well_ord_iso_predE replaces not_well_ord_iso_pred
authorlcp
Wed, 14 Dec 1994 17:24:23 +0100
changeset 789 30bdc59198ff
parent 788 8acbe6f3de2b
child 790 4c10e8532d43
well_ord_iso_predE replaces not_well_ord_iso_pred well_ord_iso_unique: eliminated a premise using well_ord_ord_iso Proved well_ord_iso_pred_eq, ord_iso_image_pred, ord_iso_restrict_pred, part_ord_ord_iso, linear_ord_iso, wf_on_ord_iso, well_ord_ord_iso, well_ord_iso_preserving, mono_map_is_fun, mono_map_is_inj, mono_map_trans, mono_ord_isoI, well_ord_mono_ord_isoI, ord_iso_is_mono_map, ord_iso_map_mono_map, ord_iso_map_ord_iso, domain_ord_iso_map_subset, domain_ord_iso_map_cases, range_ord_iso_map_cases, well_ord_trichotomy deleted bij_ss in favour of bij_inverse_ss
src/ZF/Order.ML
--- a/src/ZF/Order.ML	Wed Dec 14 17:15:54 1994 +0100
+++ b/src/ZF/Order.ML	Wed Dec 14 17:24:23 1994 +0100
@@ -3,30 +3,104 @@
     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
-For Order.thy.  Orders in Zermelo-Fraenkel Set Theory 
+Orders in Zermelo-Fraenkel Set Theory 
+
+Results from the book "Set Theory: an Introduction to Independence Proofs"
+	by Ken Kunen.  Chapter 1, section 6.
 *)
 
-
 open Order;
 
 val bij_apply_cs = ZF_cs addSEs [bij_converse_bij]
                          addIs  [bij_is_fun, apply_type];
 
-val bij_inverse_ss = 
-    ZF_ss addsimps [bij_is_fun RS apply_type,
-		    bij_converse_bij RS bij_is_fun RS apply_type,
-		    left_inverse_bij, right_inverse_bij];
-
 (** Basic properties of the definitions **)
 
-(*needed????*)
+(*needed?*)
 goalw Order.thy [part_ord_def, irrefl_def, trans_on_def, asym_def]
     "!!r. part_ord(A,r) ==> asym(r Int A*A)";
 by (fast_tac ZF_cs 1);
 qed "part_ord_Imp_asym";
 
-(** Subset properties for the various forms of relation **)
+val major::premx::premy::prems = goalw Order.thy [linear_def]
+    "[| linear(A,r);  x:A;  y:A;  \
+\       <x,y>:r ==> P;  x=y ==> P;  <y,x>:r ==> P |] ==> P";
+by (cut_facts_tac [major,premx,premy] 1);
+by (REPEAT_FIRST (eresolve_tac [ballE,disjE]));
+by (EVERY1 (map etac prems));
+by (ALLGOALS contr_tac);
+qed "linearE";
+
+(*Does the case analysis, deleting linear(A,r) and proving trivial subgoals*)
+val linear_case_tac =
+    SELECT_GOAL (EVERY [etac linearE 1, assume_tac 1, assume_tac 1,
+			REPEAT_SOME (assume_tac ORELSE' contr_tac)]);
+
+(** General properties of well_ord **)
+
+goalw Order.thy [irrefl_def, part_ord_def, tot_ord_def, 
+		 trans_on_def, well_ord_def]
+    "!!r. [| wf[A](r); linear(A,r) |] ==> well_ord(A,r)";
+by (asm_simp_tac (ZF_ss addsimps [wf_on_not_refl]) 1);
+by (safe_tac ZF_cs);
+by (linear_case_tac 1);
+(*case x=xb*)
+by (fast_tac (ZF_cs addSEs [wf_on_asym]) 1);
+(*case x<xb*)
+by (fast_tac (ZF_cs addSEs [wf_on_chain3]) 1);
+qed "well_ordI";
+
+goalw Order.thy [well_ord_def]
+    "!!r. well_ord(A,r) ==> wf[A](r)";
+by (safe_tac ZF_cs);
+qed "well_ord_is_wf";
+
+goalw Order.thy [well_ord_def, tot_ord_def, part_ord_def]
+    "!!r. well_ord(A,r) ==> trans[A](r)";
+by (safe_tac ZF_cs);
+qed "well_ord_is_trans_on";
 
+goalw Order.thy [well_ord_def, tot_ord_def]
+  "!!r. well_ord(A,r) ==> linear(A,r)";
+by (fast_tac ZF_cs 1);
+qed "well_ord_is_linear";
+
+
+(** Derived rules for pred(A,x,r) **)
+
+goalw Order.thy [pred_def] "y : pred(A,x,r) <-> <y,x>:r & y:A";
+by (fast_tac ZF_cs 1);
+qed "pred_iff";
+
+bind_thm ("predI", conjI RS (pred_iff RS iffD2));
+
+val [major,minor] = goalw Order.thy [pred_def]
+    "[| y: pred(A,x,r);  [| y:A; <y,x>:r |] ==> P |] ==> P";
+by (rtac (major RS CollectE) 1);
+by (REPEAT (ares_tac [minor] 1));
+qed "predE";
+
+goalw Order.thy [pred_def] "pred(A,x,r) <= r -`` {x}";
+by (fast_tac ZF_cs 1);
+qed "pred_subset_under";
+
+goalw Order.thy [pred_def] "pred(A,x,r) <= A";
+by (fast_tac ZF_cs 1);
+qed "pred_subset";
+
+goalw Order.thy [pred_def]
+    "pred(pred(A,x,r), y, r) = pred(A,x,r) Int pred(A,y,r)";
+by (fast_tac eq_cs 1);
+qed "pred_pred_eq";
+
+goalw Order.thy [trans_on_def, pred_def]
+    "!!r. [| trans[A](r);  <y,x>:r;  x:A;  y:A \
+\         |] ==> pred(pred(A,x,r), y, r) = pred(A,y,r)";
+by (fast_tac eq_cs 1);
+qed "trans_pred_pred_eq";
+
+(** The ordering's properties hold over all subsets of its domain 
+    [including initial segments of the form pred(A,x,r) **)
 
 (*Note: a relation s such that s<=r need not be a partial ordering*)
 goalw Order.thy [part_ord_def, irrefl_def, trans_on_def]
@@ -50,13 +124,52 @@
 qed "well_ord_subset";
 
 
-(** Order-isomorphisms **)
+(** Order-preserving (monotone) maps **)
+
+(*Rewriting with bijections and converse (function inverse)*)
+val bij_inverse_ss = 
+    ZF_ss setsolver (type_auto_tac [bij_is_fun, apply_type, 
+				    bij_converse_bij, comp_fun, comp_bij])
+          addsimps [right_inverse_bij, left_inverse_bij, comp_fun_apply];
+
+goalw Order.thy [mono_map_def] 
+    "!!f. f: mono_map(A,r,B,s) ==> f: A->B";
+by (etac CollectD1 1);
+qed "mono_map_is_fun";
+
+goalw Order.thy [mono_map_def, inj_def] 
+    "!!f. [| linear(A,r);  wf[B](s);  f: mono_map(A,r,B,s) |] ==> f: inj(A,B)";
+by (step_tac ZF_cs 1);
+by (linear_case_tac 1);
+by (REPEAT 
+    (EVERY [eresolve_tac [wf_on_not_refl RS notE] 1,
+	    eresolve_tac [ssubst] 2,
+	    fast_tac ZF_cs 2,
+	    REPEAT (ares_tac [apply_type] 1)]));
+qed "mono_map_is_inj";
+
+(*Transitivity of similarity: the order-isomorphism relation*)
+goalw Order.thy [mono_map_def] 
+    "!!f. [| g: mono_map(A,r,B,s);  f: mono_map(B,s,C,t) |] ==> \
+\         (f O g): mono_map(A,r,C,t)";
+by (safe_tac ZF_cs);
+by (ALLGOALS (asm_full_simp_tac bij_inverse_ss));
+qed "mono_map_trans";
+
+
+(** Order-isomorphisms -- or similarities, as Suppes calls them **)
+
+goalw Order.thy [ord_iso_def, mono_map_def]
+    "!!f. f: ord_iso(A,r,B,s) ==> f: mono_map(A,r,B,s)";
+by (fast_tac (ZF_cs addSDs [bij_is_fun]) 1);
+qed "ord_iso_is_mono_map";
 
 goalw Order.thy [ord_iso_def] 
     "!!f. f: ord_iso(A,r,B,s) ==> f: bij(A,B)";
 by (etac CollectD1 1);
 qed "ord_iso_is_bij";
 
+(*Needed?  But ord_iso_converse is!*)
 goalw Order.thy [ord_iso_def] 
     "!!f. [| f: ord_iso(A,r,B,s);  <x,y>: r;  x:A;  y:A |] ==> \
 \         <f`x, f`y> : s";
@@ -73,31 +186,100 @@
 by (asm_simp_tac (ZF_ss addsimps [right_inverse_bij]) 1);
 qed "ord_iso_converse";
 
-(*Rewriting with bijections and converse (function inverse)*)
-val bij_ss = ZF_ss setsolver (type_auto_tac [bij_is_fun RS apply_type, 
-					     bij_converse_bij])
-		   addsimps [right_inverse_bij, left_inverse_bij];
-
-(*Symmetry of the order-isomorphism relation*)
+(*Symmetry of similarity: the order-isomorphism relation*)
 goalw Order.thy [ord_iso_def] 
     "!!f. f: ord_iso(A,r,B,s) ==> converse(f): ord_iso(B,s,A,r)";
 by (safe_tac ZF_cs);
-by (ALLGOALS (asm_full_simp_tac bij_ss));
+by (ALLGOALS (asm_full_simp_tac bij_inverse_ss));
 qed "ord_iso_sym";
 
-val major::premx::premy::prems = goalw Order.thy [linear_def]
-    "[| linear(A,r);  x:A;  y:A;  \
-\       <x,y>:r ==> P;  x=y ==> P;  <y,x>:r ==> P |] ==> P";
-by (cut_facts_tac [major,premx,premy] 1);
-by (REPEAT_FIRST (eresolve_tac [ballE,disjE]));
-by (EVERY1 (map etac prems));
-by (ALLGOALS contr_tac);
-qed "linearE";
+(*Transitivity of similarity: the order-isomorphism relation*)
+goalw Order.thy [ord_iso_def] 
+    "!!f. [| g: ord_iso(A,r,B,s);  f: ord_iso(B,s,C,t) |] ==> \
+\         (f O g): ord_iso(A,r,C,t)";
+by (safe_tac ZF_cs);
+by (ALLGOALS (asm_full_simp_tac bij_inverse_ss));
+qed "ord_iso_trans";
+
+(** Two monotone maps can make an order-isomorphism **)
+
+goalw Order.thy [ord_iso_def, mono_map_def]
+    "!!f g. [| f: mono_map(A,r,B,s);  g: mono_map(B,s,A,r);	\
+\              f O g = id(B);  g O f = id(A) |] ==> f: ord_iso(A,r,B,s)";
+by (safe_tac ZF_cs);
+by (REPEAT_FIRST (ares_tac [fg_imp_bijective]));
+by (fast_tac ZF_cs 1);
+by (subgoal_tac "<g`(f`x), g`(f`y)> : r" 1);
+by (fast_tac (ZF_cs addIs [apply_type] addSEs [bspec RS bspec RS mp]) 2);
+by (asm_full_simp_tac 
+    (ZF_ss addsimps [comp_eq_id_iff RS iffD1]) 1);
+qed "mono_ord_isoI";
+
+goal Order.thy
+    "!!B. [| well_ord(A,r);  well_ord(B,s); 				\
+\            f: mono_map(A,r,B,s);  converse(f): mono_map(B,s,A,r)	\
+\         |] ==> f: ord_iso(A,r,B,s)";
+by (REPEAT (ares_tac [mono_ord_isoI] 1));
+by (forward_tac [mono_map_is_fun RS fun_is_rel] 1);
+by (etac (converse_converse RS subst) 1 THEN rtac left_comp_inverse 1);
+by (DEPTH_SOLVE (ares_tac [mono_map_is_inj, left_comp_inverse] 1
+          ORELSE eresolve_tac [well_ord_is_linear, well_ord_is_wf] 1));
+qed "well_ord_mono_ord_isoI";
+
+
+(** Order-isomorphisms preserve the ordering's properties **)
+
+goalw Order.thy [part_ord_def, irrefl_def, trans_on_def, ord_iso_def]
+    "!!A B r. [| part_ord(B,s);  f: ord_iso(A,r,B,s) |] ==> part_ord(A,r)";
+by (asm_simp_tac ZF_ss 1);
+by (fast_tac (ZF_cs addIs [bij_is_fun RS apply_type]) 1);
+qed "part_ord_ord_iso";
 
-(*Does the case analysis, deleting linear(A,r) and proving trivial subgoals*)
-val linear_case_tac =
-    SELECT_GOAL (EVERY [etac linearE 1, assume_tac 1, assume_tac 1,
-			REPEAT_SOME assume_tac]);
+goalw Order.thy [linear_def, ord_iso_def]
+    "!!A B r. [| linear(B,s);  f: ord_iso(A,r,B,s) |] ==> linear(A,r)";
+by (asm_simp_tac ZF_ss 1);
+by (safe_tac ZF_cs);
+by (dres_inst_tac [("x1", "f`x"), ("x", "f`xa")] (bspec RS bspec) 1);
+by (safe_tac (ZF_cs addSEs [bij_is_fun RS apply_type]));
+by (dres_inst_tac [("t", "op `(converse(f))")] subst_context 1);
+by (asm_full_simp_tac (ZF_ss addsimps [left_inverse_bij]) 1);
+qed "linear_ord_iso";
+
+(*FOR FOL/IFOL.ML*)
+fun iff_tac prems i =
+    resolve_tac (prems RL [iffE]) i THEN
+    REPEAT1 (eresolve_tac [asm_rl,mp] i);
+
+(*Reversed congruence rule!*)
+val conj_cong2 = prove_goal IFOL.thy 
+    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (Q&P) <-> (Q'&P')"
+ (fn prems =>
+  [ (cut_facts_tac prems 1),
+    (REPEAT  (ares_tac [iffI,conjI] 1
+      ORELSE  eresolve_tac [iffE,conjE,mp] 1
+      ORELSE  iff_tac prems 1)) ]);
+
+goalw Order.thy [wf_on_def, wf_def, ord_iso_def]
+    "!!A B r. [| wf[B](s);  f: ord_iso(A,r,B,s) |] ==> wf[A](r)";
+(*reversed &-congruence rule handles context of membership in A*)
+by (asm_full_simp_tac (ZF_ss addcongs [conj_cong2]) 1);
+by (safe_tac ZF_cs);
+by (dres_inst_tac [("x", "{f`z. z:Z Int A}")] spec 1);
+by (safe_tac eq_cs);
+by (dtac equalityD1 1);
+by (fast_tac (ZF_cs addSIs [bexI]) 1);
+by (fast_tac (ZF_cs addSIs [bexI]
+	      addIs [bij_is_fun RS apply_type]) 1);
+qed "wf_on_ord_iso";
+
+goalw Order.thy [well_ord_def, tot_ord_def]
+    "!!A B r. [| well_ord(B,s);  f: ord_iso(A,r,B,s) |] ==> well_ord(A,r)";
+by (fast_tac
+    (ZF_cs addSEs [part_ord_ord_iso, linear_ord_iso, wf_on_ord_iso]) 1);
+qed "well_ord_ord_iso";
+
+
+(*** Main results of Kunen, Chapter 1 section 6 ***)
 
 (*Inductive argument for proving Kunen's Lemma 6.1*)
 goalw Order.thy [well_ord_def, tot_ord_def, part_ord_def, pred_def]
@@ -131,18 +313,80 @@
 (*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment
                      of a well-ordering*)
 goal Order.thy
-    "!!r. [| well_ord(A,r);  x:A |] ==> f ~: ord_iso(A, r, pred(A,x,r), r)";
-by (safe_tac ZF_cs);
+    "!!r. [| well_ord(A,r);  f : ord_iso(A, r, pred(A,x,r), r);  x:A |] ==> P";
 by (metacut_tac not_well_ord_iso_pred_lemma 1);
-by (REPEAT_SOME assume_tac);
+by (REPEAT_FIRST assume_tac);
 (*Now we know f`x = x*)
 by (EVERY1 [dtac (ord_iso_is_bij RS bij_is_fun RS apply_type),
 	     assume_tac]);
 (*Now we know f`x : pred(A,x,r) *)
 by (asm_full_simp_tac (ZF_ss addsimps [well_ord_def, pred_def]) 1);
 by (fast_tac (ZF_cs addSEs [wf_on_not_refl RS notE]) 1);
-qed "not_well_ord_iso_pred";
+qed "well_ord_iso_predE";
+
+(*Simple consequence of Lemma 6.1*)
+goal Order.thy
+ "!!r. [| well_ord(A,r);  f : ord_iso(pred(A,a,r), r, pred(A,c,r), r);	\
+\         a:A;  c:A |] ==> a=c";
+by (forward_tac [well_ord_is_trans_on] 1);
+by (forward_tac [well_ord_is_linear] 1);
+by (linear_case_tac 1);
+by (dtac ord_iso_sym 1);
+by (REPEAT   (*because there are two symmetric cases*)
+    (EVERY [eresolve_tac [pred_subset RSN (2, well_ord_subset) RS
+			  well_ord_iso_predE] 1,
+	    fast_tac (ZF_cs addSIs [predI]) 2,
+	    asm_simp_tac (ZF_ss addsimps [trans_pred_pred_eq]) 1]));
+qed "well_ord_iso_pred_eq";
+
+(*Does not assume r is a wellordering!*)
+goalw Order.thy [ord_iso_def, pred_def]
+ "!!r. [| f : ord_iso(A,r,B,s);	  a:A |] ==> 	\
+\      f `` pred(A,a,r) = pred(B, f`a, s)";
+by (etac CollectE 1);
+by (asm_simp_tac 
+    (ZF_ss addsimps [[bij_is_fun, Collect_subset] MRS image_fun]) 1);
+by (safe_tac (eq_cs addSEs [bij_is_fun RS apply_type]));
+by (resolve_tac [RepFun_eqI] 1);
+by (fast_tac (ZF_cs addSIs [right_inverse_bij RS sym]) 1);
+by (asm_simp_tac
+    (ZF_ss addsimps [right_inverse_bij]
+           setsolver type_auto_tac
+	                [bij_is_fun, apply_funtype, bij_converse_bij]) 1);
+qed "ord_iso_image_pred";
 
+(*But in use, A and B may themselves be initial segments.  Then use
+  trans_pred_pred_eq to simplify the pred(pred...) terms.  See just below.*)
+goal Order.thy
+ "!!r. [| f : ord_iso(A,r,B,s);	  a:A |] ==> 	\
+\      restrict(f, pred(A,a,r)) : ord_iso(pred(A,a,r), r, pred(B, f`a, s), s)";
+by (asm_simp_tac (ZF_ss addsimps [ord_iso_image_pred RS sym]) 1);
+by (rewrite_goals_tac [ord_iso_def]);
+by (step_tac ZF_cs 1);
+by (asm_full_simp_tac (ZF_ss addsimps [pred_def]) 2);
+by (asm_full_simp_tac (ZF_ss addsimps [pred_def]) 2);
+by (eresolve_tac [[bij_is_inj, pred_subset] MRS restrict_bij] 1);
+qed "ord_iso_restrict_pred";
+
+(*Tricky; a lot of forward proof!*)
+goal Order.thy
+ "!!r. [| well_ord(A,r);  well_ord(B,s);  <a,c>: r;	\
+\         f : ord_iso(pred(A,a,r), r, pred(B,b,s), s);	\
+\         g : ord_iso(pred(A,c,r), r, pred(B,d,s), s);	\
+\         a:A;  c:A;  b:B;  d:B |] ==> <b,d>: s";
+by (forward_tac [ord_iso_is_bij RS bij_is_fun RS apply_type] 1  THEN
+    REPEAT1 (eresolve_tac [asm_rl, predI, predE] 1));
+by (subgoal_tac "b = g`a" 1);
+by (asm_simp_tac ZF_ss 1);
+by (resolve_tac [well_ord_iso_pred_eq] 1);
+by (REPEAT_SOME assume_tac);
+by (forward_tac [ord_iso_restrict_pred] 1  THEN
+    REPEAT1 (eresolve_tac [asm_rl, predI] 1));
+by (asm_full_simp_tac
+    (ZF_ss addsimps [well_ord_is_trans_on, trans_pred_pred_eq]) 1);
+by (eresolve_tac [ord_iso_sym RS ord_iso_trans] 1);
+by (assume_tac 1);
+qed "well_ord_iso_preserving";
 
 (*Inductive argument for proving Kunen's Lemma 6.2*)
 goalw Order.thy [well_ord_def, tot_ord_def, part_ord_def]
@@ -170,62 +414,157 @@
 by (asm_full_simp_tac bij_inverse_ss 1);
 qed "well_ord_iso_unique_lemma";
 
-
 (*Kunen's Lemma 6.2: Order-isomorphisms between well-orderings are unique*)
 goal Order.thy
-    "!!r. [| well_ord(A,r);  well_ord(B,s);  \
+    "!!r. [| well_ord(B,s);  \
 \            f: ord_iso(A,r, B,s);  g: ord_iso(A,r, B,s) |] ==> f = g";
 by (rtac fun_extension 1);
 by (etac (ord_iso_is_bij RS bij_is_fun) 1);
 by (etac (ord_iso_is_bij RS bij_is_fun) 1);
 by (rtac well_ord_iso_unique_lemma 1);
-by (REPEAT_SOME assume_tac);
+by (REPEAT_SOME (eresolve_tac [asm_rl, well_ord_ord_iso]));
 qed "well_ord_iso_unique";
 
 
-goalw Order.thy [irrefl_def, part_ord_def, tot_ord_def, 
-		 trans_on_def, well_ord_def]
-    "!!r. [| wf[A](r); linear(A,r) |] ==> well_ord(A,r)";
-by (asm_simp_tac (ZF_ss addsimps [wf_on_not_refl]) 1);
+(** Towards Kunen's Theorem 6.3: linearity of the similarity relation **)
+
+goalw Order.thy [ord_iso_map_def]
+    "ord_iso_map(A,r,B,s) <= A*B";
+by (fast_tac ZF_cs 1);
+qed "ord_iso_map_subset";
+
+goalw Order.thy [ord_iso_map_def]
+    "domain(ord_iso_map(A,r,B,s)) <= A";
+by (fast_tac ZF_cs 1);
+qed "domain_ord_iso_map";
+
+goalw Order.thy [ord_iso_map_def]
+    "range(ord_iso_map(A,r,B,s)) <= B";
+by (fast_tac ZF_cs 1);
+qed "range_ord_iso_map";
+
+goalw Order.thy [ord_iso_map_def]
+    "converse(ord_iso_map(A,r,B,s)) = ord_iso_map(B,s,A,r)";
+by (fast_tac (eq_cs addIs [ord_iso_sym]) 1);
+qed "converse_ord_iso_map";
+
+goalw Order.thy [ord_iso_map_def, function_def]
+    "!!B. well_ord(B,s) ==> function(ord_iso_map(A,r,B,s))";
 by (safe_tac ZF_cs);
-by (linear_case_tac 1);
-(*case x=xb*)
-by (fast_tac (ZF_cs addSEs [wf_on_asym]) 1);
-(*case x<xb*)
-by (fast_tac (ZF_cs addSEs [wf_on_chain3]) 1);
-qed "well_ordI";
+by (resolve_tac [well_ord_iso_pred_eq] 1);
+by (REPEAT_SOME assume_tac);
+by (eresolve_tac [ord_iso_sym RS ord_iso_trans] 1);
+by (assume_tac 1);
+qed "function_ord_iso_map";
+
+goal Order.thy
+    "!!B. well_ord(B,s) ==> ord_iso_map(A,r,B,s) 	\
+\          : domain(ord_iso_map(A,r,B,s)) -> range(ord_iso_map(A,r,B,s))";
+by (asm_simp_tac 
+    (ZF_ss addsimps [Pi_iff, function_ord_iso_map,
+		     ord_iso_map_subset RS domain_times_range]) 1);
+qed "ord_iso_map_fun";
 
-goalw Order.thy [well_ord_def]
-    "!!r. well_ord(A,r) ==> wf[A](r)";
+goalw Order.thy [mono_map_def]
+    "!!B. [| well_ord(A,r);  well_ord(B,s) |] ==> ord_iso_map(A,r,B,s) 	\
+\          : mono_map(domain(ord_iso_map(A,r,B,s)), r, 	\
+\	              range(ord_iso_map(A,r,B,s)), s)";
+by (asm_simp_tac (ZF_ss addsimps [ord_iso_map_fun]) 1);
 by (safe_tac ZF_cs);
-qed "well_ord_is_wf";
+by (subgoals_tac ["x:A", "xa:A", "y:B", "ya:B"] 1);
+by (REPEAT 
+    (fast_tac (ZF_cs addSEs [ord_iso_map_subset RS subsetD RS SigmaE]) 2));
+by (asm_simp_tac (ZF_ss addsimps [ord_iso_map_fun RSN (2,apply_equality)]) 1);
+by (rewrite_goals_tac [ord_iso_map_def]);
+by (safe_tac (ZF_cs addSEs [UN_E]));
+by (resolve_tac [well_ord_iso_preserving] 1 THEN REPEAT_FIRST assume_tac);
+qed "ord_iso_map_mono_map";
 
-goalw Order.thy [well_ord_def, tot_ord_def, part_ord_def]
-    "!!r. well_ord(A,r) ==> trans[A](r)";
-by (safe_tac ZF_cs);
-qed "well_ord_is_trans_on";
+goalw Order.thy [mono_map_def]
+    "!!B. [| well_ord(A,r);  well_ord(B,s) |] ==> ord_iso_map(A,r,B,s) 	\
+\          : ord_iso(domain(ord_iso_map(A,r,B,s)), r, 	\
+\	              range(ord_iso_map(A,r,B,s)), s)";
+by (resolve_tac [well_ord_mono_ord_isoI] 1);
+by (resolve_tac [converse_ord_iso_map RS subst] 4);
+by (asm_simp_tac 
+    (ZF_ss addsimps [ord_iso_map_subset RS converse_converse, 
+		     domain_converse, range_converse]) 4);
+by (REPEAT (ares_tac [ord_iso_map_mono_map] 3));
+by (ALLGOALS (etac well_ord_subset));
+by (ALLGOALS (resolve_tac [domain_ord_iso_map, range_ord_iso_map]));
+qed "ord_iso_map_ord_iso";
 
-(*** Derived rules for pred(A,x,r) ***)
-
-val [major,minor] = goalw Order.thy [pred_def]
-    "[| y: pred(A,x,r);  [| y:A; <y,x>:r |] ==> P |] ==> P";
-by (rtac (major RS CollectE) 1);
-by (REPEAT (ares_tac [minor] 1));
-qed "predE";
-
-goalw Order.thy [pred_def] "pred(A,x,r) <= r -`` {x}";
+(*One way of saying that domain(ord_iso_map(A,r,B,s)) is downwards-closed*)
+goalw Order.thy [ord_iso_map_def]
+  "!!B. [| well_ord(A,r);  well_ord(B,s);    		\
+\          x: A;  x ~: domain(ord_iso_map(A,r,B,s)) 	\
+\       |] ==>  domain(ord_iso_map(A,r,B,s)) <= pred(A, x, r)";
+by (step_tac (ZF_cs addSIs [predI]) 1);
+(*Case analysis on  xaa vs x in r *)
+by (forw_inst_tac [("A","A")] well_ord_is_linear 1);
+by (linear_case_tac 1);
+(*Trivial case: xaa=x*)
 by (fast_tac ZF_cs 1);
-qed "pred_subset_under";
+(*Harder case: <x, xaa>: r*)
+by (forward_tac [ord_iso_is_bij RS bij_is_fun RS apply_type] 1  THEN
+    REPEAT1 (eresolve_tac [asm_rl, predI, predE] 1));
+by (forward_tac [ord_iso_restrict_pred] 1  THEN
+    REPEAT1 (eresolve_tac [asm_rl, predI] 1));
+by (asm_full_simp_tac
+    (ZF_ss addsimps [well_ord_is_trans_on, trans_pred_pred_eq]) 1);
+by (fast_tac ZF_cs 1);
+qed "domain_ord_iso_map_subset";
 
-goalw Order.thy [pred_def] "pred(A,x,r) <= A";
-by (fast_tac ZF_cs 1);
-qed "pred_subset";
+(*For the 4-way case analysis in the main result*)
+goal Order.thy
+  "!!B. [| well_ord(A,r);  well_ord(B,s) |] ==> \
+\       domain(ord_iso_map(A,r,B,s)) = A |	\
+\       (EX x:A. domain(ord_iso_map(A,r,B,s)) = pred(A,x,r))";
+by (forward_tac [well_ord_is_wf] 1);
+by (rewrite_goals_tac [wf_on_def, wf_def]);
+by (dres_inst_tac [("x", "A-domain(ord_iso_map(A,r,B,s))")] spec 1);
+by (step_tac ZF_cs 1);
+(*The first case: the domain equals A*)
+by (rtac (domain_ord_iso_map RS equalityI) 1);
+by (etac (Diff_eq_0_iff RS iffD1) 1);
+(*The other case: the domain equals an initial segment*)
+by (swap_res_tac [bexI] 1);
+by (assume_tac 2);
+by (rtac equalityI 1);
+(*not ZF_cs below; that would use rules like domainE!*)
+by (fast_tac (pair_cs addSEs [predE]) 2);
+by (REPEAT (ares_tac [domain_ord_iso_map_subset] 1));
+qed "domain_ord_iso_map_cases";
 
-goalw Order.thy [pred_def] "y : pred(A,x,r) <-> <y,x>:r & y:A";
+(*As above, by duality*)
+goal Order.thy
+  "!!B. [| well_ord(A,r);  well_ord(B,s) |] ==>	\
+\       range(ord_iso_map(A,r,B,s)) = B |	\
+\       (EX y:B. range(ord_iso_map(A,r,B,s))= pred(B,y,s))";
+by (resolve_tac [converse_ord_iso_map RS subst] 1);
+by (asm_simp_tac
+    (ZF_ss addsimps [range_converse, domain_ord_iso_map_cases]) 1);
+qed "range_ord_iso_map_cases";
+
+(*Kunen's Theorem 6.3: Fundamental Theorem for Well-Ordered Sets*)
+goal Order.thy
+  "!!B. [| well_ord(A,r);  well_ord(B,s) |] ==>  	\
+\       ord_iso_map(A,r,B,s) : ord_iso(A, r, B, s) |	\
+\       (EX x:A. ord_iso_map(A,r,B,s) : ord_iso(pred(A,x,r), r, B, s)) | \
+\       (EX y:B. ord_iso_map(A,r,B,s) : ord_iso(A, r, pred(B,y,s), s))";
+by (forw_inst_tac [("B","B")] domain_ord_iso_map_cases 1);
+by (forw_inst_tac [("B","B")] range_ord_iso_map_cases 2);
+by (REPEAT_FIRST (eresolve_tac [asm_rl, disjE, bexE]));
+by (ALLGOALS (dresolve_tac [ord_iso_map_ord_iso] THEN' assume_tac THEN' 
+	      asm_full_simp_tac (ZF_ss addsimps [bexI])));
+
+by (resolve_tac [wf_on_not_refl RS notE] 1);
+by (eresolve_tac [well_ord_is_wf] 1);
+by (assume_tac 1);
+by (subgoal_tac "<x,y>: ord_iso_map(A,r,B,s)" 1);
+by (dresolve_tac [rangeI] 1);
+by (asm_full_simp_tac (ZF_ss addsimps [pred_def]) 1);
+by (rewrite_goals_tac [ord_iso_map_def]);
 by (fast_tac ZF_cs 1);
-qed "pred_iff";
+qed "well_ord_trichotomy";
 
-goalw Order.thy [pred_def]
-    "pred(pred(A,x,r), y, r) = pred(A,x,r) Int pred(A,y,r)";
-by (fast_tac eq_cs 1);
-qed "pred_pred_eq";