--- a/src/HOL/IMP/Live.thy Sun Mar 14 19:48:33 2010 -0700
+++ b/src/HOL/IMP/Live.thy Mon Mar 15 17:33:41 2010 +0100
@@ -95,10 +95,30 @@
have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x"
using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` `\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''`] WhileTrue(6,8)
by (auto simp:L_gen_kill)
- moreover then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto
- ultimately show ?case using WhileTrue(5,6) `\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
+ then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto
+ then show ?case using WhileTrue(5,6) `\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
qed auto }
- from this[OF IH(3) _ IH(4,2)] show ?case by metis
+-- "a terser version"
+ { let ?w = "While b c"
+ have "\<langle>?w,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>?w,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow>
+ \<forall> x \<in> L ?w A. s x = t x \<Longrightarrow> \<forall>x\<in>A. s' x = t' x"
+ proof (induct ?w s s' arbitrary: t A pred:evalc)
+ case WhileFalse
+ have "\<not> b t" using WhileFalse by (simp add: ball_Un)(blast dest:dep_on)
+ then have "t' = t" using WhileFalse by auto
+ then show ?case using WhileFalse by simp
+ next
+ case (WhileTrue s s'' s')
+ have "b t" using WhileTrue by (simp add: ball_Un)(blast dest:dep_on)
+ then obtain t'' where "\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''" and "\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'"
+ using WhileTrue(6,7) by auto
+ have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x"
+ using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` `\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''`] WhileTrue(7)
+ by (auto simp:L_gen_kill)
+ then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto
+ then show ?case using WhileTrue(5) `\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
+ qed }
+ from this[OF IH(3) IH(4,2)] show ?case by metis
qed
@@ -164,7 +184,28 @@
ultimately show ?case
using WhileTrue(5,6) `\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
qed auto }
- from this[OF IH(3) _ IH(4,2)] show ?case by metis
+ { let ?w = "While b c"
+ have "\<langle>?w,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>bury ?w A,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow>
+ \<forall> x \<in> L ?w A. s x = t x \<Longrightarrow> \<forall>x\<in>A. s' x = t' x"
+ proof (induct ?w s s' arbitrary: t A pred:evalc)
+ case WhileFalse
+ have "\<not> b t" using WhileFalse by (simp add: ball_Un)(blast dest:dep_on)
+ then have "t' = t" using WhileFalse by auto
+ then show ?case using WhileFalse by simp
+ next
+ case (WhileTrue s s'' s')
+ have "b t" using WhileTrue by (simp add: ball_Un)(blast dest:dep_on)
+ then obtain t'' where tt'': "\<langle>bury c (Dep b \<union> A \<union> L c A),t\<rangle> \<longrightarrow>\<^sub>c t''"
+ and "\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'"
+ using WhileTrue(6,7) by auto
+ have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x"
+ using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` tt''] WhileTrue(7)
+ by (auto simp:L_gen_kill)
+ then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto
+ then show ?case
+ using WhileTrue(5) `\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
+ qed }
+ from this[OF IH(3) IH(4,2)] show ?case by metis
qed