--- a/src/HOL/Equiv_Relations.thy Thu Dec 22 14:22:11 2005 +0100
+++ b/src/HOL/Equiv_Relations.thy Thu Dec 22 17:57:09 2005 +0100
@@ -90,10 +90,6 @@
"equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
-lemma eq_equiv_class_iff2:
- "\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
-by(simp add:quotient_def eq_equiv_class_iff)
-
subsection {* Quotients *}
@@ -136,6 +132,10 @@
apply (unfold equiv_def sym_def trans_def, blast)
done
+lemma eq_equiv_class_iff2:
+ "\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
+by(simp add:quotient_def eq_equiv_class_iff)
+
lemma quotient_empty [simp]: "{}//r = {}"
by(simp add: quotient_def)
--- a/src/HOL/Finite_Set.thy Thu Dec 22 14:22:11 2005 +0100
+++ b/src/HOL/Finite_Set.thy Thu Dec 22 17:57:09 2005 +0100
@@ -1972,7 +1972,9 @@
locale ACIfSL = ACIf +
fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50)
+ and strict_below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubset>" 50)
assumes below_def: "(x \<sqsubseteq> y) = (x\<cdot>y = x)"
+ defines strict_below_def: "(x \<sqsubset> y) \<equiv> (x \<sqsubseteq> y \<and> x \<noteq> y)"
locale ACIfSLlin = ACIfSL +
assumes lin: "x\<cdot>y \<in> {x,y}"
@@ -2036,6 +2038,17 @@
qed
+lemma (in ACIfSLlin) strict_below_f_conv[simp]: "x \<sqsubset> y \<cdot> z = (x \<sqsubset> y \<and> x \<sqsubset> z)"
+apply(simp add: strict_below_def)
+using lin[of y z] by (auto simp:below_def ACI)
+
+
+lemma (in ACIfSLlin) strict_above_f_conv:
+ "x \<cdot> y \<sqsubset> z = (x \<sqsubset> z \<or> y \<sqsubset> z)"
+apply(simp add: strict_below_def above_f_conv)
+using lin[of y z] lin[of x z] by (auto simp:below_def ACI)
+
+
subsubsection{* Lemmas about @{text fold1} *}
lemma (in ACf) fold1_Un:
@@ -2076,6 +2089,11 @@
using A
by(induct rule:finite_ne_induct) simp_all
+lemma (in ACIfSLlin) strict_below_fold1_iff:
+ "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> x \<sqsubset> fold1 f A = (\<forall>a\<in>A. x \<sqsubset> a)"
+by(induct rule:finite_ne_induct) simp_all
+
+
lemma (in ACIfSL) fold1_belowI:
assumes A: "finite A" "A \<noteq> {}"
shows "a \<in> A \<Longrightarrow> fold1 f A \<sqsubseteq> a"
@@ -2101,12 +2119,19 @@
qed
qed
+
lemma (in ACIfSLlin) fold1_below_iff:
assumes A: "finite A" "A \<noteq> {}"
shows "fold1 f A \<sqsubseteq> x = (\<exists>a\<in>A. a \<sqsubseteq> x)"
using A
by(induct rule:finite_ne_induct)(simp_all add:above_f_conv)
+lemma (in ACIfSLlin) fold1_strict_below_iff:
+assumes A: "finite A" "A \<noteq> {}"
+shows "fold1 f A \<sqsubset> x = (\<exists>a\<in>A. a \<sqsubset> x)"
+using A
+by(induct rule:finite_ne_induct)(simp_all add:strict_above_f_conv)
+
lemma (in ACIfSLlin) fold1_antimono:
assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
@@ -2120,7 +2145,7 @@
also have "\<dots> = f (fold1 f A) (fold1 f (B-A))"
proof -
have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`])
- moreover have "finite(B-A)" by(blast intro:finite_Diff prems)
+ moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *)
moreover have "(B-A) \<noteq> {}" using prems by blast
moreover have "A Int (B-A) = {}" using prems by blast
ultimately show ?thesis using `A \<noteq> {}` by(rule_tac fold1_Un)
@@ -2130,6 +2155,7 @@
qed
+
subsubsection{* Lattices *}
locale Lattice = lattice +
@@ -2342,25 +2368,27 @@
done
interpretation min:
- ACIfSL ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>"]
+ ACIfSL ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>" "op <"]
+apply(simp add:order_less_le)
apply(rule ACIfSL_axioms.intro)
apply(auto simp:min_def)
done
interpretation min:
- ACIfSLlin ["min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>"]
+ ACIfSLlin ["min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>" "op <"]
apply(rule ACIfSLlin_axioms.intro)
apply(auto simp:min_def)
done
interpretation max:
- ACIfSL ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x"]
+ ACIfSL ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x" "%x y. y<x"]
+apply(simp add:order_less_le eq_sym_conv)
apply(rule ACIfSL_axioms.intro)
apply(auto simp:max_def)
done
interpretation max:
- ACIfSLlin ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x"]
+ ACIfSLlin ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x" "%x y. y<x"]
apply(rule ACIfSLlin_axioms.intro)
apply(auto simp:max_def)
done
@@ -2424,6 +2452,14 @@
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Max A \<le> x) = (\<forall>a\<in>A. a \<le> x)"
by(simp add: Max_def max.below_fold1_iff)
+lemma Min_gr_iff[simp]:
+ "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x < Min A) = (\<forall>a\<in>A. x < a)"
+by(simp add: Min_def min.strict_below_fold1_iff)
+
+lemma Max_less_iff[simp]:
+ "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Max A < x) = (\<forall>a\<in>A. a < x)"
+by(simp add: Max_def max.strict_below_fold1_iff)
+
lemma Min_le_iff:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Min A \<le> x) = (\<exists>a\<in>A. a \<le> x)"
by(simp add: Min_def min.fold1_below_iff)
@@ -2432,6 +2468,14 @@
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Max A) = (\<exists>a\<in>A. x \<le> a)"
by(simp add: Max_def max.fold1_below_iff)
+lemma Min_le_iff:
+ "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Min A < x) = (\<exists>a\<in>A. a < x)"
+by(simp add: Min_def min.fold1_strict_below_iff)
+
+lemma Max_ge_iff:
+ "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x < Max A) = (\<exists>a\<in>A. x < a)"
+by(simp add: Max_def max.fold1_strict_below_iff)
+
lemma Min_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
\<Longrightarrow> Min (A \<union> B) = min (Min A) (Min B)"
by(simp add:Min_def min.f.fold1_Un2)