--- a/doc-src/AxClass/generated/isabelle.sty Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/AxClass/generated/isabelle.sty Wed Oct 18 23:58:07 2000 +0200
@@ -23,8 +23,8 @@
\newcommand{\isamath}[1]{\emph{$#1$}}
\newcommand{\isatext}[1]{\emph{#1}}
\newcommand{\isascriptstyle}{\def\isamath##1{##1}\def\isatext##1{\mbox{\isastylescript##1}}}
-\newcommand{\isactrlsub}[1]{\emph{\isascriptstyle${}_{#1}$}}
-\newcommand{\isactrlsup}[1]{\emph{\isascriptstyle${}^{#1}$}}
+\newcommand{\isactrlsub}[1]{\emph{\isascriptstyle${}\sb{#1}$}}
+\newcommand{\isactrlsup}[1]{\emph{\isascriptstyle${}\sp{#1}$}}
\newdimen\isa@parindent\newdimen\isa@parskip
@@ -141,7 +141,7 @@
\renewcommand{\isacharbraceleft}{\isamath{\{}}%
\renewcommand{\isacharbar}{\isamath{\mid}}%
\renewcommand{\isacharbraceright}{\isamath{\}}}%
-\renewcommand{\isachartilde}{\isamath{{}^\sim}}%
+\renewcommand{\isachartilde}{\isamath{{}\sp{\sim}}}%
}
\newcommand{\isabellestylesl}{%
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/CTL/document/CTLind.tex Wed Oct 18 23:58:07 2000 +0200
@@ -0,0 +1,134 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{CTLind}%
+%
+\isamarkupsubsection{CTL revisited}
+%
+\begin{isamarkuptext}%
+\label{sec:CTL-revisited}
+In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
+model checker for CTL. In particular the proof of the
+\isa{infinity{\isacharunderscore}lemma} on the way to \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} is not as
+simple as one might intuitively expect, due to the \isa{SOME} operator
+involved. The purpose of this section is to show how an inductive definition
+can help to simplify the proof of \isa{AF{\isacharunderscore}lemma{\isadigit{2}}}.
+
+Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does
+not touch any node in the set \isa{A}. Then \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} says
+that if no infinite path from some state \isa{s} is \isa{A}-avoiding,
+then \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. We prove this by inductively defining the set
+\isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path:
+% Second proof of opposite direction, directly by well-founded induction
+% on the initial segment of M that avoids A.%
+\end{isamarkuptext}%
+\isacommand{consts}\ Avoid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ state\ set\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
+\isacommand{inductive}\ {\isachardoublequote}Avoid\ s\ A{\isachardoublequote}\isanewline
+\isakeyword{intros}\ {\isachardoublequote}s\ {\isasymin}\ Avoid\ s\ A{\isachardoublequote}\isanewline
+\ \ \ \ \ \ \ {\isachardoublequote}{\isasymlbrakk}\ t\ {\isasymin}\ Avoid\ s\ A{\isacharsemicolon}\ t\ {\isasymnotin}\ A{\isacharsemicolon}\ {\isacharparenleft}t{\isacharcomma}u{\isacharparenright}\ {\isasymin}\ M\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ u\ {\isasymin}\ Avoid\ s\ A{\isachardoublequote}%
+\begin{isamarkuptext}%
+It is easy to see that for any infinite \isa{A}-avoiding path \isa{f}
+with \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path
+starting with \isa{s} because (by definition of \isa{Avoid}) there is a
+finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}.
+The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A}. However,
+this requires the following
+reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
+the \isa{rule{\isacharunderscore}format} directive undoes the reformulation after the proof.%
+\end{isamarkuptext}%
+\isacommand{lemma}\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
+\ \ {\isachardoublequote}t\ {\isasymin}\ Avoid\ s\ A\ \ {\isasymLongrightarrow}\isanewline
+\ \ \ {\isasymforall}f{\isasymin}Paths\ t{\isachardot}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ f\ i\ {\isasymnotin}\ A{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ A{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{apply}{\isacharparenleft}erule\ Avoid{\isachardot}induct{\isacharparenright}\isanewline
+\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}clarify{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequote}{\isasymlambda}i{\isachardot}\ case\ i\ of\ {\isadigit{0}}\ {\isasymRightarrow}\ t\ {\isacharbar}\ Suc\ i\ {\isasymRightarrow}\ f\ i{\isachardoublequote}\ \isakeyword{in}\ bspec{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}Paths{\isacharunderscore}def\ split{\isacharcolon}nat{\isachardot}split{\isacharparenright}\isanewline
+\isacommand{done}%
+\begin{isamarkuptext}%
+\noindent
+The base case (\isa{t\ {\isacharequal}\ s}) is trivial (\isa{blast}).
+In the induction step, we have an infinite \isa{A}-avoiding path \isa{f}
+starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate
+the \isa{{\isasymforall}f{\isasymin}Paths\ t} in the induction hypothesis by the path starting with
+\isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
+expresses. That fact that this is a path starting with \isa{t} and that
+the instantiated induction hypothesis implies the conclusion is shown by
+simplification.
+
+Now we come to the key lemma. It says that if \isa{t} can be reached by a
+finite \isa{A}-avoiding path from \isa{s}, then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}},
+provided there is no infinite \isa{A}-avoiding path starting from \isa{s}.%
+\end{isamarkuptext}%
+\isacommand{lemma}\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp{\isacharbrackleft}rule{\isacharunderscore}format{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}{\isacharbrackright}{\isacharcolon}\isanewline
+\ \ {\isachardoublequote}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ t\ {\isasymin}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}%
+\begin{isamarkuptxt}%
+\noindent
+The trick is not to induct on \isa{t\ {\isasymin}\ Avoid\ s\ A}, as already the base
+case would be a problem, but to proceed by well-founded induction \isa{t}. Hence \isa{t\ {\isasymin}\ Avoid\ s\ A} needs to be brought into the conclusion as
+well, which the directive \isa{rule{\isacharunderscore}format} undoes at the end (see below).
+But induction with respect to which well-founded relation? The restriction
+of \isa{M} to \isa{Avoid\ s\ A}:
+\begin{isabelle}%
+\ \ \ \ \ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ y\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
+\end{isabelle}
+As we shall see in a moment, the absence of infinite \isa{A}-avoiding paths
+starting from \isa{s} implies well-foundedness of this relation. For the
+moment we assume this and proceed with the induction:%
+\end{isamarkuptxt}%
+\isacommand{apply}{\isacharparenleft}subgoal{\isacharunderscore}tac\isanewline
+\ \ {\isachardoublequote}wf{\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}{\isasymin}M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ y\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}{\isachardoublequote}{\isacharparenright}\isanewline
+\ \isacommand{apply}{\isacharparenleft}erule{\isacharunderscore}tac\ a\ {\isacharequal}\ t\ \isakeyword{in}\ wf{\isacharunderscore}induct{\isacharparenright}\isanewline
+\ \isacommand{apply}{\isacharparenleft}clarsimp{\isacharparenright}%
+\begin{isamarkuptxt}%
+\noindent
+Now can assume additionally (induction hypothesis) that if \isa{t\ {\isasymnotin}\ A}
+then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in
+\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. To prove the actual goal we unfold \isa{lfp} once. Now
+we have to prove that \isa{t} is in \isa{A} or all successors of \isa{t} are in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. If \isa{t} is not in \isa{A}, the second
+\isa{Avoid}-rule implies that all successors of \isa{t} are in
+\isa{Avoid\ s\ A} (because we also assume \isa{t\ {\isasymin}\ Avoid\ s\ A}), and
+hence, by the induction hypothesis, all successors of \isa{t} are indeed in
+\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Mechanically:%
+\end{isamarkuptxt}%
+\ \isacommand{apply}{\isacharparenleft}rule\ ssubst\ {\isacharbrackleft}OF\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}af{\isacharbrackright}{\isacharbrackright}{\isacharparenright}\isanewline
+\ \isacommand{apply}{\isacharparenleft}simp\ only{\isacharcolon}\ af{\isacharunderscore}def{\isacharparenright}\isanewline
+\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}Avoid{\isachardot}intros{\isacharparenright}%
+\begin{isamarkuptxt}%
+Having proved the main goal we return to the proof obligation that the above
+relation is indeed well-founded. This is proved by contraposition: we assume
+the relation is not well-founded. Thus there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem
+\isa{wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain}:
+\begin{isabelle}%
+\ \ \ \ \ wf\ r\ {\isacharequal}\ {\isacharparenleft}{\isasymnot}\ {\isacharparenleft}{\isasymexists}f{\isachardot}\ {\isasymforall}i{\isachardot}\ {\isacharparenleft}f\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharcomma}\ f\ i{\isacharparenright}\ {\isasymin}\ r{\isacharparenright}{\isacharparenright}%
+\end{isabelle}
+From lemma \isa{ex{\isacharunderscore}infinite{\isacharunderscore}path} the existence of an infinite
+\isa{A}-avoiding path starting in \isa{s} follows, just as required for
+the contraposition.%
+\end{isamarkuptxt}%
+\isacommand{apply}{\isacharparenleft}erule\ contrapos{\isacharunderscore}pp{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}erule\ exE{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}rule\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharparenright}\isanewline
+\isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}Paths{\isacharunderscore}def{\isacharparenright}\isanewline
+\isacommand{done}%
+\begin{isamarkuptext}%
+The \isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}} modifier of the \isa{rule{\isacharunderscore}format} directive means
+that the assumption is left unchanged---otherwise the \isa{{\isasymforall}p} is turned
+into a \isa{{\isasymAnd}p}, which would complicate matters below. As it is,
+\isa{Avoid{\isacharunderscore}in{\isacharunderscore}lfp} is now
+\begin{isabelle}%
+\ \ \ \ \ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\ t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}%
+\end{isabelle}
+The main theorem is simply the corollary where \isa{t\ {\isacharequal}\ s},
+in which case the assumption \isa{t\ {\isasymin}\ Avoid\ s\ A} is trivially true
+by the first \isa{Avoid}-rule). Isabelle confirms this:%
+\end{isamarkuptext}%
+\isacommand{theorem}\ AF{\isacharunderscore}lemma{\isadigit{2}}{\isacharcolon}\isanewline
+\ \ {\isachardoublequote}{\isacharbraceleft}s{\isachardot}\ {\isasymforall}p\ {\isasymin}\ Paths\ s{\isachardot}\ {\isasymexists}\ i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharbraceright}\ {\isasymsubseteq}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{by}{\isacharparenleft}auto\ elim{\isacharcolon}Avoid{\isacharunderscore}in{\isacharunderscore}lfp\ intro{\isacharcolon}Avoid{\isachardot}intros{\isacharparenright}\isanewline
+\isanewline
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End:
--- a/doc-src/TutorialI/Misc/document/Tree2.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Misc/document/Tree2.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{Tree2}%
+\def\isabellecontext{Tree{\isadigit{2}}}%
%
\begin{isamarkuptext}%
\noindent In Exercise~\ref{ex:Tree} we defined a function
--- a/doc-src/TutorialI/Misc/document/arith1.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Misc/document/arith1.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{arith1}%
+\def\isabellecontext{arith{\isadigit{1}}}%
\isacommand{lemma}\ {\isachardoublequote}{\isasymlbrakk}\ {\isasymnot}\ m\ {\isacharless}\ n{\isacharsemicolon}\ m\ {\isacharless}\ n{\isacharplus}{\isadigit{1}}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ m\ {\isacharequal}\ n{\isachardoublequote}\isanewline
\end{isabellebody}%
%%% Local Variables:
--- a/doc-src/TutorialI/Misc/document/arith2.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Misc/document/arith2.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{arith2}%
+\def\isabellecontext{arith{\isadigit{2}}}%
\isacommand{lemma}\ {\isachardoublequote}min\ i\ {\isacharparenleft}max\ j\ {\isacharparenleft}k{\isacharasterisk}k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ max\ {\isacharparenleft}min\ {\isacharparenleft}k{\isacharasterisk}k{\isacharparenright}\ i{\isacharparenright}\ {\isacharparenleft}min\ i\ {\isacharparenleft}j{\isacharcolon}{\isacharcolon}nat{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
\isacommand{apply}{\isacharparenleft}arith{\isacharparenright}\isanewline
\end{isabellebody}%
--- a/doc-src/TutorialI/Misc/document/arith3.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Misc/document/arith3.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{arith3}%
+\def\isabellecontext{arith{\isadigit{3}}}%
\isacommand{lemma}\ {\isachardoublequote}n{\isacharasterisk}n\ {\isacharequal}\ n\ {\isasymLongrightarrow}\ n{\isacharequal}{\isadigit{0}}\ {\isasymor}\ n{\isacharequal}{\isadigit{1}}{\isachardoublequote}\isanewline
\end{isabellebody}%
%%% Local Variables:
--- a/doc-src/TutorialI/Misc/document/case_exprs.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Misc/document/case_exprs.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{case_exprs}%
+\def\isabellecontext{case{\isacharunderscore}exprs}%
%
\isamarkupsubsection{Case expressions}
%
--- a/doc-src/TutorialI/Misc/document/prime_def.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Misc/document/prime_def.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{prime_def}%
+\def\isabellecontext{prime{\isacharunderscore}def}%
%
\begin{isamarkuptext}%
\begin{warn}
--- a/doc-src/TutorialI/Recdef/document/Nested0.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Recdef/document/Nested0.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{Nested0}%
+\def\isabellecontext{Nested{\isadigit{0}}}%
%
\begin{isamarkuptext}%
In \S\ref{sec:nested-datatype} we defined the datatype of terms%
--- a/doc-src/TutorialI/Recdef/document/Nested1.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Recdef/document/Nested1.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{Nested1}%
+\def\isabellecontext{Nested{\isadigit{1}}}%
%
\begin{isamarkuptext}%
\noindent
--- a/doc-src/TutorialI/Recdef/document/Nested2.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Recdef/document/Nested2.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{Nested2}%
+\def\isabellecontext{Nested{\isadigit{2}}}%
%
\begin{isamarkuptext}%
\noindent
--- a/doc-src/TutorialI/Trie/document/Option2.tex Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/Trie/document/Option2.tex Wed Oct 18 23:58:07 2000 +0200
@@ -1,6 +1,6 @@
%
\begin{isabellebody}%
-\def\isabellecontext{Option2}%
+\def\isabellecontext{Option{\isadigit{2}}}%
\isanewline
\isacommand{datatype}\ {\isacharprime}a\ option\ {\isacharequal}\ None\ {\isacharbar}\ Some\ {\isacharprime}a\end{isabellebody}%
%%% Local Variables:
--- a/doc-src/TutorialI/isabelle.sty Wed Oct 18 23:44:52 2000 +0200
+++ b/doc-src/TutorialI/isabelle.sty Wed Oct 18 23:58:07 2000 +0200
@@ -23,8 +23,8 @@
\newcommand{\isamath}[1]{\emph{$#1$}}
\newcommand{\isatext}[1]{\emph{#1}}
\newcommand{\isascriptstyle}{\def\isamath##1{##1}\def\isatext##1{\mbox{\isastylescript##1}}}
-\newcommand{\isactrlsub}[1]{\emph{\isascriptstyle${}_{#1}$}}
-\newcommand{\isactrlsup}[1]{\emph{\isascriptstyle${}^{#1}$}}
+\newcommand{\isactrlsub}[1]{\emph{\isascriptstyle${}\sb{#1}$}}
+\newcommand{\isactrlsup}[1]{\emph{\isascriptstyle${}\sp{#1}$}}
\newdimen\isa@parindent\newdimen\isa@parskip
@@ -141,7 +141,7 @@
\renewcommand{\isacharbraceleft}{\isamath{\{}}%
\renewcommand{\isacharbar}{\isamath{\mid}}%
\renewcommand{\isacharbraceright}{\isamath{\}}}%
-\renewcommand{\isachartilde}{\isamath{{}^\sim}}%
+\renewcommand{\isachartilde}{\isamath{{}\sp{\sim}}}%
}
\newcommand{\isabellestylesl}{%