--- a/src/HOL/Metis_Examples/Clausification.thy Thu Jan 03 14:10:57 2013 +0100
+++ b/src/HOL/Metis_Examples/Clausification.thy Thu Jan 03 14:12:12 2013 +0100
@@ -10,10 +10,6 @@
imports Complex_Main
begin
-(* FIXME: shouldn't need this *)
-declare [[unify_search_bound = 100]]
-declare [[unify_trace_bound = 100]]
-
text {* Definitional CNF for facts *}
@@ -139,7 +135,7 @@
lemma
"(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
(\<exists>ys x zs. xs = ys @ x # zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))"
-by (metis split_list_last_prop [where P = P] in_set_conv_decomp)
+by (metis split_list_last_prop[where P = P] in_set_conv_decomp)
lemma ex_tl: "EX ys. tl ys = xs"
using tl.simps(2) by fast
--- a/src/HOL/Tools/Meson/meson.ML Thu Jan 03 14:10:57 2013 +0100
+++ b/src/HOL/Tools/Meson/meson.ML Thu Jan 03 14:12:12 2013 +0100
@@ -167,21 +167,36 @@
(rename_bound_vars_RS th rl handle THM _ => tryall rls)
in tryall rls end;
+(* Special version of "rtac" that works around an explosion in the unifier.
+ If the goal has the form "?P c", the danger is that unifying "?P" with a
+ formula of the form "... c ... c ... c ..." will lead to a huge unification
+ problem, due to the (spurious) choices between projection and imitation. The
+ workaround is to instantiate "?P := (%c. ... c ... c ... c ...)" manually. *)
+fun quant_rtac th i st =
+ case (concl_of st, prop_of th) of
+ (@{const Trueprop} $ (Var _ $ (c as Free _)), @{const Trueprop} $ _) =>
+ let
+ val cc = cterm_of (theory_of_thm th) c
+ val ct = Thm.dest_arg (cprop_of th)
+ in rtac th i (Drule.instantiate' [] [SOME (Thm.lambda cc ct)] st) end
+ | _ => rtac th i st
+
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
e.g. from conj_forward, should have the form
"[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
fun forward_res ctxt nf st =
- let fun forward_tacf [prem] = rtac (nf prem) 1
- | forward_tacf prems =
- error (cat_lines
- ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
- Display.string_of_thm ctxt st ::
- "Premises:" :: map (Display.string_of_thm ctxt) prems))
+ let
+ fun tacf [prem] = quant_rtac (nf prem) 1
+ | tacf prems =
+ error (cat_lines
+ ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
+ Display.string_of_thm ctxt st ::
+ "Premises:" :: map (Display.string_of_thm ctxt) prems))
in
- case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
- of SOME(th,_) => th
- | NONE => raise THM("forward_res", 0, [st])
+ case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS tacf) st) of
+ SOME (th, _) => th
+ | NONE => raise THM ("forward_res", 0, [st])
end;
(*Are any of the logical connectives in "bs" present in the term?*)
@@ -635,7 +650,6 @@
val abs_extensionalize_thm = Conv.fconv_rule o abs_extensionalize_conv
-(* "RS" can fail if "unify_search_bound" is too small. *)
fun try_skolemize_etc ctxt th =
let
val thy = Proof_Context.theory_of ctxt