--- a/src/HOL/ex/Primes.thy Tue Apr 20 14:35:12 1999 +0200
+++ b/src/HOL/ex/Primes.thy Tue Apr 20 14:36:19 1999 +0200
@@ -11,7 +11,7 @@
Isabelle prove those conditions.
*)
-Primes = Divides + Recdef + Datatype +
+Primes = Main +
consts
is_gcd :: [nat,nat,nat]=>bool (*gcd as a relation*)
gcd :: "nat*nat=>nat" (*Euclid's algorithm *)
@@ -19,7 +19,7 @@
prime :: nat set
recdef gcd "measure ((%(m,n).n) ::nat*nat=>nat)"
-(* simpset "!simpset addsimps [mod_less_divisor, zero_less_eq]" *)
+(* simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]" *)
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
defs
--- a/src/HOL/ex/Recdefs.thy Tue Apr 20 14:35:12 1999 +0200
+++ b/src/HOL/ex/Recdefs.thy Tue Apr 20 14:36:19 1999 +0200
@@ -6,7 +6,7 @@
Examples of recdef definitions. Most, but not all, are handled automatically.
*)
-Recdefs = Recdef + List +
+Recdefs = Main +
consts fact :: "nat => nat"
recdef fact "less_than"