+(* which then consequently would be splitted *)
+(* else false *)
+fun is_constructor thy t =
+  if (is_Type (fastype_of t)) then
+    (case DatatypePackage.get_datatype thy ((fst o dest_Type o fastype_of) t) of
+      NONE => false
+    | SOME info => (let
+      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
+      val (c, _) = strip_comb t
+      in (case c of
+        Const (name, _) => name mem_string constr_consts
+        | _ => false) end))
+  else false
+
+(* MAJOR FIXME:  prove_params should be simple
+ - different form of introrule for parameters ? *)
+fun prove_param thy modes (NONE, t) = all_tac 
+  | prove_param thy modes (m as SOME (Mode (mode, is, ms)), t) = let
+    val  (f, args) = strip_comb t
+    val (params, _) = chop (length ms) args
+    val f_tac = case f of
+        Const (name, T) => simp_tac (HOL_basic_ss addsimps 
+           @{thm eval_pred}::function_definition thy name mode::[]) 1
+      | Free _ => all_tac
+  in  
+    print_tac "before simplification in prove_args:"
+    THEN debug_tac ("mode" ^ (makestring mode))
+    THEN f_tac
+    THEN print_tac "after simplification in prove_args"
+    (* work with parameter arguments *)
+    THEN (EVERY (map (prove_param thy modes) (ms ~~ params)))
+    THEN (REPEAT_DETERM (atac 1))
+  end
+
+fun prove_expr thy modes (SOME (Mode (mode, is, ms)), t, us) (premposition : int) =
+  (case strip_comb t of
+    (Const (name, T), args) =>
+      if AList.defined op = modes name then (let
+          val introrule = intro_rule thy name mode
+          (*val (in_args, out_args) = get_args is us
+          val (pred, rargs) = strip_comb (HOLogic.dest_Trueprop
+            (hd (Logic.strip_imp_prems (prop_of introrule))))
+          val nparams = length ms (* get_nparams thy (fst (dest_Const pred)) *)
+          val (_, args) = chop nparams rargs
+          val _ = tracing ("args: " ^ (makestring args))
+          val subst = map (pairself (cterm_of thy)) (args ~~ us)
+          val _ = tracing ("subst: " ^ (makestring subst))
+          val inst_introrule = Drule.cterm_instantiate subst introrule*)
+         (* the next line is old and probably wrong *)
+          val (args1, args2) = chop (length ms) args
+          val _ = tracing ("premposition: " ^ (makestring premposition))
+        in
+        rtac @{thm bindI} 1
+        THEN print_tac "before intro rule:"
+        THEN debug_tac ("mode" ^ (makestring mode))
+        THEN debug_tac (makestring introrule)
+        THEN debug_tac ("premposition: " ^ (makestring premposition))
+        (* for the right assumption in first position *)
+        THEN rotate_tac premposition 1
+        THEN rtac introrule 1
+        THEN print_tac "after intro rule"
+        (* work with parameter arguments *)
+        THEN (EVERY (map (prove_param thy modes) (ms ~~ args1)))
+        THEN (REPEAT_DETERM (atac 1)) end)
+      else error "Prove expr if case not implemented"
+    | _ => rtac @{thm bindI} 1
+           THEN atac 1)
+  | prove_expr _ _ _ _ =  error "Prove expr not implemented"
+
+fun SOLVED tac st = FILTER (fn st' => nprems_of st' = nprems_of st - 1) tac st; 
+
+fun SOLVEDALL tac st = FILTER (fn st' => nprems_of st' = 0) tac st
+
+fun prove_match thy (out_ts : term list) = let
+  fun get_case_rewrite t =
+    if (is_constructor thy t) then let
+      val case_rewrites = (#case_rewrites (DatatypePackage.the_datatype thy
+        ((fst o dest_Type o fastype_of) t)))
+      in case_rewrites @ (flat (map get_case_rewrite (snd (strip_comb t)))) end
+    else []
+  val simprules = @{thm "unit.cases"} :: @{thm "prod.cases"} :: (flat (map get_case_rewrite out_ts))
+(* replace TRY by determining if it necessary - are there equations when calling compile match? *)
+in
+  print_tac ("before prove_match rewriting: simprules = " ^ (makestring simprules))
+   (* make this simpset better! *)
+  THEN asm_simp_tac (HOL_basic_ss' addsimps simprules) 1
+  THEN print_tac "after prove_match:"
+  THEN (DETERM (TRY (EqSubst.eqsubst_tac (ProofContext.init thy) [0] [@{thm "HOL.if_P"}] 1
+         THEN (REPEAT_DETERM (rtac @{thm conjI} 1 THEN (SOLVED (asm_simp_tac HOL_basic_ss 1))))
+         THEN (SOLVED (asm_simp_tac HOL_basic_ss 1)))))
+  THEN print_tac "after if simplification"
+end;
+
+(* corresponds to compile_fun -- maybe call that also compile_sidecond? *)
+
+fun prove_sidecond thy modes t = let
+  val _ = tracing ("prove_sidecond:" ^ (makestring t))
+  fun preds_of t nameTs = case strip_comb t of 
+    (f as Const (name, T), args) =>
+      if AList.defined (op =) modes name then (name, T) :: nameTs
+        else fold preds_of args nameTs
+    | _ => nameTs
+  val preds = preds_of t []
+  
+  val _ = tracing ("preds: " ^ (makestring preds))
+  val defs = map
+    (fn (pred, T) => function_definition thy pred ([], (1 upto (length (binder_types T)))))
+      preds
+  val _ = tracing ("defs: " ^ (makestring defs))
+in 
+   (* remove not_False_eq_True when simpset in prove_match is better *)
+   simp_tac (HOL_basic_ss addsimps @{thm not_False_eq_True} :: @{thm eval_pred} :: defs) 1 
+   (* need better control here! *)
+   THEN print_tac "after sidecond simplification"
+   end
+
+fun prove_clause thy nargs all_vs param_vs modes (iss, is) (ts, ps) = let
+  val modes' = modes @ List.mapPartial
+   (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+     (param_vs ~~ iss);
+  fun check_constrt ((names, eqs), t) =
+      if is_constrt thy t then ((names, eqs), t) else
+        let
+          val s = Name.variant names "x";
+          val v = Free (s, fastype_of t)
+        in ((s::names, HOLogic.mk_eq (v, t)::eqs), v) end;
+  
+  val (in_ts, clause_out_ts) = get_args is ts;
+  val ((all_vs', eqs), in_ts') =
+      (*FIXME*) Library.foldl_map check_constrt ((all_vs, []), in_ts);
+  fun prove_prems out_ts vs [] =
+    (prove_match thy out_ts)
+    THEN asm_simp_tac HOL_basic_ss' 1
+    THEN print_tac "before the last rule of singleI:"
+    THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
+  | prove_prems out_ts vs rps =
+    let
+      val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
+      val SOME (p, mode as SOME (Mode ((iss, js), _, param_modes))) =
+        select_mode_prem thy modes' vs' rps;
+      val premposition = (find_index (equal p) ps) + nargs
+      val rps' = filter_out (equal p) rps;
+      val rest_tac = (case p of Prem (us, t) =>
+          let
+            val (in_ts, out_ts''') = get_args js us
+            val rec_tac = prove_prems out_ts''' vs' rps'
+          in
+            print_tac "before clause:"
+            THEN asm_simp_tac HOL_basic_ss 1
+            THEN print_tac "before prove_expr:"
+            THEN prove_expr thy modes (mode, t, us) premposition
+            THEN print_tac "after prove_expr:"
+            THEN rec_tac
+          end
+        | Negprem (us, t) =>
+          let
+            val (in_ts, out_ts''') = get_args js us
+            val rec_tac = prove_prems out_ts''' vs' rps'
+            val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+            val (_, params) = strip_comb t
+          in
+            print_tac "before negated clause:"
+            THEN rtac @{thm bindI} 1
+            THEN (if (is_some name) then
+                simp_tac (HOL_basic_ss addsimps [function_definition thy (the name) (iss, js)]) 1
+                THEN rtac @{thm not_predI} 1
+                THEN print_tac "after neg. intro rule"
+                THEN print_tac ("t = " ^ (makestring t))
+                (* FIXME: work with parameter arguments *)
+                THEN (EVERY (map (prove_param thy modes) (param_modes ~~ params)))
+              else
+                rtac @{thm not_predI'} 1)
+            THEN (REPEAT_DETERM (atac 1))
+            THEN rec_tac
+          end
+        | Sidecond t =>
+         rtac @{thm bindI} 1
+         THEN rtac @{thm if_predI} 1
+         THEN print_tac "before sidecond:"
+         THEN prove_sidecond thy modes t
+         THEN print_tac "after sidecond:"
+         THEN prove_prems [] vs' rps')
+    in (prove_match thy out_ts)
+        THEN rest_tac
+    end;
+  val prems_tac = prove_prems in_ts' param_vs ps
+in
+  rtac @{thm bindI} 1
+  THEN rtac @{thm singleI} 1
+  THEN prems_tac
+end;
+
+fun select_sup 1 1 = []
+  | select_sup _ 1 = [rtac @{thm supI1}]
+  | select_sup n i = (rtac @{thm supI2})::(select_sup (n - 1) (i - 1));
+
+fun get_nparams thy s = let
+    val _ = tracing ("get_nparams: " ^ s)
+  in
+  if Symtab.defined (#nparams (IndCodegenData.get thy)) s then
+    the (Symtab.lookup (#nparams (IndCodegenData.get thy)) s) 
+  else
+    case try (InductivePackage.the_inductive (ProofContext.init thy)) s of
+      SOME info => info |> snd |> #raw_induct |> Thm.unvarify
+        |> InductivePackage.params_of |> length
+    | NONE => 0 (* default value *)
+  end
+
+val ind_set_codegen_preproc = InductiveSetPackage.codegen_preproc;
+
+fun pred_elim thy predname =
+  if (Symtab.defined (#elim_rules (IndCodegenData.get thy)) predname) then
+    the (Symtab.lookup (#elim_rules (IndCodegenData.get thy)) predname)
+  else
+    (let
+      val ind_result = InductivePackage.the_inductive (ProofContext.init thy) predname
+      val index = find_index (fn s => s = predname) (#names (fst ind_result))
+    in nth (#elims (snd ind_result)) index end)
+
+fun prove_one_direction thy all_vs param_vs modes clauses ((pred, T), mode) = let
+  val elim_rule = the (Symtab.lookup (#function_elims (IndCodegenData.get thy)) (modename thy pred mode))
+(*  val ind_result = InductivePackage.the_inductive (ProofContext.init thy) pred
+  val index = find_index (fn s => s = pred) (#names (fst ind_result))
+  val (_, T) = dest_Const (nth (#preds (snd ind_result)) index) *)
+  val nargs = length (binder_types T) - get_nparams thy pred
+  val pred_case_rule = singleton (ind_set_codegen_preproc thy)
+    (preprocess_elim thy nargs (pred_elim thy pred))
+  (* FIXME preprocessor |> Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}])*)
+  val _ = tracing ("pred_case_rule " ^ (makestring pred_case_rule))
+in
+  REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
+  THEN etac elim_rule 1
+  THEN etac pred_case_rule 1
+  THEN (EVERY (map
+         (fn i => EVERY' (select_sup (length clauses) i) i) 
+           (1 upto (length clauses))))
+  THEN (EVERY (map (prove_clause thy nargs all_vs param_vs modes mode) clauses))
+end;
+
+(*******************************************************************************************************)
+(* Proof in the other direction ************************************************************************)
+(*******************************************************************************************************)
+
+fun prove_match2 thy out_ts = let
+  fun split_term_tac (Free _) = all_tac
+    | split_term_tac t =
+      if (is_constructor thy t) then let
+        val info = DatatypePackage.the_datatype thy ((fst o dest_Type o fastype_of) t)
+        val num_of_constrs = length (#case_rewrites info)
+        (* special treatment of pairs -- because of fishing *)
+        val split_rules = case (fst o dest_Type o fastype_of) t of
+          "*" => [@{thm prod.split_asm}] 
+          | _ => PureThy.get_thms thy (((fst o dest_Type o fastype_of) t) ^ ".split_asm")
+        val (_, ts) = strip_comb t
+      in
+        print_tac ("splitting with t = " ^ (makestring t))
+        THEN (Splitter.split_asm_tac split_rules 1)
+(*        THEN (Simplifier.asm_full_simp_tac HOL_basic_ss 1)
+          THEN (DETERM (TRY (etac @{thm Pair_inject} 1))) *)
+        THEN (REPEAT_DETERM_N (num_of_constrs - 1) (etac @{thm botE} 1 ORELSE etac @{thm botE} 2))
+        THEN (EVERY (map split_term_tac ts))
+      end
+    else all_tac
+  in
+    split_term_tac (mk_tuple out_ts)
+    THEN (DETERM (TRY ((Splitter.split_asm_tac [@{thm "split_if_asm"}] 1) THEN (etac @{thm botE} 2))))
+  end
+
+(* VERY LARGE SIMILIRATIY to function prove_param 
+-- join both functions
+*) 
+fun prove_param2 thy modes (NONE, t) = all_tac 
+  | prove_param2 thy modes (m as SOME (Mode (mode, is, ms)), t) = let
+    val  (f, args) = strip_comb t
+    val (params, _) = chop (length ms) args
+    val f_tac = case f of
+        Const (name, T) => full_simp_tac (HOL_basic_ss addsimps 
+           @{thm eval_pred}::function_definition thy name mode::[]) 1
+      | Free _ => all_tac
+  in  
+    print_tac "before simplification in prove_args:"
+    THEN debug_tac ("function : " ^ (makestring f) ^ " - mode" ^ (makestring mode))
+    THEN f_tac
+    THEN print_tac "after simplification in prove_args"
+    (* work with parameter arguments *)
+    THEN (EVERY (map (prove_param2 thy modes) (ms ~~ params)))
+  end
+
+fun prove_expr2 thy modes (SOME (Mode (mode, is, ms)), t) = 
+  (case strip_comb t of
+    (Const (name, T), args) =>
+      if AList.defined op = modes name then
+        etac @{thm bindE} 1
+        THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
+        THEN (etac (elim_rule thy name mode) 1)
+        THEN (EVERY (map (prove_param2 thy modes) (ms ~~ args)))
+      else error "Prove expr2 if case not implemented"
+    | _ => etac @{thm bindE} 1)
+  | prove_expr2 _ _ _ = error "Prove expr2 not implemented"
+
+fun prove_sidecond2 thy modes t = let
+  val _ = tracing ("prove_sidecond:" ^ (makestring t))
+  fun preds_of t nameTs = case strip_comb t of 
+    (f as Const (name, T), args) =>
+      if AList.defined (op =) modes name then (name, T) :: nameTs
+        else fold preds_of args nameTs
+    | _ => nameTs
+  val preds = preds_of t []
+  val _ = tracing ("preds: " ^ (makestring preds))
+  val defs = map
+    (fn (pred, T) => function_definition thy pred ([], (1 upto (length (binder_types T)))))
+      preds
+  in
+   (* only simplify the one assumption *)
+   full_simp_tac (HOL_basic_ss' addsimps @{thm eval_pred} :: defs) 1 
+   (* need better control here! *)
+   THEN print_tac "after sidecond2 simplification"
+   end
+  
+fun prove_clause2 thy all_vs param_vs modes (iss, is) (ts, ps) pred i = let
+  val modes' = modes @ List.mapPartial
+   (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+     (param_vs ~~ iss);
+  fun check_constrt ((names, eqs), t) =
+      if is_constrt thy t then ((names, eqs), t) else
+        let
+          val s = Name.variant names "x";
+          val v = Free (s, fastype_of t)
+        in ((s::names, HOLogic.mk_eq (v, t)::eqs), v) end;
+  val pred_intro_rule = nth (pred_intros thy pred) (i - 1)
+    |> preprocess_intro thy
+    |> (fn thm => hd (ind_set_codegen_preproc thy [thm]))
+    (* FIXME preprocess |> Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}]) *)
+  val (in_ts, clause_out_ts) = get_args is ts;
+  val ((all_vs', eqs), in_ts') =
+      (*FIXME*) Library.foldl_map check_constrt ((all_vs, []), in_ts);
+  fun prove_prems2 out_ts vs [] =
+    print_tac "before prove_match2 - last call:"
+    THEN prove_match2 thy out_ts
+    THEN print_tac "after prove_match2 - last call:"
+    THEN (etac @{thm singleE} 1)
+    THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+    THEN (asm_full_simp_tac HOL_basic_ss' 1)
+    THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+    THEN (asm_full_simp_tac HOL_basic_ss' 1)
+    THEN SOLVED (print_tac "state before applying intro rule:"
+      THEN (rtac pred_intro_rule 1)
+      (* How to handle equality correctly? *)
+      THEN (print_tac "state before assumption matching")
+      THEN (REPEAT (atac 1 ORELSE 
+         (CHANGED (asm_full_simp_tac HOL_basic_ss' 1)
+          THEN print_tac "state after simp_tac:"))))
+  | prove_prems2 out_ts vs ps = let
+      val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
+      val SOME (p, mode as SOME (Mode ((iss, js), _, param_modes))) =
+        select_mode_prem thy modes' vs' ps;
+      val ps' = filter_out (equal p) ps;
+      val rest_tac = (case p of Prem (us, t) =>
+          let
+            val (in_ts, out_ts''') = get_args js us
+            val rec_tac = prove_prems2 out_ts''' vs' ps'
+          in
+            (prove_expr2 thy modes (mode, t)) THEN rec_tac
+          end
+        | Negprem (us, t) =>
+          let
+            val (in_ts, out_ts''') = get_args js us
+            val rec_tac = prove_prems2 out_ts''' vs' ps'
+            val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+            val (_, params) = strip_comb t
+          in
+            print_tac "before neg prem 2"
+            THEN etac @{thm bindE} 1
+            THEN (if is_some name then
+                full_simp_tac (HOL_basic_ss addsimps [function_definition thy (the name) (iss, js)]) 1 
+                THEN etac @{thm not_predE} 1
+                THEN (EVERY (map (prove_param2 thy modes) (param_modes ~~ params)))
+              else
+                etac @{thm not_predE'} 1)
+            THEN rec_tac
+          end 
+        | Sidecond t =>
+            etac @{thm bindE} 1
+            THEN etac @{thm if_predE} 1
+            THEN prove_sidecond2 thy modes t 
+            THEN prove_prems2 [] vs' ps')
+    in print_tac "before prove_match2:"
+       THEN prove_match2 thy out_ts
+       THEN print_tac "after prove_match2:"
+       THEN rest_tac
+    end;
+  val prems_tac = prove_prems2 in_ts' param_vs ps 
+in
+  print_tac "starting prove_clause2"
+  THEN etac @{thm bindE} 1
+  THEN (etac @{thm singleE'} 1)
+  THEN (TRY (etac @{thm Pair_inject} 1))
+  THEN print_tac "after singleE':"
+  THEN prems_tac
+end;
+ 
+fun prove_other_direction thy all_vs param_vs modes clauses (pred, mode) = let
+  fun prove_clause (clause, i) =
+    (if i < length clauses then etac @{thm supE} 1 else all_tac)
+    THEN (prove_clause2 thy all_vs param_vs modes mode clause pred i)
+in
+  (DETERM (TRY (rtac @{thm unit.induct} 1)))
+   THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
+   THEN (rtac (intro_rule thy pred mode) 1)
+   THEN (EVERY (map prove_clause (clauses ~~ (1 upto (length clauses)))))
+end;
+
+fun prove_pred thy all_vs param_vs modes clauses (((pred, T), mode), t) = let
+  val ctxt = ProofContext.init thy
+  val clauses' = the (AList.lookup (op =) clauses pred)
+in
+  Goal.prove ctxt (Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) t []) [] t
+    (if !do_proofs then
+      (fn _ =>
+      rtac @{thm pred_iffI} 1
+      THEN prove_one_direction thy all_vs param_vs modes clauses' ((pred, T), mode)
+      THEN print_tac "proved one direction"
+      THEN prove_other_direction thy all_vs param_vs modes clauses' (pred, mode)
+      THEN print_tac "proved other direction")
+     else (fn _ => mycheat_tac thy 1))
+end;
+
+fun prove_preds thy all_vs param_vs modes clauses pmts =
+  map (prove_pred thy all_vs param_vs modes clauses) pmts
+
+(* look for other place where this functionality was used before *)
+fun strip_intro_concl intro nparams = let
+  val _ $ u = Logic.strip_imp_concl intro
+  val (pred, all_args) = strip_comb u
+  val (params, args) = chop nparams all_args
+in (pred, (params, args)) end
+
+(* setup for alternative introduction and elimination rules *)
+
+fun add_intro_thm thm thy = let
+   val (pred, _) = dest_Const (fst (strip_intro_concl (prop_of thm) 0))
+ in map_intro_rules (Symtab.insert_list Thm.eq_thm (pred, thm)) thy end
+
+fun add_elim_thm thm thy = let
+    val (pred, _) = dest_Const (fst 
+      (strip_comb (HOLogic.dest_Trueprop (hd (prems_of thm)))))
+  in map_elim_rules (Symtab.update (pred, thm)) thy end
+
+
+(* special case: inductive predicate with no clauses *)
+fun noclause (predname, T) thy = let
+  val Ts = binder_types T
+  val names = Name.variant_list []
+        (map (fn i => "x" ^ (string_of_int i)) (1 upto (length Ts)))
+  val vs = map Free (names ~~ Ts)
+  val clausehd =  HOLogic.mk_Trueprop (list_comb(Const (predname, T), vs))
+  val intro_t = Logic.mk_implies (@{prop False}, clausehd)
+  val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT))
+  val elim_t = Logic.list_implies ([clausehd, Logic.mk_implies (@{prop False}, P)], P)
+  val intro_thm = Goal.prove (ProofContext.init thy) names [] intro_t
+        (fn {...} => etac @{thm FalseE} 1)
+  val elim_thm = Goal.prove (ProofContext.init thy) ("P" :: names) [] elim_t
+        (fn {...} => etac (pred_elim thy predname) 1) 
+in
+  add_intro_thm intro_thm thy
+  |> add_elim_thm elim_thm
+end
+
+(*************************************************************************************)
+(* main function *********************************************************************)
+(*************************************************************************************)
+
+fun create_def_equation' ind_name (mode : (int list option list * int list) option) thy =
+let
+  val _ = tracing ("starting create_def_equation' with " ^ ind_name)
+  val (prednames, preds) = 
+    case (try (InductivePackage.the_inductive (ProofContext.init thy)) ind_name) of
+      SOME info => let val preds = info |> snd |> #preds
+        in (map (fst o dest_Const) preds, map ((apsnd Logic.unvarifyT) o dest_Const) preds) end
+    | NONE => let
+        val pred = Symtab.lookup (#intro_rules (IndCodegenData.get thy)) ind_name
+          |> the |> hd |> prop_of
+          |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop |> strip_comb
+          |> fst |>  dest_Const |> apsnd Logic.unvarifyT
+       in ([ind_name], [pred]) end
+  val thy' = fold (fn pred as (predname, T) => fn thy =>
+    if null (pred_intros thy predname) then noclause pred thy else thy) preds thy
+  val intrs = map (preprocess_intro thy') (maps (pred_intros thy') prednames)
+    |> ind_set_codegen_preproc thy' (*FIXME preprocessor
+    |> map (Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}]))*)
+    |> map (Logic.unvarify o prop_of)
+  val _ = tracing ("preprocessed intro rules:" ^ (makestring (map (cterm_of thy') intrs)))
+  val name_of_calls = get_name_of_ind_calls_of_clauses thy' prednames intrs 
+  val _ = tracing ("calling preds: " ^ makestring name_of_calls)
+  val _ = tracing "starting recursive compilations"
+  fun rec_call name thy = 
+    if not (name mem (Symtab.keys (#modes (IndCodegenData.get thy)))) then
+      create_def_equation name thy else thy
+  val thy'' = fold rec_call name_of_calls thy'
+  val _ = tracing "returning from recursive calls"
+  val _ = tracing "starting mode inference"
+  val extra_modes = Symtab.dest (#modes (IndCodegenData.get thy''))
+  val nparams = get_nparams thy'' ind_name
+  val _ $ u = Logic.strip_imp_concl (hd intrs);
+  val params = List.take (snd (strip_comb u), nparams);
+  val param_vs = maps term_vs params
+  val all_vs = terms_vs intrs
+  fun dest_prem t =
+      (case strip_comb t of
+        (v as Free _, ts) => if v mem params then Prem (ts, v) else Sidecond t
+      | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem t of
+          Prem (ts, t) => Negprem (ts, t)
+        | Negprem _ => error ("Double negation not allowed in premise: " ^ (makestring (c $ t))) 
+        | Sidecond t => Sidecond (c $ t))
+      | (c as Const (s, _), ts) =>
+        if is_ind_pred thy'' s then
+          let val (ts1, ts2) = chop (get_nparams thy'' s) ts
+          in Prem (ts2, list_comb (c, ts1)) end
+        else Sidecond t
+      | _ => Sidecond t)
+  fun add_clause intr (clauses, arities) =
+  let
+    val _ $ t = Logic.strip_imp_concl intr;
+    val (Const (name, T), ts) = strip_comb t;
+    val (ts1, ts2) = chop nparams ts;
+    val prems = map (dest_prem o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr);
+    val (Ts, Us) = chop nparams (binder_types T)
+  in
+    (AList.update op = (name, these (AList.lookup op = clauses name) @
+      [(ts2, prems)]) clauses,
+     AList.update op = (name, (map (fn U => (case strip_type U of
+                 (Rs as _ :: _, Type ("bool", [])) => SOME (length Rs)
+               | _ => NONE)) Ts,
+             length Us)) arities)
+  end;
+  val (clauses, arities) = fold add_clause intrs ([], []);
+  val modes = infer_modes thy'' extra_modes arities param_vs clauses
+  val _ = print_arities arities;
+  val _ = print_modes modes;
+  val modes = if (is_some mode) then AList.update (op =) (ind_name, [the mode]) modes else modes
+  val _ = print_modes modes
+  val thy''' = fold (create_definitions preds nparams) modes thy''
+    |> map_modes (fold Symtab.update_new modes)
+  val clauses' = map (fn (s, cls) => (s, (the (AList.lookup (op =) preds s), cls))) clauses
+  val _ = tracing "compiling predicates..."
+  val ts = compile_preds thy''' all_vs param_vs (extra_modes @ modes) clauses'
+  val _ = tracing "returned term from compile_preds"
+  val pred_mode = maps (fn (s, (T, _)) => map (pair (s, T)) ((the o AList.lookup (op =) modes) s)) clauses'
+  val _ = tracing "starting proof"
+  val result_thms = prove_preds thy''' all_vs param_vs (extra_modes @ modes) clauses (pred_mode ~~ (flat ts))
+  val (_, thy'''') = yield_singleton PureThy.add_thmss
+    ((Binding.name (NameSpace.base_name ind_name ^ "_codegen" (*FIXME other suffix*)), result_thms),
+      [Attrib.attribute_i thy''' Code.add_default_eqn_attrib]) thy'''
+in
+  thy''''
+end
+and create_def_equation ind_name thy = create_def_equation' ind_name NONE thy
+
+fun set_nparams (pred, nparams) thy = map_nparams (Symtab.update (pred, nparams)) thy
+
+fun print_alternative_rules thy = let
+    val d = IndCodegenData.get thy
+    val preds = (Symtab.keys (#intro_rules d)) union (Symtab.keys (#elim_rules d))
+    val _ = tracing ("preds: " ^ (makestring preds))
+    fun print pred = let
+      val _ = tracing ("predicate: " ^ pred)
+      val _ = tracing ("introrules: ")
+      val _ = fold (fn thm => fn u => tracing (makestring thm))
+        (rev (Symtab.lookup_list (#intro_rules d) pred)) ()
+      val _ = tracing ("casesrule: ")
+      val _ = tracing (makestring (Symtab.lookup (#elim_rules d) pred))
+    in () end
+    val _ = map print preds
+ in thy end; 
+  
+fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I)
+
+val code_ind_intros_attrib = attrib add_intro_thm
+
+val code_ind_cases_attrib = attrib add_elim_thm
+
+val setup = Attrib.add_attributes
+    [("code_ind_intros", Attrib.no_args code_ind_intros_attrib,
+      "adding alternative introduction rules for code generation of inductive predicates"),
+     ("code_ind_cases", Attrib.no_args code_ind_cases_attrib, 
+      "adding alternative elimination rules for code generation of inductive predicates")]
+
+end;
+
+fun pred_compile name thy = Predicate_Compile.create_def_equation
+  (Sign.intern_const thy name) thy;