Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
--- a/src/HOL/Binomial.thy Mon Jan 11 15:20:17 2016 +0100
+++ b/src/HOL/Binomial.thy Mon Jan 11 16:38:39 2016 +0100
@@ -76,7 +76,7 @@
by (metis of_nat_mult order_refl power_Suc)
finally show ?case .
qed simp
-
+
end
text\<open>Note that @{term "fact 0 = fact 1"}\<close>
@@ -94,11 +94,17 @@
shows "1 \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> m dvd fact n"
by (induct n) (auto simp: dvdI le_Suc_eq)
+lemma fact_ge_self: "fact n \<ge> n"
+ by (cases "n = 0") (simp_all add: dvd_imp_le dvd_fact)
+
lemma fact_altdef_nat: "fact n = \<Prod>{1..n}"
by (induct n) (auto simp: atLeastAtMostSuc_conv)
-lemma fact_altdef: "fact n = setprod of_nat {1..n}"
+lemma fact_altdef: "fact n = (\<Prod>i=1..n. of_nat i)"
by (induct n) (auto simp: atLeastAtMostSuc_conv)
+
+lemma fact_altdef': "fact n = of_nat (\<Prod>{1..n})"
+ by (subst fact_altdef_nat [symmetric]) simp
lemma fact_dvd: "n \<le> m \<Longrightarrow> fact n dvd (fact m :: 'a :: {semiring_div,linordered_semidom})"
by (induct m) (auto simp: le_Suc_eq)
@@ -1538,4 +1544,42 @@
(simp_all only: ac_simps diff_Suc_Suc Suc_diff_le diff_add_inverse fact_Suc of_nat_id)
qed
+
+
+lemma fact_code [code]:
+ "fact n = (of_nat (fold_atLeastAtMost_nat (op *) 2 n 1) :: 'a :: semiring_char_0)"
+proof -
+ have "fact n = (of_nat (\<Prod>{1..n}) :: 'a)" by (simp add: fact_altdef')
+ also have "\<Prod>{1..n} = \<Prod>{2..n}"
+ by (intro setprod.mono_neutral_right) auto
+ also have "\<dots> = fold_atLeastAtMost_nat (op *) 2 n 1"
+ by (simp add: setprod_atLeastAtMost_code)
+ finally show ?thesis .
+qed
+
+lemma pochhammer_code [code]:
+ "pochhammer a n = (if n = 0 then 1 else
+ fold_atLeastAtMost_nat (\<lambda>n acc. (a + of_nat n) * acc) 0 (n - 1) 1)"
+ by (simp add: setprod_atLeastAtMost_code pochhammer_def)
+
+lemma gbinomial_code [code]:
+ "a gchoose n = (if n = 0 then 1 else
+ fold_atLeastAtMost_nat (\<lambda>n acc. (a - of_nat n) * acc) 0 (n - 1) 1 / fact n)"
+ by (simp add: setprod_atLeastAtMost_code gbinomial_def)
+
+lemma binomial_code [code]:
+ "(n choose k) =
+ (if k > n then 0
+ else if 2 * k > n then (n choose (n - k))
+ else (fold_atLeastAtMost_nat (op *) (n-k+1) n 1 div fact k))"
+proof -
+ {
+ assume "k \<le> n"
+ hence "{1..n} = {1..n-k} \<union> {n-k+1..n}" by auto
+ hence "(fact n :: nat) = fact (n-k) * \<Prod>{n-k+1..n}"
+ by (simp add: setprod.union_disjoint fact_altdef_nat)
+ }
+ thus ?thesis by (auto simp: binomial_altdef_nat mult_ac setprod_atLeastAtMost_code)
+qed
+
end
--- a/src/HOL/Int.thy Mon Jan 11 15:20:17 2016 +0100
+++ b/src/HOL/Int.thy Mon Jan 11 16:38:39 2016 +0100
@@ -314,6 +314,12 @@
"of_int z < 1 \<longleftrightarrow> z < 1"
using of_int_less_iff [of z 1] by simp
+lemma of_int_pos: "z > 0 \<Longrightarrow> of_int z > 0"
+ by simp
+
+lemma of_int_nonneg: "z \<ge> 0 \<Longrightarrow> of_int z \<ge> 0"
+ by simp
+
end
text \<open>Comparisons involving @{term of_int}.\<close>
--- a/src/HOL/Library/Fundamental_Theorem_Algebra.thy Mon Jan 11 15:20:17 2016 +0100
+++ b/src/HOL/Library/Fundamental_Theorem_Algebra.thy Mon Jan 11 16:38:39 2016 +0100
@@ -1066,11 +1066,6 @@
qed
qed
-lemma divides_degree:
- assumes pq: "p dvd (q:: complex poly)"
- shows "degree p \<le> degree q \<or> q = 0"
- by (metis dvd_imp_degree_le pq)
-
text \<open>Arithmetic operations on multivariate polynomials.\<close>
lemma mpoly_base_conv:
--- a/src/HOL/Library/Poly_Deriv.thy Mon Jan 11 15:20:17 2016 +0100
+++ b/src/HOL/Library/Poly_Deriv.thy Mon Jan 11 16:38:39 2016 +0100
@@ -11,7 +11,7 @@
subsection \<open>Derivatives of univariate polynomials\<close>
-function pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly"
+function pderiv :: "('a :: semidom) poly \<Rightarrow> 'a poly"
where
[simp del]: "pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))"
by (auto intro: pCons_cases)
@@ -27,27 +27,98 @@
"pderiv (pCons a p) = p + pCons 0 (pderiv p)"
by (simp add: pderiv.simps)
+lemma pderiv_1 [simp]: "pderiv 1 = 0"
+ unfolding one_poly_def by (simp add: pderiv_pCons)
+
+lemma pderiv_of_nat [simp]: "pderiv (of_nat n) = 0"
+ and pderiv_numeral [simp]: "pderiv (numeral m) = 0"
+ by (simp_all add: of_nat_poly numeral_poly pderiv_pCons)
+
lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
by (induct p arbitrary: n)
(auto simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
-primrec pderiv_coeffs :: "'a::comm_monoid_add list \<Rightarrow> 'a list"
-where
- "pderiv_coeffs [] = []"
-| "pderiv_coeffs (x # xs) = plus_coeffs xs (cCons 0 (pderiv_coeffs xs))"
+fun pderiv_coeffs_code :: "('a :: semidom) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+ "pderiv_coeffs_code f (x # xs) = cCons (f * x) (pderiv_coeffs_code (f+1) xs)"
+| "pderiv_coeffs_code f [] = []"
+
+definition pderiv_coeffs :: "('a :: semidom) list \<Rightarrow> 'a list" where
+ "pderiv_coeffs xs = pderiv_coeffs_code 1 (tl xs)"
-lemma coeffs_pderiv [code abstract]:
- "coeffs (pderiv p) = pderiv_coeffs (coeffs p)"
- by (rule sym, induct p) (simp_all add: pderiv_pCons coeffs_plus_eq_plus_coeffs cCons_def)
+(* Efficient code for pderiv contributed by René Thiemann and Akihisa Yamada *)
+lemma pderiv_coeffs_code:
+ "nth_default 0 (pderiv_coeffs_code f xs) n = (f + of_nat n) * (nth_default 0 xs n)"
+proof (induct xs arbitrary: f n)
+ case (Cons x xs f n)
+ show ?case
+ proof (cases n)
+ case 0
+ thus ?thesis by (cases "pderiv_coeffs_code (f + 1) xs = [] \<and> f * x = 0", auto simp: cCons_def)
+ next
+ case (Suc m) note n = this
+ show ?thesis
+ proof (cases "pderiv_coeffs_code (f + 1) xs = [] \<and> f * x = 0")
+ case False
+ hence "nth_default 0 (pderiv_coeffs_code f (x # xs)) n =
+ nth_default 0 (pderiv_coeffs_code (f + 1) xs) m"
+ by (auto simp: cCons_def n)
+ also have "\<dots> = (f + of_nat n) * (nth_default 0 xs m)"
+ unfolding Cons by (simp add: n add_ac)
+ finally show ?thesis by (simp add: n)
+ next
+ case True
+ {
+ fix g
+ have "pderiv_coeffs_code g xs = [] \<Longrightarrow> g + of_nat m = 0 \<or> nth_default 0 xs m = 0"
+ proof (induct xs arbitrary: g m)
+ case (Cons x xs g)
+ from Cons(2) have empty: "pderiv_coeffs_code (g + 1) xs = []"
+ and g: "(g = 0 \<or> x = 0)"
+ by (auto simp: cCons_def split: if_splits)
+ note IH = Cons(1)[OF empty]
+ from IH[of m] IH[of "m - 1"] g
+ show ?case by (cases m, auto simp: field_simps)
+ qed simp
+ } note empty = this
+ from True have "nth_default 0 (pderiv_coeffs_code f (x # xs)) n = 0"
+ by (auto simp: cCons_def n)
+ moreover have "(f + of_nat n) * nth_default 0 (x # xs) n = 0" using True
+ by (simp add: n, insert empty[of "f+1"], auto simp: field_simps)
+ ultimately show ?thesis by simp
+ qed
+ qed
+qed simp
-lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
+lemma map_upt_Suc: "map f [0 ..< Suc n] = f 0 # map (\<lambda> i. f (Suc i)) [0 ..< n]"
+ by (induct n arbitrary: f, auto)
+
+lemma coeffs_pderiv_code [code abstract]:
+ "coeffs (pderiv p) = pderiv_coeffs (coeffs p)" unfolding pderiv_coeffs_def
+proof (rule coeffs_eqI, unfold pderiv_coeffs_code coeff_pderiv, goal_cases)
+ case (1 n)
+ have id: "coeff p (Suc n) = nth_default 0 (map (\<lambda>i. coeff p (Suc i)) [0..<degree p]) n"
+ by (cases "n < degree p", auto simp: nth_default_def coeff_eq_0)
+ show ?case unfolding coeffs_def map_upt_Suc by (auto simp: id)
+next
+ case 2
+ obtain n xs where id: "tl (coeffs p) = xs" "(1 :: 'a) = n" by auto
+ from 2 show ?case
+ unfolding id by (induct xs arbitrary: n, auto simp: cCons_def)
+qed
+
+context
+ assumes "SORT_CONSTRAINT('a::{semidom, semiring_char_0})"
+begin
+
+lemma pderiv_eq_0_iff:
+ "pderiv (p :: 'a poly) = 0 \<longleftrightarrow> degree p = 0"
apply (rule iffI)
apply (cases p, simp)
apply (simp add: poly_eq_iff coeff_pderiv del: of_nat_Suc)
apply (simp add: poly_eq_iff coeff_pderiv coeff_eq_0)
done
-lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
+lemma degree_pderiv: "degree (pderiv (p :: 'a poly)) = degree p - 1"
apply (rule order_antisym [OF degree_le])
apply (simp add: coeff_pderiv coeff_eq_0)
apply (cases "degree p", simp)
@@ -56,14 +127,30 @@
apply (metis degree_0 leading_coeff_0_iff nat.distinct(1))
done
+lemma not_dvd_pderiv:
+ assumes "degree (p :: 'a poly) \<noteq> 0"
+ shows "\<not> p dvd pderiv p"
+proof
+ assume dvd: "p dvd pderiv p"
+ then obtain q where p: "pderiv p = p * q" unfolding dvd_def by auto
+ from dvd have le: "degree p \<le> degree (pderiv p)"
+ by (simp add: assms dvd_imp_degree_le pderiv_eq_0_iff)
+ from this[unfolded degree_pderiv] assms show False by auto
+qed
+
+lemma dvd_pderiv_iff [simp]: "(p :: 'a poly) dvd pderiv p \<longleftrightarrow> degree p = 0"
+ using not_dvd_pderiv[of p] by (auto simp: pderiv_eq_0_iff [symmetric])
+
+end
+
lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
by (simp add: pderiv_pCons)
lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
by (rule poly_eqI, simp add: coeff_pderiv algebra_simps)
-lemma pderiv_minus: "pderiv (- p) = - pderiv p"
-by (rule poly_eqI, simp add: coeff_pderiv)
+lemma pderiv_minus: "pderiv (- p :: 'a :: idom poly) = - pderiv p"
+by (rule poly_eqI, simp add: coeff_pderiv algebra_simps)
lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q"
by (rule poly_eqI, simp add: coeff_pderiv algebra_simps)
@@ -85,6 +172,27 @@
apply (simp add: algebra_simps)
done
+lemma pderiv_setprod: "pderiv (setprod f (as)) =
+ (\<Sum>a \<in> as. setprod f (as - {a}) * pderiv (f a))"
+proof (induct as rule: infinite_finite_induct)
+ case (insert a as)
+ hence id: "setprod f (insert a as) = f a * setprod f as"
+ "\<And> g. setsum g (insert a as) = g a + setsum g as"
+ "insert a as - {a} = as"
+ by auto
+ {
+ fix b
+ assume "b \<in> as"
+ hence id2: "insert a as - {b} = insert a (as - {b})" using `a \<notin> as` by auto
+ have "setprod f (insert a as - {b}) = f a * setprod f (as - {b})"
+ unfolding id2
+ by (subst setprod.insert, insert insert, auto)
+ } note id2 = this
+ show ?case
+ unfolding id pderiv_mult insert(3) setsum_right_distrib
+ by (auto simp add: ac_simps id2 intro!: setsum.cong)
+qed auto
+
lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
by (rule DERIV_cong, rule DERIV_pow, simp)
declare DERIV_pow2 [simp] DERIV_pow [simp]
@@ -92,7 +200,7 @@
lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D"
by (rule DERIV_cong, rule DERIV_add, auto)
-lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
+lemma poly_DERIV [simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
by (induct p, auto intro!: derivative_eq_intros simp add: pderiv_pCons)
lemma continuous_on_poly [continuous_intros]:
@@ -186,6 +294,104 @@
qed
+subsection \<open>Algebraic numbers\<close>
+
+text \<open>
+ Algebraic numbers can be defined in two equivalent ways: all real numbers that are
+ roots of rational polynomials or of integer polynomials. The Algebraic-Numbers AFP entry
+ uses the rational definition, but we need the integer definition.
+
+ The equivalence is obvious since any rational polynomial can be multiplied with the
+ LCM of its coefficients, yielding an integer polynomial with the same roots.
+\<close>
+subsection \<open>Algebraic numbers\<close>
+
+definition algebraic :: "'a :: field_char_0 \<Rightarrow> bool" where
+ "algebraic x \<longleftrightarrow> (\<exists>p. (\<forall>i. coeff p i \<in> \<int>) \<and> p \<noteq> 0 \<and> poly p x = 0)"
+
+lemma algebraicI:
+ assumes "\<And>i. coeff p i \<in> \<int>" "p \<noteq> 0" "poly p x = 0"
+ shows "algebraic x"
+ using assms unfolding algebraic_def by blast
+
+lemma algebraicE:
+ assumes "algebraic x"
+ obtains p where "\<And>i. coeff p i \<in> \<int>" "p \<noteq> 0" "poly p x = 0"
+ using assms unfolding algebraic_def by blast
+
+lemma quotient_of_denom_pos': "snd (quotient_of x) > 0"
+ using quotient_of_denom_pos[OF surjective_pairing] .
+
+lemma of_int_div_in_Ints:
+ "b dvd a \<Longrightarrow> of_int a div of_int b \<in> (\<int> :: 'a :: ring_div set)"
+proof (cases "of_int b = (0 :: 'a)")
+ assume "b dvd a" "of_int b \<noteq> (0::'a)"
+ then obtain c where "a = b * c" by (elim dvdE)
+ with \<open>of_int b \<noteq> (0::'a)\<close> show ?thesis by simp
+qed auto
+
+lemma of_int_divide_in_Ints:
+ "b dvd a \<Longrightarrow> of_int a / of_int b \<in> (\<int> :: 'a :: field set)"
+proof (cases "of_int b = (0 :: 'a)")
+ assume "b dvd a" "of_int b \<noteq> (0::'a)"
+ then obtain c where "a = b * c" by (elim dvdE)
+ with \<open>of_int b \<noteq> (0::'a)\<close> show ?thesis by simp
+qed auto
+
+lemma algebraic_altdef:
+ fixes p :: "'a :: field_char_0 poly"
+ shows "algebraic x \<longleftrightarrow> (\<exists>p. (\<forall>i. coeff p i \<in> \<rat>) \<and> p \<noteq> 0 \<and> poly p x = 0)"
+proof safe
+ fix p assume rat: "\<forall>i. coeff p i \<in> \<rat>" and root: "poly p x = 0" and nz: "p \<noteq> 0"
+ def cs \<equiv> "coeffs p"
+ from rat have "\<forall>c\<in>range (coeff p). \<exists>c'. c = of_rat c'" unfolding Rats_def by blast
+ then obtain f where f: "\<And>i. coeff p i = of_rat (f (coeff p i))"
+ by (subst (asm) bchoice_iff) blast
+ def cs' \<equiv> "map (quotient_of \<circ> f) (coeffs p)"
+ def d \<equiv> "Lcm (set (map snd cs'))"
+ def p' \<equiv> "smult (of_int d) p"
+
+ have "\<forall>n. coeff p' n \<in> \<int>"
+ proof
+ fix n :: nat
+ show "coeff p' n \<in> \<int>"
+ proof (cases "n \<le> degree p")
+ case True
+ def c \<equiv> "coeff p n"
+ def a \<equiv> "fst (quotient_of (f (coeff p n)))" and b \<equiv> "snd (quotient_of (f (coeff p n)))"
+ have b_pos: "b > 0" unfolding b_def using quotient_of_denom_pos' by simp
+ have "coeff p' n = of_int d * coeff p n" by (simp add: p'_def)
+ also have "coeff p n = of_rat (of_int a / of_int b)" unfolding a_def b_def
+ by (subst quotient_of_div [of "f (coeff p n)", symmetric])
+ (simp_all add: f [symmetric])
+ also have "of_int d * \<dots> = of_rat (of_int (a*d) / of_int b)"
+ by (simp add: of_rat_mult of_rat_divide)
+ also from nz True have "b \<in> snd ` set cs'" unfolding cs'_def
+ by (force simp: o_def b_def coeffs_def simp del: upt_Suc)
+ hence "b dvd (a * d)" unfolding d_def by simp
+ hence "of_int (a * d) / of_int b \<in> (\<int> :: rat set)"
+ by (rule of_int_divide_in_Ints)
+ hence "of_rat (of_int (a * d) / of_int b) \<in> \<int>" by (elim Ints_cases) auto
+ finally show ?thesis .
+ qed (auto simp: p'_def not_le coeff_eq_0)
+ qed
+
+ moreover have "set (map snd cs') \<subseteq> {0<..}"
+ unfolding cs'_def using quotient_of_denom_pos' by (auto simp: coeffs_def simp del: upt_Suc)
+ hence "d \<noteq> 0" unfolding d_def by (induction cs') simp_all
+ with nz have "p' \<noteq> 0" by (simp add: p'_def)
+ moreover from root have "poly p' x = 0" by (simp add: p'_def)
+ ultimately show "algebraic x" unfolding algebraic_def by blast
+next
+
+ assume "algebraic x"
+ then obtain p where p: "\<And>i. coeff p i \<in> \<int>" "poly p x = 0" "p \<noteq> 0"
+ by (force simp: algebraic_def)
+ moreover have "coeff p i \<in> \<int> \<Longrightarrow> coeff p i \<in> \<rat>" for i by (elim Ints_cases) simp
+ ultimately show "(\<exists>p. (\<forall>i. coeff p i \<in> \<rat>) \<and> p \<noteq> 0 \<and> poly p x = 0)" by auto
+qed
+
+
text\<open>Lemmas for Derivatives\<close>
lemma order_unique_lemma:
@@ -209,12 +415,8 @@
apply (simp del: power_Suc of_nat_Suc add: pderiv_pCons)
done
-lemma dvd_add_cancel1:
- fixes a b c :: "'a::comm_ring_1"
- shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c"
- by (drule (1) Rings.dvd_diff, simp)
-
lemma lemma_order_pderiv:
+ fixes p :: "'a :: field_char_0 poly"
assumes n: "0 < n"
and pd: "pderiv p \<noteq> 0"
and pe: "p = [:- a, 1:] ^ n * q"
@@ -226,8 +428,8 @@
using assms by auto
obtain n' where "n = Suc n'" "0 < Suc n'" "pderiv ([:- a, 1:] ^ Suc n' * q) \<noteq> 0"
using assms by (cases n) auto
- then have *: "!!k l. k dvd k * pderiv q + smult (of_nat (Suc n')) l \<Longrightarrow> k dvd l"
- by (metis dvd_add_cancel1 dvd_smult_iff dvd_triv_left of_nat_eq_0_iff old.nat.distinct(2))
+ have *: "!!k l. k dvd k * pderiv q + smult (of_nat (Suc n')) l \<Longrightarrow> k dvd l"
+ by (auto simp del: of_nat_Suc simp: dvd_add_right_iff dvd_smult_iff)
have "n' = order a (pderiv ([:- a, 1:] ^ Suc n' * q))"
proof (rule order_unique_lemma)
show "[:- a, 1:] ^ n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)"
@@ -262,8 +464,9 @@
from C D show ?thesis by blast
qed
-lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
- ==> (order a p = Suc (order a (pderiv p)))"
+lemma order_pderiv:
+ "\<lbrakk>pderiv p \<noteq> 0; order a (p :: 'a :: field_char_0 poly) \<noteq> 0\<rbrakk> \<Longrightarrow>
+ (order a p = Suc (order a (pderiv p)))"
apply (case_tac "p = 0", simp)
apply (drule_tac a = a and p = p in order_decomp)
using neq0_conv
@@ -344,7 +547,7 @@
done
lemma poly_squarefree_decomp_order:
- assumes "pderiv p \<noteq> 0"
+ assumes "pderiv (p :: 'a :: field_char_0 poly) \<noteq> 0"
and p: "p = q * d"
and p': "pderiv p = e * d"
and d: "d = r * p + s * pderiv p"
@@ -379,28 +582,31 @@
by auto
qed
-lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0;
- p = q * d;
- pderiv p = e * d;
- d = r * p + s * pderiv p
- |] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
+lemma poly_squarefree_decomp_order2:
+ "\<lbrakk>pderiv p \<noteq> (0 :: 'a :: field_char_0 poly);
+ p = q * d;
+ pderiv p = e * d;
+ d = r * p + s * pderiv p
+ \<rbrakk> \<Longrightarrow> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
by (blast intro: poly_squarefree_decomp_order)
-lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
- ==> (order a (pderiv p) = n) = (order a p = Suc n)"
+lemma order_pderiv2:
+ "\<lbrakk>pderiv p \<noteq> 0; order a (p :: 'a :: field_char_0 poly) \<noteq> 0\<rbrakk>
+ \<Longrightarrow> (order a (pderiv p) = n) = (order a p = Suc n)"
by (auto dest: order_pderiv)
definition
rsquarefree :: "'a::idom poly => bool" where
"rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))"
-lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
+lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h :: 'a :: {semidom,semiring_char_0}:]"
apply (simp add: pderiv_eq_0_iff)
apply (case_tac p, auto split: if_splits)
done
lemma rsquarefree_roots:
- "rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))"
+ fixes p :: "'a :: field_char_0 poly"
+ shows "rsquarefree p = (\<forall>a. \<not>(poly p a = 0 \<and> poly (pderiv p) a = 0))"
apply (simp add: rsquarefree_def)
apply (case_tac "p = 0", simp, simp)
apply (case_tac "pderiv p = 0")
@@ -411,7 +617,7 @@
done
lemma poly_squarefree_decomp:
- assumes "pderiv p \<noteq> 0"
+ assumes "pderiv (p :: 'a :: field_char_0 poly) \<noteq> 0"
and "p = q * d"
and "pderiv p = e * d"
and "d = r * p + s * pderiv p"
--- a/src/HOL/Library/Polynomial.thy Mon Jan 11 15:20:17 2016 +0100
+++ b/src/HOL/Library/Polynomial.thy Mon Jan 11 16:38:39 2016 +0100
@@ -456,7 +456,7 @@
lemma poly_0 [simp]:
"poly 0 x = 0"
by (simp add: poly_def)
-
+
lemma poly_pCons [simp]:
"poly (pCons a p) x = a + x * poly p x"
by (cases "p = 0 \<and> a = 0") (auto simp add: poly_def)
@@ -480,6 +480,9 @@
qed simp
qed simp
+lemma poly_0_coeff_0: "poly p 0 = coeff p 0"
+ by (cases p) (auto simp: poly_altdef)
+
subsection \<open>Monomials\<close>
@@ -744,6 +747,28 @@
lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
by (induct A rule: infinite_finite_induct) simp_all
+lemma degree_setsum_le: "finite S \<Longrightarrow> (\<And> p . p \<in> S \<Longrightarrow> degree (f p) \<le> n)
+ \<Longrightarrow> degree (setsum f S) \<le> n"
+proof (induct S rule: finite_induct)
+ case (insert p S)
+ hence "degree (setsum f S) \<le> n" "degree (f p) \<le> n" by auto
+ thus ?case unfolding setsum.insert[OF insert(1-2)] by (metis degree_add_le)
+qed simp
+
+lemma poly_as_sum_of_monoms':
+ assumes n: "degree p \<le> n"
+ shows "(\<Sum>i\<le>n. monom (coeff p i) i) = p"
+proof -
+ have eq: "\<And>i. {..n} \<inter> {i} = (if i \<le> n then {i} else {})"
+ by auto
+ show ?thesis
+ using n by (simp add: poly_eq_iff coeff_setsum coeff_eq_0 setsum.If_cases eq
+ if_distrib[where f="\<lambda>x. x * a" for a])
+qed
+
+lemma poly_as_sum_of_monoms: "(\<Sum>i\<le>degree p. monom (coeff p i) i) = p"
+ by (intro poly_as_sum_of_monoms' order_refl)
+
lemma Poly_snoc: "Poly (xs @ [x]) = Poly xs + monom x (length xs)"
by (induction xs) (simp_all add: monom_0 monom_Suc)
@@ -957,7 +982,16 @@
shows "poly (p ^ n) x = poly p x ^ n"
by (induct n) simp_all
-
+lemma poly_setprod: "poly (\<Prod>k\<in>A. p k) x = (\<Prod>k\<in>A. poly (p k) x)"
+ by (induct A rule: infinite_finite_induct) simp_all
+
+lemma degree_setprod_setsum_le: "finite S \<Longrightarrow> degree (setprod f S) \<le> setsum (degree o f) S"
+proof (induct S rule: finite_induct)
+ case (insert a S)
+ show ?case unfolding setprod.insert[OF insert(1-2)] setsum.insert[OF insert(1-2)]
+ by (rule le_trans[OF degree_mult_le], insert insert, auto)
+qed simp
+
subsection \<open>Conversions from natural numbers\<close>
lemma of_nat_poly: "of_nat n = [:of_nat n :: 'a :: comm_semiring_1:]"
@@ -991,7 +1025,7 @@
qed
lemma dvd_smult_cancel:
- fixes a :: "'a::field"
+ fixes a :: "'a :: field"
shows "p dvd smult a q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> p dvd q"
by (drule dvd_smult [where a="inverse a"]) simp
@@ -1041,29 +1075,33 @@
qed
lemma degree_mult_eq:
- fixes p q :: "'a::idom poly"
+ fixes p q :: "'a::semidom poly"
shows "\<lbrakk>p \<noteq> 0; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree (p * q) = degree p + degree q"
apply (rule order_antisym [OF degree_mult_le le_degree])
apply (simp add: coeff_mult_degree_sum)
done
lemma degree_mult_right_le:
- fixes p q :: "'a::idom poly"
+ fixes p q :: "'a::semidom poly"
assumes "q \<noteq> 0"
shows "degree p \<le> degree (p * q)"
using assms by (cases "p = 0") (simp_all add: degree_mult_eq)
lemma coeff_degree_mult:
- fixes p q :: "'a::idom poly"
+ fixes p q :: "'a::semidom poly"
shows "coeff (p * q) (degree (p * q)) =
coeff q (degree q) * coeff p (degree p)"
- by (cases "p = 0 \<or> q = 0") (auto simp add: degree_mult_eq coeff_mult_degree_sum)
+ by (cases "p = 0 \<or> q = 0") (auto simp add: degree_mult_eq coeff_mult_degree_sum mult_ac)
lemma dvd_imp_degree_le:
- fixes p q :: "'a::idom poly"
+ fixes p q :: "'a::semidom poly"
shows "\<lbrakk>p dvd q; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree p \<le> degree q"
- by (erule dvdE, simp add: degree_mult_eq)
+ by (erule dvdE, hypsubst, subst degree_mult_eq) auto
+lemma divides_degree:
+ assumes pq: "p dvd (q :: 'a :: semidom poly)"
+ shows "degree p \<le> degree q \<or> q = 0"
+ by (metis dvd_imp_degree_le pq)
subsection \<open>Polynomials form an ordered integral domain\<close>
@@ -2048,18 +2086,27 @@
subsection \<open>Composition of polynomials\<close>
+(* Several lemmas contributed by René Thiemann and Akihisa Yamada *)
+
definition pcompose :: "'a::comm_semiring_0 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
where
"pcompose p q = fold_coeffs (\<lambda>a c. [:a:] + q * c) p 0"
+notation pcompose (infixl "\<circ>\<^sub>p" 71)
+
lemma pcompose_0 [simp]:
"pcompose 0 q = 0"
by (simp add: pcompose_def)
-
+
lemma pcompose_pCons:
"pcompose (pCons a p) q = [:a:] + q * pcompose p q"
by (cases "p = 0 \<and> a = 0") (auto simp add: pcompose_def)
+lemma pcompose_1:
+ fixes p :: "'a :: comm_semiring_1 poly"
+ shows "pcompose 1 p = 1"
+ unfolding one_poly_def by (auto simp: pcompose_pCons)
+
lemma poly_pcompose:
"poly (pcompose p q) x = poly p (poly q x)"
by (induct p) (simp_all add: pcompose_pCons)
@@ -2087,7 +2134,7 @@
finally show ?case .
qed simp
-lemma pcompose_minus:
+lemma pcompose_uminus:
fixes p r :: "'a :: comm_ring poly"
shows "pcompose (-p) r = -pcompose p r"
by (induction p) (simp_all add: pcompose_pCons)
@@ -2095,7 +2142,7 @@
lemma pcompose_diff:
fixes p q r :: "'a :: comm_ring poly"
shows "pcompose (p - q) r = pcompose p r - pcompose q r"
- using pcompose_add[of p "-q"] by (simp add: pcompose_minus)
+ using pcompose_add[of p "-q"] by (simp add: pcompose_uminus)
lemma pcompose_smult:
fixes p r :: "'a :: comm_semiring_0 poly"
@@ -2115,24 +2162,27 @@
by (induction p arbitrary: q)
(simp_all add: pcompose_pCons pcompose_add pcompose_mult)
+lemma pcompose_idR[simp]:
+ fixes p :: "'a :: comm_semiring_1 poly"
+ shows "pcompose p [: 0, 1 :] = p"
+ by (induct p; simp add: pcompose_pCons)
+
(* The remainder of this section and the next were contributed by Wenda Li *)
lemma degree_mult_eq_0:
- fixes p q:: "'a :: idom poly"
+ fixes p q:: "'a :: semidom poly"
shows "degree (p*q) = 0 \<longleftrightarrow> p=0 \<or> q=0 \<or> (p\<noteq>0 \<and> q\<noteq>0 \<and> degree p =0 \<and> degree q =0)"
by (auto simp add:degree_mult_eq)
lemma pcompose_const[simp]:"pcompose [:a:] q = [:a:]" by (subst pcompose_pCons,simp)
-lemma pcompose_0':"pcompose p 0=[:coeff p 0:]"
- apply (induct p)
- apply (auto simp add:pcompose_pCons)
-done
+lemma pcompose_0': "pcompose p 0 = [:coeff p 0:]"
+ by (induct p) (auto simp add:pcompose_pCons)
lemma degree_pcompose:
- fixes p q:: "'a::idom poly"
- shows "degree(pcompose p q) = degree p * degree q"
+ fixes p q:: "'a::semidom poly"
+ shows "degree (pcompose p q) = degree p * degree q"
proof (induct p)
case 0
thus ?case by auto
@@ -2144,7 +2194,7 @@
thus ?thesis by auto
next
case False assume "degree (q * pcompose p q) = 0"
- hence "degree q=0 \<or> pcompose p q=0" by (auto simp add:degree_mult_eq_0)
+ hence "degree q=0 \<or> pcompose p q=0" by (auto simp add: degree_mult_eq_0)
moreover have "\<lbrakk>pcompose p q=0;degree q\<noteq>0\<rbrakk> \<Longrightarrow> False" using pCons.hyps(2) \<open>p\<noteq>0\<close>
proof -
assume "pcompose p q=0" "degree q\<noteq>0"
@@ -2178,9 +2228,9 @@
qed
lemma pcompose_eq_0:
- fixes p q:: "'a::idom poly"
- assumes "pcompose p q=0" "degree q>0"
- shows "p=0"
+ fixes p q:: "'a :: semidom poly"
+ assumes "pcompose p q = 0" "degree q > 0"
+ shows "p = 0"
proof -
have "degree p=0" using assms degree_pcompose[of p q] by auto
then obtain a where "p=[:a:]"
--- a/src/HOL/Set_Interval.thy Mon Jan 11 15:20:17 2016 +0100
+++ b/src/HOL/Set_Interval.thy Mon Jan 11 16:38:39 2016 +0100
@@ -1902,4 +1902,52 @@
finally show ?thesis .
qed
+
+subsection \<open>Efficient folding over intervals\<close>
+
+function fold_atLeastAtMost_nat where
+ [simp del]: "fold_atLeastAtMost_nat f a (b::nat) acc =
+ (if a > b then acc else fold_atLeastAtMost_nat f (a+1) b (f a acc))"
+by pat_completeness auto
+termination by (relation "measure (\<lambda>(_,a,b,_). Suc b - a)") auto
+
+lemma fold_atLeastAtMost_nat:
+ assumes "comp_fun_commute f"
+ shows "fold_atLeastAtMost_nat f a b acc = Finite_Set.fold f acc {a..b}"
+using assms
+proof (induction f a b acc rule: fold_atLeastAtMost_nat.induct, goal_cases)
+ case (1 f a b acc)
+ interpret comp_fun_commute f by fact
+ show ?case
+ proof (cases "a > b")
+ case True
+ thus ?thesis by (subst fold_atLeastAtMost_nat.simps) auto
+ next
+ case False
+ with 1 show ?thesis
+ by (subst fold_atLeastAtMost_nat.simps)
+ (auto simp: atLeastAtMost_insertL[symmetric] fold_fun_left_comm)
+ qed
+qed
+
+lemma setsum_atLeastAtMost_code:
+ "setsum f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a + acc) a b 0"
+proof -
+ have "comp_fun_commute (\<lambda>a. op + (f a))"
+ by unfold_locales (auto simp: o_def add_ac)
+ thus ?thesis
+ by (simp add: setsum.eq_fold fold_atLeastAtMost_nat o_def)
+qed
+
+lemma setprod_atLeastAtMost_code:
+ "setprod f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a * acc) a b 1"
+proof -
+ have "comp_fun_commute (\<lambda>a. op * (f a))"
+ by unfold_locales (auto simp: o_def mult_ac)
+ thus ?thesis
+ by (simp add: setprod.eq_fold fold_atLeastAtMost_nat o_def)
+qed
+
+(* TODO: Add support for more kinds of intervals here *)
+
end