SOME rather than THE makes it easy to prove equivalence with other forms of derivatives
--- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Tue Sep 22 16:55:07 2015 +0100
+++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Tue Sep 22 16:55:49 2015 +0100
@@ -501,10 +501,10 @@
unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
definition deriv :: "('a \<Rightarrow> 'a::real_normed_field) \<Rightarrow> 'a \<Rightarrow> 'a" where
- "deriv f x \<equiv> THE D. DERIV f x :> D"
+ "deriv f x \<equiv> SOME D. DERIV f x :> D"
lemma DERIV_imp_deriv: "DERIV f x :> f' \<Longrightarrow> deriv f x = f'"
- unfolding deriv_def by (metis the_equality DERIV_unique)
+ unfolding deriv_def by (metis some_equality DERIV_unique)
lemma DERIV_deriv_iff_real_differentiable:
fixes x :: real