--- a/src/HOL/Library/Saturated.thy Tue Dec 27 09:15:26 2011 +0100
+++ b/src/HOL/Library/Saturated.thy Tue Dec 27 09:45:10 2011 +0100
@@ -215,38 +215,38 @@
begin
definition
- "Inf (A :: 'a sat set) = fold min top A"
+ "Inf (A :: 'a sat set) = Finite_Set.fold min top A"
definition
- "Sup (A :: 'a sat set) = fold max bot A"
+ "Sup (A :: 'a sat set) = Finite_Set.fold max bot A"
instance proof
fix x :: "'a sat"
fix A :: "'a sat set"
note finite
moreover assume "x \<in> A"
- ultimately have "fold min top A \<le> min x top" by (rule min_max.fold_inf_le_inf)
+ ultimately have "Finite_Set.fold min top A \<le> min x top" by (rule min_max.fold_inf_le_inf)
then show "Inf A \<le> x" by (simp add: Inf_sat_def)
next
fix z :: "'a sat"
fix A :: "'a sat set"
note finite
moreover assume z: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
- ultimately have "min z top \<le> fold min top A" by (blast intro: min_max.inf_le_fold_inf)
+ ultimately have "min z top \<le> Finite_Set.fold min top A" by (blast intro: min_max.inf_le_fold_inf)
then show "z \<le> Inf A" by (simp add: Inf_sat_def min_def)
next
fix x :: "'a sat"
fix A :: "'a sat set"
note finite
moreover assume "x \<in> A"
- ultimately have "max x bot \<le> fold max bot A" by (rule min_max.sup_le_fold_sup)
+ ultimately have "max x bot \<le> Finite_Set.fold max bot A" by (rule min_max.sup_le_fold_sup)
then show "x \<le> Sup A" by (simp add: Sup_sat_def)
next
fix z :: "'a sat"
fix A :: "'a sat set"
note finite
moreover assume z: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
- ultimately have "fold max bot A \<le> max z bot" by (blast intro: min_max.fold_sup_le_sup)
+ ultimately have "Finite_Set.fold max bot A \<le> max z bot" by (blast intro: min_max.fold_sup_le_sup)
then show "Sup A \<le> z" by (simp add: Sup_sat_def max_def bot_unique)
qed
--- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Dec 27 09:15:26 2011 +0100
+++ b/src/HOL/Multivariate_Analysis/Integration.thy Tue Dec 27 09:45:10 2011 +0100
@@ -1814,7 +1814,7 @@
unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto
definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
-definition "fold' opp e s \<equiv> (if finite s then fold opp e s else e)"
+definition "fold' opp e s \<equiv> (if finite s then Finite_Set.fold opp e s else e)"
definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)"
lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto
--- a/src/HOL/Quotient_Examples/FSet.thy Tue Dec 27 09:15:26 2011 +0100
+++ b/src/HOL/Quotient_Examples/FSet.thy Tue Dec 27 09:45:10 2011 +0100
@@ -6,7 +6,7 @@
*)
theory FSet
-imports "~~/src/HOL/Library/Quotient_List"
+imports "~~/src/HOL/Library/Multiset" "~~/src/HOL/Library/Quotient_List"
begin
text {*