a conditional paramitrecity prover
authortraytel
Mon, 18 Dec 2017 16:58:13 +0100
changeset 67224 341fbce5b26d
parent 67223 711eec20aecd
child 67225 cb34f5f49a08
a conditional paramitrecity prover
CONTRIBUTORS
NEWS
src/HOL/Library/Conditional_Parametricity.thy
src/HOL/Library/Library.thy
src/HOL/Library/conditional_parametricity.ML
src/HOL/ROOT
src/HOL/ex/Conditional_Parametricity_Examples.thy
--- a/CONTRIBUTORS	Mon Dec 18 11:56:12 2017 +0100
+++ b/CONTRIBUTORS	Mon Dec 18 16:58:13 2017 +0100
@@ -6,6 +6,9 @@
 Contributions to this Isabelle version
 --------------------------------------
 
+* December 2017: Jan Gilcher, Andreas Lochbihler, Dmitriy Traytel
+  A new conditional paramertricity prover.
+
 * October 2017: Alexander Maletzky
   Derivation of axiom "iff" in HOL.thy from the other axioms.
 
--- a/NEWS	Mon Dec 18 11:56:12 2017 +0100
+++ b/NEWS	Mon Dec 18 16:58:13 2017 +0100
@@ -99,6 +99,12 @@
 
 *** HOL ***
 
+* A new command parametric_constant for proving parametricity of
+  non-recursive definitions. For constants that are not fully parametric the
+  command will infer conditions on relations (e.g., bi_unique, bi_total, or
+  type class conditions such as "respects 0") sufficient for parametricity.
+  See ~~/src/HOL/ex/Conditional_Parametricity_Examples for some examples.
+
 * SMT module:
   - The 'smt_oracle' option is now necessary when using the 'smt' method
     with a solver other than Z3. INCOMPATIBILITY.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Conditional_Parametricity.thy	Mon Dec 18 16:58:13 2017 +0100
@@ -0,0 +1,48 @@
+(*  Title:    HOL/Library/Conditional_Parametricity.thy
+    Author:   Jan Gilcher, Andreas Lochbihler, Dmitriy Traytel, ETH Zürich
+
+A conditional parametricity prover
+*)
+
+theory Conditional_Parametricity
+imports Main
+keywords "parametric_constant" :: thy_decl
+begin
+
+context includes lifting_syntax begin
+
+qualified definition Rel_match :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
+  "Rel_match R x y = R x y"
+
+named_theorems parametricity_preprocess
+
+lemma bi_unique_Rel_match [parametricity_preprocess]:
+  "bi_unique A = Rel_match (A ===> A ===> op =) op = op ="
+  unfolding bi_unique_alt_def2 Rel_match_def ..
+
+lemma bi_total_Rel_match [parametricity_preprocess]:
+  "bi_total A = Rel_match ((A ===> op =) ===> op =) All All"
+  unfolding bi_total_alt_def2 Rel_match_def ..
+
+lemma is_equality_Rel: "is_equality A \<Longrightarrow> Transfer.Rel A t t"
+  by (fact transfer_raw)
+
+lemma Rel_Rel_match: "Transfer.Rel R x y \<Longrightarrow> Rel_match R x y"
+  unfolding Rel_match_def Rel_def .
+
+lemma Rel_match_Rel: "Rel_match R x y \<Longrightarrow> Transfer.Rel R x y"
+  unfolding Rel_match_def Rel_def .
+
+lemma Rel_Rel_match_eq: "Transfer.Rel R x y = Rel_match R x y"
+  using Rel_Rel_match Rel_match_Rel by fast
+
+lemma Rel_match_app:
+  assumes "Rel_match (A ===> B) f g" and "Transfer.Rel A x y"
+  shows "Rel_match B (f x) (g y)"
+  using assms Rel_match_Rel Rel_app Rel_Rel_match by fast
+
+end
+
+ML_file "conditional_parametricity.ML"
+
+end
\ No newline at end of file
--- a/src/HOL/Library/Library.thy	Mon Dec 18 11:56:12 2017 +0100
+++ b/src/HOL/Library/Library.thy	Mon Dec 18 16:58:13 2017 +0100
@@ -12,6 +12,7 @@
   Code_Test
   Combine_PER
   Complete_Partial_Order2
+  Conditional_Parametricity
   Countable
   Countable_Complete_Lattices
   Countable_Set_Type
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/conditional_parametricity.ML	Mon Dec 18 16:58:13 2017 +0100
@@ -0,0 +1,519 @@
+(*  Title:    HOL/Library/conditional_parametricity.ML
+    Author:   Jan Gilcher, Andreas Lochbihler, Dmitriy Traytel, ETH Zürich
+
+A conditional parametricity prover
+*)
+
+signature CONDITIONAL_PARAMETRICITY =
+sig
+  exception WARNING of string
+  type settings =
+    {suppress_print_theorem: bool,
+    suppress_warnings: bool,
+    warnings_as_errors: bool,
+    use_equality_heuristic: bool}
+  val default_settings: settings
+  val quiet_settings: settings
+
+  val parametric_constant: settings -> Attrib.binding * thm -> Proof.context ->
+    (thm * Proof.context)
+  val get_parametricity_theorems: Proof.context -> thm list
+
+  val prove_goal: settings -> Proof.context -> thm option -> term -> thm
+  val prove_find_goal_cond: settings -> Proof.context -> thm list -> thm option -> term -> thm
+
+  val mk_goal: Proof.context -> term -> term
+  val mk_cond_goal: Proof.context -> thm -> term * thm
+  val mk_param_goal_from_eq_def: Proof.context -> thm -> term
+  val step_tac: settings -> Proof.context -> thm list -> int -> tactic
+end
+
+structure Conditional_Parametricity: CONDITIONAL_PARAMETRICITY =
+struct
+
+type settings =
+  {suppress_print_theorem: bool,
+  suppress_warnings: bool,
+  warnings_as_errors: bool (* overrides suppress_warnings!  *),
+  use_equality_heuristic: bool};
+
+val quiet_settings =
+  {suppress_print_theorem = true,
+  suppress_warnings = true,
+  warnings_as_errors = false,
+  use_equality_heuristic = false};
+
+val default_settings =
+  {suppress_print_theorem = false,
+  suppress_warnings = false,
+  warnings_as_errors = false,
+  use_equality_heuristic = false};
+
+(* helper functions *)
+
+fun strip_imp_prems_concl (Const("Pure.imp", _) $ A $ B) = A :: strip_imp_prems_concl B
+  | strip_imp_prems_concl C = [C];
+
+fun strip_prop_safe t = Logic.unprotect t handle TERM _ => t;
+
+fun get_class_of ctxt t =
+  Axclass.class_of_param (Proof_Context.theory_of ctxt) (fst (dest_Const t));
+
+fun is_class_op ctxt t =
+  let
+    val t' = t |> Envir.eta_contract;
+  in
+    Term.is_Const t' andalso is_some (get_class_of ctxt t')
+  end;
+
+fun apply_Var_to_bounds t =
+  let
+    val (t, ts) = strip_comb t;
+  in
+    (case t of
+      Var (xi, _) =>
+        let
+          val (bounds, tail) = take_prefix is_Bound ts;
+        in
+          list_comb (Var (xi, fastype_of (betapplys (t, bounds))), map apply_Var_to_bounds tail)
+        end
+    | _ => list_comb (t, map apply_Var_to_bounds ts))
+  end;
+
+fun theorem_format_error ctxt thm =
+  let
+    val msg = Pretty.string_of (Pretty.chunks [(Pretty.para
+      "Unexpected format of definition. Must be an unconditional equation."), Thm.pretty_thm ctxt thm]);
+  in error msg end;
+
+(* Tacticals and Tactics *)
+
+exception FINISH of thm;
+
+(* Tacticals *)
+fun REPEAT_TRY_ELSE_DEFER tac st =
+  let
+    fun COMB' tac count st = (
+      let
+        val n = Thm.nprems_of st;
+      in
+        (if n = 0 then all_tac st else
+          (case Seq.pull ((tac THEN COMB' tac 0) st) of
+            NONE =>
+              if count+1 = n
+              then raise FINISH st
+              else (defer_tac 1 THEN (COMB' tac (count+1))) st
+          | some => Seq.make (fn () => some)))
+      end)
+  in COMB' tac 0 st end;
+
+(* Tactics  *)
+(* helper tactics for printing *)
+fun error_tac ctxt msg st =
+  (error(msg ^ "\n" ^ Pretty.string_of (Pretty.chunks (Goal_Display.pretty_goals ctxt st)));
+  Seq.single st);
+
+fun error_tac' ctxt msg = SELECT_GOAL (error_tac ctxt msg);
+
+(*  finds assumption of the form "Rel ?B Bound x Bound y", rotates it in front,
+    applies rel_app arity times and uses ams_rl *)
+fun rel_app_tac ctxt t x y arity =
+  let
+    val rel_app = [@{thm Rel_app}];
+    val assume = [asm_rl];
+    fun find_and_rotate_tac t i =
+      let
+        fun is_correct_rule t =
+          (case t of
+            Const (@{const_name "HOL.Trueprop"}, _) $ (Const (@{const_name "Transfer.Rel"}, _) $
+              _ $ Bound x' $ Bound y') => x = x' andalso y = y'
+          | _ => false);
+        val idx = find_index is_correct_rule (t |> Logic.strip_assums_hyp);
+      in
+        if idx < 0 then no_tac else rotate_tac idx i
+      end;
+    fun rotate_and_dresolve_tac ctxt arity i = REPEAT_DETERM_N (arity - 1)
+      (EVERY' [rotate_tac ~1, dresolve_tac ctxt rel_app, defer_tac] i);
+  in
+    SELECT_GOAL (EVERY' [find_and_rotate_tac t, forward_tac ctxt rel_app, defer_tac,
+      rotate_and_dresolve_tac ctxt arity, rotate_tac ~1, eresolve_tac ctxt assume] 1)
+  end;
+
+exception WARNING of string;
+
+fun transform_rules 0 thms = thms
+  | transform_rules n thms = transform_rules (n - 1) (curry (Drule.RL o swap)
+      @{thms Rel_app Rel_match_app} thms);
+
+fun assume_equality_tac settings ctxt t arity i st =
+  let
+    val quiet = #suppress_warnings settings;
+    val errors = #warnings_as_errors settings;
+    val T = fastype_of t;
+    val is_eq_lemma = @{thm is_equality_Rel} |> Thm.incr_indexes ((Term.maxidx_of_term t) + 1) |>
+      Drule.infer_instantiate' ctxt [NONE, SOME (Thm.cterm_of ctxt t)];
+    val msg = Pretty.string_of (Pretty.chunks [Pretty.paragraph ((Pretty.text
+      "No rule found for constant \"") @ [Syntax.pretty_term ctxt t, Pretty.str " :: " ,
+      Syntax.pretty_typ ctxt T] @ (Pretty.text "\". Using is_eq_lemma:")), Pretty.quote
+      (Thm.pretty_thm ctxt is_eq_lemma)]);
+    fun msg_tac st = (if errors then raise WARNING msg else if quiet then () else warning msg;
+      Seq.single st)
+    val tac = resolve_tac ctxt (transform_rules arity [is_eq_lemma]) i;
+  in
+    (if fold_atyps (K (K true)) T false then msg_tac THEN tac else tac) st
+  end;
+
+fun mark_class_as_match_tac ctxt const const' arity =
+  let
+    val rules = transform_rules arity [@{thm Rel_match_Rel} |> Thm.incr_indexes ((Int.max o
+      apply2 Term.maxidx_of_term) (const, const') + 1) |> Drule.infer_instantiate' ctxt [NONE,
+      SOME (Thm.cterm_of ctxt const), SOME (Thm.cterm_of ctxt const')]];
+  in resolve_tac ctxt rules end;
+
+(* transforms the parametricity theorems to fit a given arity and uses them for resolution *)
+fun parametricity_thm_tac settings ctxt parametricity_thms const arity =
+  let
+    val rules = transform_rules arity parametricity_thms;
+  in resolve_tac ctxt rules ORELSE' assume_equality_tac settings ctxt const arity end;
+
+(* variant of parametricity_thm_tac to use matching *)
+fun parametricity_thm_match_tac ctxt parametricity_thms arity =
+   let
+    val rules = transform_rules arity parametricity_thms;
+  in match_tac ctxt rules end;
+
+fun rel_abs_tac ctxt = resolve_tac ctxt [@{thm Rel_abs}];
+
+fun step_tac' settings ctxt parametricity_thms (tm, i) =
+  (case tm |> Logic.strip_assums_concl of
+    Const (@{const_name "HOL.Trueprop"}, _) $ (Const (rel, _) $ _ $ t $ u) =>
+    let
+      val (arity_of_t, arity_of_u) = apply2 (strip_comb #> snd #> length) (t, u);
+    in
+      (case rel of
+        @{const_name "Transfer.Rel"} =>
+          (case (head_of t, head_of u) of
+            (Abs _, _) => rel_abs_tac ctxt
+          | (_, Abs _) => rel_abs_tac ctxt
+          | (const as (Const _), const' as (Const _)) =>
+            if #use_equality_heuristic settings andalso t aconv u
+              then
+                assume_equality_tac quiet_settings ctxt t 0
+              else if arity_of_t = arity_of_u
+                then if is_class_op ctxt const orelse is_class_op ctxt const'
+                  then mark_class_as_match_tac ctxt const const' arity_of_t
+                  else parametricity_thm_tac settings ctxt parametricity_thms const arity_of_t
+                else error_tac' ctxt "Malformed term. Arities of t and u don't match."
+          | (Bound x, Bound y) =>
+            if arity_of_t = arity_of_u then if arity_of_t > 0 then rel_app_tac ctxt tm x y arity_of_t
+               else assume_tac ctxt
+            else  error_tac' ctxt "Malformed term. Arities of t and u don't match."
+          | _ => error_tac' ctxt
+            "Unexpected format. Expected  (Abs _, _), (_, Abs _), (Const _, Const _) or (Bound _, Bound _).")
+         | @{const_name "Conditional_Parametricity.Rel_match"} =>
+             parametricity_thm_match_tac ctxt parametricity_thms arity_of_t
+      | _ => error_tac' ctxt "Unexpected format. Expected Transfer.Rel or Rel_match marker." ) i
+    end
+    | Const (@{const_name "HOL.Trueprop"}, _) $ (Const (@{const_name "Transfer.is_equality"}, _) $ _) =>
+        Transfer.eq_tac ctxt i
+    | _ => error_tac' ctxt "Unexpected format. Not of form Const (HOL.Trueprop, _) $ _" i);
+
+fun step_tac settings = SUBGOAL oo step_tac' settings;
+
+fun apply_theorem_tac ctxt thm =
+  HEADGOAL (resolve_tac ctxt [Local_Defs.unfold ctxt @{thms Pure.prop_def} thm] THEN_ALL_NEW
+    assume_tac ctxt);
+
+(* Goal Generation  *)
+fun strip_boundvars_from_rel_match t =
+  (case t of
+    (Tp as Const (@{const_name "HOL.Trueprop"}, _)) $
+      ((Rm as Const (@{const_name "Conditional_Parametricity.Rel_match"}, _)) $ R $ t $ t') =>
+        Tp $ (Rm $ apply_Var_to_bounds R $ t $ t')
+  | _ => t);
+
+val extract_conditions =
+  let
+    val filter_bounds = filter_out Term.is_open;
+    val prem_to_conditions =
+      map (map strip_boundvars_from_rel_match o strip_imp_prems_concl o strip_all_body);
+    val remove_duplicates = distinct Term.aconv;
+  in remove_duplicates o filter_bounds o flat o prem_to_conditions end;
+
+fun mk_goal ctxt t =
+  let
+    val ctxt = fold (Variable.declare_typ o snd) (Term.add_frees t []) ctxt;
+    val t = singleton (Variable.polymorphic ctxt) t;
+    val i = maxidx_of_term t + 1;
+    fun tvar_to_tfree ((name, _), sort) = (name, sort);
+    val tvars = Term.add_tvars t [];
+    val new_frees = map TFree (Term.variant_frees t (map tvar_to_tfree tvars));
+    val u = subst_atomic_types ((map TVar tvars) ~~ new_frees) t;
+    val T = fastype_of t;
+    val U = fastype_of u;
+    val R = [T,U] ---> @{typ bool}
+    val r = Var (("R", 2 * i), R);
+    val transfer_rel = Const (@{const_name "Transfer.Rel"}, [R,T,U] ---> @{typ bool});
+  in HOLogic.mk_Trueprop (transfer_rel $ r $ t $ u) end;
+
+fun mk_abs_helper T t =
+  let
+    val U = fastype_of t;
+    fun mk_abs_helper' T U =
+      if T = U then t else
+        let
+          val (T2, T1) = Term.dest_funT T;
+        in
+          Term.absdummy T2 (mk_abs_helper' T1 U)
+        end;
+  in mk_abs_helper' T U end;
+
+fun compare_ixs ((name, i):indexname, (name', i'):indexname) = if name < name' then LESS
+  else if name > name' then GREATER
+  else if i < i' then LESS
+  else if i > i' then GREATER
+  else EQUAL;
+
+fun mk_cond_goal ctxt thm =
+  let
+    val conclusion = (hd o strip_imp_prems_concl o strip_prop_safe o Thm.concl_of) thm;
+    val conditions = (extract_conditions o Thm.prems_of) thm;
+    val goal = Logic.list_implies (conditions, conclusion);
+    fun compare ((ix, _), (ix', _)) = compare_ixs (ix, ix');
+    val goal_vars = Term.add_vars goal [] |> Ord_List.make compare;
+    val (ixs, Ts) = split_list goal_vars;
+    val (_, Ts') = Term.add_vars (Thm.prop_of thm) [] |> Ord_List.make compare
+      |> Ord_List.inter compare goal_vars |> split_list;
+    val (As, _) = Ctr_Sugar_Util.mk_Frees "A" Ts ctxt;
+    val goal_subst = ixs ~~ As;
+    val thm_subst = ixs ~~ (map2 mk_abs_helper Ts' As);
+    val thm' = thm |> Drule.infer_instantiate ctxt (map (apsnd (Thm.cterm_of ctxt)) thm_subst);
+  in (goal |> Term.subst_Vars goal_subst, thm') end;
+
+fun mk_param_goal_from_eq_def ctxt thm =
+  let
+    val t =
+      (case Thm.full_prop_of thm of
+        (Const (@{const_name "Pure.eq"}, _) $ t' $ _) => t'
+      | _ => theorem_format_error ctxt thm);
+  in mk_goal ctxt t end;
+
+(* Transformations and parametricity theorems *)
+fun transform_class_rule ctxt thm =
+  (case Thm.concl_of thm of
+    Const (@{const_name "HOL.Trueprop"}, _) $ (Const (@{const_name "Transfer.Rel"}, _) $ _ $ t $ u ) =>
+      (if curry Term.aconv_untyped t u andalso is_class_op ctxt t then
+        thm RS @{thm Rel_Rel_match}
+      else thm)
+  | _ => thm);
+
+fun is_parametricity_theorem thm =
+  (case Thm.concl_of thm of
+    Const (@{const_name "HOL.Trueprop"}, _) $ (Const (rel, _) $ _ $ t $ u ) =>
+      if rel = @{const_name "Transfer.Rel"} orelse
+        rel = @{const_name "Conditional_Parametricity.Rel_match"}
+      then curry Term.aconv_untyped t u
+      else false
+  | _ => false);
+
+(* Pre- and postprocessing of theorems *)
+fun mk_Domainp_assm (T, R) =
+  HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R);
+
+val Domainp_lemma =
+  @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))"
+    by (rule, drule meta_spec,
+      erule meta_mp, rule HOL.refl, simp)};
+
+fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t
+  | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u
+  | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t
+  | fold_Domainp _ _ = I;
+
+fun subst_terms tab t =
+  let
+    val t' = Termtab.lookup tab t
+  in
+    (case t' of
+      SOME t' => t'
+    | NONE =>
+      (case t of
+          u $ v => (subst_terms tab u) $ (subst_terms tab v)
+        | Abs (a, T, t) => Abs (a, T, subst_terms tab t)
+        | t => t))
+  end;
+
+fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm =
+  let
+    val prop = Thm.prop_of thm
+    val (t, mk_prop') = dest prop
+    val Domainp_ts = rev (fold_Domainp (fn t => insert op= t) t [])
+    val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_ts
+    val used = Term.add_free_names t []
+    val rels = map (snd o dest_comb) Domainp_ts
+    val rel_names = map (fst o fst o dest_Var) rels
+    val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used
+    val frees = map Free (names ~~ Domainp_Ts)
+    val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees);
+    val t' = subst_terms (fold Termtab.update (Domainp_ts ~~ frees) Termtab.empty) t
+    val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t'))
+    val prop2 = Logic.list_rename_params (rev names) prop1
+    val cprop = Thm.cterm_of ctxt prop2
+    val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop
+    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm;
+  in
+    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
+  end
+    handle TERM _ => thm;
+
+fun abstract_domains_transfer ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (x, fn x' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y)))
+      end
+  in
+    gen_abstract_domains ctxt dest thm
+  end;
+
+fun transfer_rel_conv conv =
+  Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv)));
+
+fun fold_relator_eqs_conv ctxt ct = (Transfer.bottom_rewr_conv (Transfer.get_relator_eq ctxt)) ct;
+
+fun mk_is_equality t =
+  Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t;
+
+val is_equality_lemma =
+  @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))"
+    by (unfold is_equality_def, rule, drule meta_spec,
+      erule meta_mp, rule HOL.refl, simp)};
+
+fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm =
+  let
+    val prop = Thm.prop_of thm
+    val (t, mk_prop') = dest prop
+    (* Only consider "op =" at non-base types *)
+    fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) =
+        (case T of Type (_, []) => false | _ => true)
+      | is_eq _ = false
+    val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I)
+    val eq_consts = rev (add_eqs t [])
+    val eqTs = map (snd o dest_Const) eq_consts
+    val used = Term.add_free_names prop []
+    val names = map (K "") eqTs |> Name.variant_list used
+    val frees = map Free (names ~~ eqTs)
+    val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees
+    val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t)
+    val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1))
+    val cprop = Thm.cterm_of ctxt prop2
+    val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop
+    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm
+  in
+    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
+  end
+    handle TERM _ => thm;
+
+fun abstract_equalities_transfer ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (rel, fn rel' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y)))
+      end
+    val contracted_eq_thm =
+      Conv.fconv_rule (transfer_rel_conv (fold_relator_eqs_conv ctxt)) thm
+      handle CTERM _ => thm
+  in
+    gen_abstract_equalities ctxt dest contracted_eq_thm
+  end;
+
+fun prep_rule ctxt = abstract_equalities_transfer ctxt #> abstract_domains_transfer ctxt;
+
+fun get_preprocess_theorems ctxt =
+  Named_Theorems.get ctxt @{named_theorems parametricity_preprocess};
+
+fun preprocess_theorem ctxt =
+  Local_Defs.unfold0 ctxt (get_preprocess_theorems ctxt)
+  #> transform_class_rule ctxt;
+
+fun postprocess_theorem ctxt =
+  Local_Defs.fold ctxt (@{thm Rel_Rel_match_eq} :: get_preprocess_theorems ctxt)
+  #> prep_rule ctxt
+  #>  Local_Defs.unfold ctxt @{thms Rel_def};
+
+fun get_parametricity_theorems ctxt =
+  let
+    val parametricity_thm_map_filter =
+      Option.filter (is_parametricity_theorem andf (not o curry Term.could_unify
+        (Thm.full_prop_of @{thm is_equality_Rel})) o Thm.full_prop_of) o preprocess_theorem ctxt;
+  in
+    map_filter (parametricity_thm_map_filter o Thm.transfer (Proof_Context.theory_of ctxt))
+      (Transfer.get_transfer_raw ctxt)
+  end;
+
+(* Provers *)
+(* Tries to prove a parametricity theorem without conditions, returns the last goal_state as thm *)
+fun prove_find_goal_cond settings ctxt rules def_thm t =
+  let
+    fun find_conditions_tac {context = ctxt, prems = _} = unfold_tac ctxt (the_list def_thm) THEN
+      (REPEAT_TRY_ELSE_DEFER o HEADGOAL) (step_tac settings ctxt rules);
+  in
+    Goal.prove ctxt [] [] t find_conditions_tac handle FINISH st => st
+  end;
+
+(* Simplifies and proves thm *)
+fun prove_cond_goal ctxt thm =
+  let
+    val (goal, thm') = mk_cond_goal ctxt thm;
+    val vars = Variable.add_free_names ctxt goal [];
+    fun prove_conditions_tac {context = ctxt, prems = _} = apply_theorem_tac ctxt thm';
+    val vars = Variable.add_free_names ctxt (Thm.prop_of thm') vars;
+  in
+    Goal.prove ctxt vars [] goal prove_conditions_tac
+  end;
+
+(* Finds necessary conditions for t and proofs conditional parametricity of t under those conditions *)
+fun prove_goal settings ctxt def_thm t =
+  let
+    val parametricity_thms = get_parametricity_theorems ctxt;
+    val found_thm = prove_find_goal_cond settings ctxt parametricity_thms def_thm t;
+    val thm = prove_cond_goal ctxt found_thm;
+  in
+    postprocess_theorem ctxt thm
+  end;
+
+(* Commands  *)
+fun gen_parametric_constant settings prep_att prep_thm (raw_b : Attrib.binding, raw_eq) lthy =
+  let
+    val b = apsnd (map (prep_att lthy)) raw_b;
+    val def_thm = (prep_thm lthy raw_eq);
+    val eq = Ctr_Sugar_Util.mk_abs_def def_thm handle TERM _ => theorem_format_error lthy def_thm;
+    val goal= mk_param_goal_from_eq_def lthy eq;
+    val thm = prove_goal settings lthy (SOME eq) goal;
+    val (res, lthy') = Local_Theory.note (b, [thm]) lthy;
+    val _ = if #suppress_print_theorem settings then () else
+      Proof_Display.print_results true (Position.thread_data ()) lthy' (("theorem",""), [res]);
+  in
+    (the_single (snd res), lthy')
+  end;
+
+fun parametric_constant settings = gen_parametric_constant settings (K I) (K I);
+
+val parametric_constant_cmd = snd oo gen_parametric_constant default_settings (Attrib.check_src)
+  (singleton o Attrib.eval_thms);
+
+val _ =
+  Outer_Syntax.local_theory @{command_keyword parametric_constant} "proves parametricity"
+    ((Parse_Spec.opt_thm_name ":" -- Parse.thm) >> parametric_constant_cmd);
+
+end;
\ No newline at end of file
--- a/src/HOL/ROOT	Mon Dec 18 11:56:12 2017 +0100
+++ b/src/HOL/ROOT	Mon Dec 18 16:58:13 2017 +0100
@@ -537,6 +537,7 @@
     Coherent
     Commands
     Computations
+    Conditional_Parametricity_Examples
     Cubic_Quartic
     Dedekind_Real
     Erdoes_Szekeres
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Conditional_Parametricity_Examples.thy	Mon Dec 18 16:58:13 2017 +0100
@@ -0,0 +1,64 @@
+(*  Title:    HOL/ex/Conditional_Parametricity_Examples.thy
+    Author:   Jan Gilcher, Andreas Lochbihler, Dmitriy Traytel, ETH Zürich
+
+Examples for the parametric_constant command
+*)
+
+theory Conditional_Parametricity_Examples
+  imports "HOL-Library.Conditional_Parametricity"
+begin
+
+definition "bar x xs = rev (x # xs)"
+parametric_constant bar_def
+
+definition bar2 where "bar2 = bar"
+parametric_constant bar2_def
+
+parametric_constant bar_thm[transfer_rule]: bar_def
+parametric_constant bar2_thm1: bar2_def
+
+definition "t1 y x = zip x y"
+parametric_constant t1_thm: t1_def
+
+definition "t2 f x = f (rev x)"
+parametric_constant t2_thm: t2_def
+
+definition "t3 xs = rev (rev (xs :: 'b list))"
+parametric_constant t3_thm: t3_def
+
+definition "t4 f x = rev (f x (f x (rev x)))"
+parametric_constant t4_thm: t4_def
+
+definition "t5 x y = zip x (rev y)"
+parametric_constant t5_thm: t5_def
+
+(* Conditional Parametricity*)
+
+definition "t6_1 x y = inf y x"
+parametric_constant t6_1_thm: t6_1_def
+
+definition "t6_2 x y = sup y x"
+parametric_constant t6_2_thm: t6_2_def
+
+definition "t6_3 x z y = sup (inf x y) z"
+parametric_constant t6_3_thm: t6_3_def
+
+definition "t6_4 x xs y = map (sup (inf y x)) xs"
+parametric_constant t6_4_thm: t6_4_def
+
+definition "t7 x y = (y = x)"
+parametric_constant t7_thm: t7_def
+
+definition "t8 x y = ((x=y) \<and> (y=x))"
+parametric_constant t8_thm: t8_def
+
+(* Definition via primrec*)
+primrec delete where
+  "delete _ [] = []"
+| "delete x (y # ys) = (if x = y then ys else y # (delete x ys))"
+parametric_constant delete_thm: delete_def
+
+definition "foo f x y = (if f x = f y then x else sup y x)"
+parametric_constant foo_parametricity: foo_def
+
+end
\ No newline at end of file