merged, resolving some basic conflicts;
authorwenzelm
Wed, 03 Mar 2010 16:43:55 +0100
changeset 35547 991a6af75978
parent 35546 89541a30d5c1 (diff)
parent 35436 38b291bb4a98 (current diff)
child 35548 6d3fa3a37822
merged, resolving some basic conflicts;
src/HOL/Bali/Decl.thy
src/HOL/Bali/DeclConcepts.thy
src/HOLCF/Cfun.thy
src/HOLCF/Representable.thy
src/HOLCF/Sprod.thy
src/HOLCF/Ssum.thy
src/HOLCF/ex/Strict_Fun.thy
--- a/Admin/Mercurial/isabelle-style.diff	Wed Mar 03 15:40:39 2010 +0100
+++ b/Admin/Mercurial/isabelle-style.diff	Wed Mar 03 16:43:55 2010 +0100
@@ -1,34 +1,38 @@
-diff -r gitweb/changelogentry.tmpl isabelle/changelogentry.tmpl
-2,8c2
-< <a class="title" href="{url}rev/#node|short#{sessionvars%urlparameter}"><span class="age">#date|age# ago</span>#desc|strip|firstline|escape#<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
-< </div>
-< <div class="title_text">
-< <div class="log_link">
-< <a href="{url}rev/#node|short#{sessionvars%urlparameter}">changeset</a><br/>
-< </div>
-< <i>#author|obfuscate# [#date|rfc822date#] rev #rev#</i><br/>
----
-> <a class="title" href="{url}rev/#node|short#{sessionvars%urlparameter}"><span class="age">#date|age# ago</span>#author|obfuscate# [#date|rfc822date#] rev #rev#<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
-12a7,9
-> <div class="files">
-> #files#
-> </div>
-diff -r gitweb/changeset.tmpl isabelle/changeset.tmpl
-19c19
-< <a class="title" href="{url}raw-rev/#node|short#">#desc|strip|escape|firstline# <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
----
-> <a class="title" href="{url}raw-rev/#node|short#">#desc|strip|escape# <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
-diff -r gitweb/map isabelle/map
-29c29
-< annotateline = '<tr style="font-family:monospace" class="parity#parity#"><td class="linenr" style="text-align: right;"><a href="#url#annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}#l{targetline}" title="{node|short}: {desc|escape|firstline}">#author|user#@#rev#</a></td><td><pre><a class="linenr" href="##lineid#" id="#lineid#">#linenumber#</a></pre></td><td><pre>#line|escape#</pre></td></tr>'
----
-> annotateline = '<tr style="font-family:monospace" class="parity#parity#"><td class="linenr" style="text-align: right;"><a href="#url#annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}#l{targetline}" title="{node|short}: {desc|escape}">#author|user#@#rev#</a></td><td><pre><a class="linenr" href="##lineid#" id="#lineid#">#linenumber#</a></pre></td><td><pre>#line|escape#</pre></td></tr>'
-59,60c59,60
-< shortlogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><i>#author|person#</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|firstline|escape#</b> <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a></td><td class="link" nowrap><a href="{url}rev/#node|short#{sessionvars%urlparameter}">changeset</a> | <a href="{url}file/#node|short#{sessionvars%urlparameter}">files</a></td></tr>'
-< filelogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|firstline|escape#</b></a></td><td class="link"><a href="{url}file/#node|short#/#file|urlescape#{sessionvars%urlparameter}">file</a>&nbsp;|&nbsp;<a href="{url}diff/#node|short#/#file|urlescape#{sessionvars%urlparameter}">diff</a>&nbsp;|&nbsp;<a href="{url}annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}">annotate</a> #rename%filelogrename#</td></tr>'
----
-> shortlogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><i>#date|shortdate#</i></td><td><i>#author|person#</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|escape#</b> <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a></td><td class="link" nowrap><a href="{url}rev/#node|short#{sessionvars%urlparameter}">changeset</a> | <a href="{url}file/#node|short#{sessionvars%urlparameter}">files</a></td></tr>'
-> filelogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><i>#date|shortdate#</i></td><td><i>#author|person#</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|escape#</b></a></td><td class="link"><a href="{url}file/#node|short#/#file|urlescape#{sessionvars%urlparameter}">file</a>&nbsp;|&nbsp;<a href="{url}diff/#node|short#/#file|urlescape#{sessionvars%urlparameter}">diff</a>&nbsp;|&nbsp;<a href="{url}annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}">annotate</a> #rename%filelogrename#</td></tr>'
-diff -r gitweb/summary.tmpl isabelle/summary.tmpl
-34d33
-< <tr><td>owner</td><td>#owner|obfuscate#</td></tr>
+diff -u gitweb/changelogentry.tmpl isabelle/changelogentry.tmpl
+--- gitweb/changelogentry.tmpl	2010-02-01 16:34:34.000000000 +0100
++++ isabelle/changelogentry.tmpl	2010-03-03 15:12:12.000000000 +0100
+@@ -1,14 +1,12 @@
+ <div>
+-<a class="title" href="{url}rev/{node|short}{sessionvars%urlparameter}"><span class="age">{date|age}</span>{desc|strip|firstline|escape|nonempty}<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
+-</div>
+-<div class="title_text">
+-<div class="log_link">
+-<a href="{url}rev/{node|short}{sessionvars%urlparameter}">changeset</a><br/>
+-</div>
+-<i>{author|obfuscate} [{date|rfc822date}] rev {rev}</i><br/>
++<a class="title" href="{url}rev/{node|short}{sessionvars%urlparameter}"><span class="age">{date|age}</span>
++{author|obfuscate} [{date|rfc822date}] rev {rev}<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
+ </div>
+ <div class="log_body">
+ {desc|strip|escape|addbreaks|nonempty}
+ <br/>
++<div class="files">
++{files}
++</div>
+ <br/>
+ </div>
+diff -u gitweb/map isabelle/map
+--- gitweb/map	2010-02-01 16:34:34.000000000 +0100
++++ isabelle/map	2010-03-03 15:13:25.000000000 +0100
+@@ -206,9 +206,10 @@
+   <tr class="parity{parity}">
+     <td class="age"><i>{date|age}</i></td>
+     <td><i>{author|person}</i></td>
++    <td><i>{date|shortdate}</i></td>
+     <td>
+       <a class="list" href="{url}rev/{node|short}{sessionvars%urlparameter}">
+-        <b>{desc|strip|firstline|escape|nonempty}</b>
++        <b>{desc|strip|escape|nonempty}</b>
+         <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span>
+       </a>
+     </td>
--- a/doc-src/TutorialI/Overview/LNCS/Ordinal.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/doc-src/TutorialI/Overview/LNCS/Ordinal.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -11,7 +11,8 @@
 
 definition OpLim :: "(nat \<Rightarrow> (ordinal \<Rightarrow> ordinal)) \<Rightarrow> (ordinal \<Rightarrow> ordinal)" where
   "OpLim F a \<equiv> Limit (\<lambda>n. F n a)"
-  OpItw :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)"    ("\<Squnion>")
+
+definition OpItw :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)"    ("\<Squnion>") where
   "\<Squnion>f \<equiv> OpLim (power f)"
 
 consts
@@ -40,9 +41,11 @@
 
 definition veb :: "ordinal \<Rightarrow> ordinal" where
   "veb a \<equiv> veblen a Zero"
-  epsilon0 :: ordinal    ("\<epsilon>\<^sub>0")
+
+definition epsilon0 :: ordinal    ("\<epsilon>\<^sub>0") where
   "\<epsilon>\<^sub>0 \<equiv> veb Zero"
-  Gamma0 :: ordinal    ("\<Gamma>\<^sub>0")
+
+definition Gamma0 :: ordinal    ("\<Gamma>\<^sub>0") where
   "\<Gamma>\<^sub>0 \<equiv> Limit (\<lambda>n. (veb^n) Zero)"
 thm Gamma0_def
 
--- a/doc-src/TutorialI/Protocol/NS_Public.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/doc-src/TutorialI/Protocol/NS_Public.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -76,7 +76,7 @@
 @{term [display,indent=5] "Says A' B (Crypt (pubK B) \<lbrace>Nonce NA, Agent A\<rbrace>)"}
 may be extended by an event of the form
 @{term [display,indent=5] "Says B A (Crypt (pubK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>)"}
-where @{text NB} is a fresh nonce: @{term "Nonce NB \<in> used evs2"}.
+where @{text NB} is a fresh nonce: @{term "Nonce NB \<notin> used evs2"}.
 Writing the sender as @{text A'} indicates that @{text B} does not 
 know who sent the message.  Calling the trace variable @{text evs2} rather
 than simply @{text evs} helps us know where we are in a proof after many
--- a/doc-src/TutorialI/Protocol/document/NS_Public.tex	Wed Mar 03 15:40:39 2010 +0100
+++ b/doc-src/TutorialI/Protocol/document/NS_Public.tex	Wed Mar 03 16:43:55 2010 +0100
@@ -84,7 +84,7 @@
 \begin{isabelle}%
 \ \ \ \ \ Says\ B\ A\ {\isacharparenleft}Crypt\ {\isacharparenleft}pubK\ A{\isacharparenright}\ {\isasymlbrace}Nonce\ NA{\isacharcomma}\ Nonce\ NB{\isacharcomma}\ Agent\ B{\isasymrbrace}{\isacharparenright}%
 \end{isabelle}
-where \isa{NB} is a fresh nonce: \isa{Nonce\ NB\ {\isasymin}\ used\ evs{\isadigit{2}}}.
+where \isa{NB} is a fresh nonce: \isa{Nonce\ NB\ {\isasymnotin}\ used\ evs{\isadigit{2}}}.
 Writing the sender as \isa{A{\isacharprime}} indicates that \isa{B} does not 
 know who sent the message.  Calling the trace variable \isa{evs{\isadigit{2}}} rather
 than simply \isa{evs} helps us know where we are in a proof after many
--- a/src/HOL/Bali/Decl.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Bali/Decl.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -763,51 +763,57 @@
 
 section "general recursion operators for the interface and class hiearchies"
 
-consts
-  iface_rec  :: "prog \<times> qtname \<Rightarrow>   \<spacespace>  (qtname \<Rightarrow> iface \<Rightarrow> 'a set \<Rightarrow> 'a) \<Rightarrow> 'a"
-  class_rec  :: "prog \<times> qtname \<Rightarrow> 'a \<Rightarrow> (qtname \<Rightarrow> class \<Rightarrow> 'a     \<Rightarrow> 'a) \<Rightarrow> 'a"
-
-recdef iface_rec "same_fst ws_prog (\<lambda>G. (subint1 G)^-1)" 
-"iface_rec (G,I) = 
-  (\<lambda>f. case iface G I of 
+function
+  iface_rec  :: "prog \<Rightarrow> qtname \<Rightarrow>   \<spacespace>(qtname \<Rightarrow> iface \<Rightarrow> 'a set \<Rightarrow> 'a) \<Rightarrow> 'a"
+where
+[simp del]: "iface_rec G I f = 
+  (case iface G I of 
          None \<Rightarrow> undefined 
        | Some i \<Rightarrow> if ws_prog G 
                       then f I i 
-                               ((\<lambda>J. iface_rec (G,J) f)`set (isuperIfs i))
+                               ((\<lambda>J. iface_rec G J f)`set (isuperIfs i))
                       else undefined)"
-(hints recdef_wf: wf_subint1 intro: subint1I)
-declare iface_rec.simps [simp del]
+by auto
+termination
+by (relation "inv_image (same_fst ws_prog (\<lambda>G. (subint1 G)^-1)) (%(x,y,z). (x,y))")
+ (auto simp: wf_subint1 subint1I wf_same_fst)
 
 lemma iface_rec: 
 "\<lbrakk>iface G I = Some i; ws_prog G\<rbrakk> \<Longrightarrow> 
- iface_rec (G,I) f = f I i ((\<lambda>J. iface_rec (G,J) f)`set (isuperIfs i))"
+ iface_rec G I f = f I i ((\<lambda>J. iface_rec G J f)`set (isuperIfs i))"
 apply (subst iface_rec.simps)
 apply simp
 done
 
-recdef class_rec "same_fst ws_prog (\<lambda>G. (subcls1 G)^-1)"
-"class_rec(G,C) = 
-  (\<lambda>t f. case class G C of 
+
+function
+  class_rec  :: "prog \<Rightarrow> qtname \<Rightarrow> 'a \<Rightarrow> (qtname \<Rightarrow> class \<Rightarrow> 'a     \<Rightarrow> 'a) \<Rightarrow> 'a"
+where
+[simp del]: "class_rec G C t f = 
+  (case class G C of 
            None \<Rightarrow> undefined 
          | Some c \<Rightarrow> if ws_prog G 
                         then f C c 
                                  (if C = Object then t 
-                                                else class_rec (G,super c) t f)
+                                                else class_rec G (super c) t f)
                         else undefined)"
-(hints recdef_wf: wf_subcls1 intro: subcls1I)
-declare class_rec.simps [simp del]
+
+by auto
+termination
+by (relation "inv_image (same_fst ws_prog (\<lambda>G. (subcls1 G)^-1)) (%(x,y,z,w). (x,y))")
+ (auto simp: wf_subcls1 subcls1I wf_same_fst)
 
 lemma class_rec: "\<lbrakk>class G C = Some c; ws_prog G\<rbrakk> \<Longrightarrow>  
- class_rec (G,C) t f = 
-   f C c (if C = Object then t else class_rec (G,super c) t f)"
-apply (rule class_rec.simps [THEN trans [THEN fun_cong [THEN fun_cong]]])
+ class_rec G C t f = 
+   f C c (if C = Object then t else class_rec G (super c) t f)"
+apply (subst class_rec.simps)
 apply simp
 done
 
 definition imethds :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables" where
   --{* methods of an interface, with overriding and inheritance, cf. 9.2 *}
 "imethds G I 
-  \<equiv> iface_rec (G,I)  
+  \<equiv> iface_rec G I  
               (\<lambda>I i ts. (Un_tables ts) \<oplus>\<oplus> 
                         (Option.set \<circ> table_of (map (\<lambda>(s,m). (s,I,m)) (imethods i))))"
         
--- a/src/HOL/Bali/DeclConcepts.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Bali/DeclConcepts.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -1381,7 +1381,7 @@
 
 definition imethds :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables" where
 "imethds G I 
-  \<equiv> iface_rec (G,I)  
+  \<equiv> iface_rec G I  
               (\<lambda>I i ts. (Un_tables ts) \<oplus>\<oplus> 
                         (Option.set \<circ> table_of (map (\<lambda>(s,m). (s,I,m)) (imethods i))))"
 text {* methods of an interface, with overriding and inheritance, cf. 9.2 *}
@@ -1396,7 +1396,7 @@
 definition methd :: "prog \<Rightarrow> qtname  \<Rightarrow> (sig,qtname \<times> methd) table" where
 
 "methd G C 
- \<equiv> class_rec (G,C) empty
+ \<equiv> class_rec G C empty
              (\<lambda>C c subcls_mthds. 
                filter_tab (\<lambda>sig m. G\<turnstile>C inherits method sig m)
                           subcls_mthds 
@@ -1429,7 +1429,7 @@
         then (case methd G statC sig of
                 None \<Rightarrow> None
               | Some statM 
-                  \<Rightarrow> (class_rec (G,dynC) empty
+                  \<Rightarrow> (class_rec G dynC empty
                        (\<lambda>C c subcls_mthds. 
                           subcls_mthds
                           ++
@@ -1481,7 +1481,7 @@
 
 definition fields :: "prog \<Rightarrow> qtname \<Rightarrow> ((vname \<times> qtname) \<times> field) list" where
 "fields G C 
-  \<equiv> class_rec (G,C) [] (\<lambda>C c ts. map (\<lambda>(n,t). ((n,C),t)) (cfields c) @ ts)"
+  \<equiv> class_rec G C [] (\<lambda>C c ts. map (\<lambda>(n,t). ((n,C),t)) (cfields c) @ ts)"
 text {* @{term "fields G C"} 
      list of fields of a class, including all the fields of the superclasses
      (private, inherited and hidden ones) not only the accessible ones
@@ -1805,7 +1805,7 @@
                 (\<lambda>_ dynM. G,sig \<turnstile> dynM overrides statM \<or> dynM = statM)
                 (methd G C)"
         let "?class_rec C" =
-              "(class_rec (G, C) empty
+              "(class_rec G C empty
                            (\<lambda>C c subcls_mthds. subcls_mthds ++ (?filter C)))"
         from statM Subcls ws subclseq_dynC_statC
         have dynmethd_dynC_def:
@@ -2270,7 +2270,7 @@
 section "calculation of the superclasses of a class"
 
 definition superclasses :: "prog \<Rightarrow> qtname \<Rightarrow> qtname set" where
- "superclasses G C \<equiv> class_rec (G,C) {} 
+ "superclasses G C \<equiv> class_rec G C {} 
                        (\<lambda> C c superclss. (if C=Object 
                                             then {} 
                                             else insert (super c) superclss))"
--- a/src/HOL/Bali/WellForm.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Bali/WellForm.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -730,13 +730,15 @@
  \<Longrightarrow> \<not>is_static im \<and> accmodi im = Public"
 proof -
   assume asm: "wf_prog G" "is_iface G I" "im \<in> imethds G I sig"
+
+  note iface_rec_induct' = iface_rec.induct[of "(%x y z. P x y)", standard]
   have "wf_prog G \<longrightarrow> 
          (\<forall> i im. iface G I = Some i \<longrightarrow> im \<in> imethds G I sig
                   \<longrightarrow> \<not>is_static im \<and> accmodi im = Public)" (is "?P G I")
-  proof (rule iface_rec.induct,intro allI impI)
+  proof (induct G I rule: iface_rec_induct', intro allI impI)
     fix G I i im
-    assume hyp: "\<forall> J i. J \<in> set (isuperIfs i) \<and> ws_prog G \<and> iface G I = Some i
-                 \<longrightarrow> ?P G J"
+    assume hyp: "\<And> i J. iface G I = Some i \<Longrightarrow> ws_prog G \<Longrightarrow> J \<in> set (isuperIfs i)
+                 \<Longrightarrow> ?P G J"
     assume wf: "wf_prog G" and if_I: "iface G I = Some i" and 
            im: "im \<in> imethds G I sig" 
     show "\<not>is_static im \<and> accmodi im = Public" 
@@ -1345,14 +1347,16 @@
   qed
 qed
 
+lemmas class_rec_induct' = class_rec.induct[of "%x y z w. P x y", standard]
+
 lemma declclass_widen[rule_format]: 
  "wf_prog G 
  \<longrightarrow> (\<forall>c m. class G C = Some c \<longrightarrow> methd G C sig = Some m 
  \<longrightarrow> G\<turnstile>C \<preceq>\<^sub>C declclass m)" (is "?P G C")
-proof (rule class_rec.induct,intro allI impI)
+proof (induct G C rule: class_rec_induct', intro allI impI)
   fix G C c m
-  assume Hyp: "\<forall>c. C \<noteq> Object \<and> ws_prog G \<and> class G C = Some c 
-               \<longrightarrow> ?P G (super c)"
+  assume Hyp: "\<And>c. class G C = Some c \<Longrightarrow> ws_prog G \<Longrightarrow> C \<noteq> Object
+               \<Longrightarrow> ?P G (super c)"
   assume wf: "wf_prog G" and cls_C: "class G C = Some c" and
          m:  "methd G C sig = Some m"
   show "G\<turnstile>C\<preceq>\<^sub>C declclass m" 
@@ -1976,27 +1980,6 @@
   qed
 qed
 
-(* Tactical version *)
-(*
-lemma declclassD[rule_format]:
- "wf_prog G \<longrightarrow>  
- (\<forall> c d m. class G C = Some c \<longrightarrow> methd G C sig = Some m \<longrightarrow> 
-  class G (declclass m) = Some d
- \<longrightarrow> table_of (methods d) sig  = Some (mthd m))"
-apply (rule class_rec.induct)
-apply (rule impI)
-apply (rule allI)+
-apply (rule impI)
-apply (case_tac "C=Object")
-apply   (force simp add: methd_rec)
-
-apply   (subst methd_rec)
-apply     (blast dest: wf_ws_prog)+
-apply   (case_tac "table_of (map (\<lambda>(s, m). (s, C, m)) (methods c)) sig")
-apply     (auto dest: wf_prog_cdecl wf_cdecl_supD is_acc_class_is_class)
-done
-*)
-
 lemma dynmethd_Object:
   assumes statM: "methd G Object sig = Some statM" and
         private: "accmodi statM = Private" and 
@@ -2355,9 +2338,9 @@
   have "wf_prog G  \<longrightarrow> 
            (\<forall> c m. class G C = Some c \<longrightarrow>  methd G C sig = Some m 
                    \<longrightarrow>  methd G (declclass m) sig = Some m)"      (is "?P G C") 
-  proof (rule class_rec.induct,intro allI impI)
+  proof (induct G C rule: class_rec_induct', intro allI impI)
     fix G C c m
-    assume hyp: "\<forall>c. C \<noteq> Object \<and> ws_prog G \<and> class G C = Some c \<longrightarrow>
+    assume hyp: "\<And>c. class G C = Some c \<Longrightarrow> ws_prog G \<Longrightarrow> C \<noteq> Object \<Longrightarrow>
                      ?P G (super c)"
     assume wf: "wf_prog G" and cls_C: "class G C = Some c" and
             m: "methd G C sig = Some m"
--- a/src/HOL/Induct/Tree.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Induct/Tree.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -68,7 +68,7 @@
 
 subsection{*A WF Ordering for The Brouwer ordinals (Michael Compton)*}
 
-text{*To define recdef style functions we need an ordering on the Brouwer
+text{*To use the function package we need an ordering on the Brouwer
   ordinals.  Start with a predecessor relation and form its transitive 
   closure. *} 
 
--- a/src/HOL/IsaMakefile	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/IsaMakefile	Wed Mar 03 16:43:55 2010 +0100
@@ -47,6 +47,7 @@
   HOL-MicroJava \
   HOL-Mirabelle \
   HOL-Modelcheck \
+  HOL-Mutabelle \
   HOL-NanoJava \
   HOL-Nitpick_Examples \
   HOL-Nominal-Examples \
@@ -756,7 +757,7 @@
 
 HOL-ZF: HOL $(LOG)/HOL-ZF.gz
 
-$(LOG)/HOL-ZF.gz: $(OUT)/HOL ZF/ROOT.ML ZF/Helper.thy ZF/LProd.thy	\
+$(LOG)/HOL-ZF.gz: $(OUT)/HOL ZF/ROOT.ML ZF/LProd.thy	\
   ZF/HOLZF.thy ZF/MainZF.thy ZF/Games.thy ZF/document/root.tex
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL ZF
 
--- a/src/HOL/Lambda/ParRed.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Lambda/ParRed.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -85,14 +85,14 @@
 
 subsection {* Complete developments *}
 
-consts
+fun
   "cd" :: "dB => dB"
-recdef "cd" "measure size"
+where
   "cd (Var n) = Var n"
-  "cd (Var n \<degree> t) = Var n \<degree> cd t"
-  "cd ((s1 \<degree> s2) \<degree> t) = cd (s1 \<degree> s2) \<degree> cd t"
-  "cd (Abs u \<degree> t) = (cd u)[cd t/0]"
-  "cd (Abs s) = Abs (cd s)"
+| "cd (Var n \<degree> t) = Var n \<degree> cd t"
+| "cd ((s1 \<degree> s2) \<degree> t) = cd (s1 \<degree> s2) \<degree> cd t"
+| "cd (Abs u \<degree> t) = (cd u)[cd t/0]"
+| "cd (Abs s) = Abs (cd s)"
 
 lemma par_beta_cd: "s => t \<Longrightarrow> t => cd s"
   apply (induct s arbitrary: t rule: cd.induct)
--- a/src/HOL/Library/RBT.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Library/RBT.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -11,135 +11,151 @@
 begin
 
 datatype color = R | B
-datatype ('a,'b)"rbt" = Empty | Tr color "('a,'b)rbt" 'a 'b "('a,'b)rbt"
+datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
+
+lemma rbt_cases:
+  obtains (Empty) "t = Empty" 
+  | (Red) l k v r where "t = Branch R l k v r" 
+  | (Black) l k v r where "t = Branch B l k v r"
+proof (cases t)
+  case Empty with that show thesis by blast
+next
+  case (Branch c) with that show thesis by (cases c) blast+
+qed
+
+text {* Content of a tree *}
+
+primrec entries
+where 
+  "entries Empty = []"
+| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r"
 
 text {* Search tree properties *}
 
-primrec
-  pin_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool"
+primrec entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 where
-  "pin_tree k v Empty = False"
-| "pin_tree k v (Tr c l x y r) = (k = x \<and> v = y \<or> pin_tree k v l \<or> pin_tree k v r)"
+  "entry_in_tree k v Empty = False"
+| "entry_in_tree k v (Branch c l x y r) \<longleftrightarrow> k = x \<and> v = y \<or> entry_in_tree k v l \<or> entry_in_tree k v r"
 
-primrec
-  keys :: "('k,'v) rbt \<Rightarrow> 'k set"
+primrec keys :: "('k, 'v) rbt \<Rightarrow> 'k set"
 where
   "keys Empty = {}"
-| "keys (Tr _ l k _ r) = { k } \<union> keys l \<union> keys r"
+| "keys (Branch _ l k _ r) = { k } \<union> keys l \<union> keys r"
 
-lemma pint_keys: "pin_tree k v t \<Longrightarrow> k \<in> keys t" by (induct t) auto
+lemma entry_in_tree_keys:
+  "entry_in_tree k v t \<Longrightarrow> k \<in> keys t"
+  by (induct t) auto
 
-primrec tlt :: "'a\<Colon>order \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool"
+definition tree_less :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 where
-  "tlt k Empty = True"
-| "tlt k (Tr c lt kt v rt) = (kt < k \<and> tlt k lt \<and> tlt k rt)"
+  tree_less_prop: "tree_less k t \<longleftrightarrow> (\<forall>x\<in>keys t. x < k)"
+
+abbreviation tree_less_symbol (infix "|\<guillemotleft>" 50)
+where "t |\<guillemotleft> x \<equiv> tree_less x t"
 
-abbreviation tllt (infix "|\<guillemotleft>" 50)
-where "t |\<guillemotleft> x == tlt x t"
+definition tree_greater :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
+where
+  tree_greater_prop: "tree_greater k t = (\<forall>x\<in>keys t. k < x)"
 
-primrec tgt :: "'a\<Colon>order \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
-where
-  "tgt k Empty = True"
-| "tgt k (Tr c lt kt v rt) = (k < kt \<and> tgt k lt \<and> tgt k rt)"
+lemma tree_less_simps [simp]:
+  "tree_less k Empty = True"
+  "tree_less k (Branch c lt kt v rt) \<longleftrightarrow> kt < k \<and> tree_less k lt \<and> tree_less k rt"
+  by (auto simp add: tree_less_prop)
 
-lemma tlt_prop: "(t |\<guillemotleft> k) = (\<forall>x\<in>keys t. x < k)" by (induct t) auto
-lemma tgt_prop: "(k \<guillemotleft>| t) = (\<forall>x\<in>keys t. k < x)" by (induct t) auto
-lemmas tlgt_props = tlt_prop tgt_prop
+lemma tree_greater_simps [simp]:
+  "tree_greater k Empty = True"
+  "tree_greater k (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> tree_greater k lt \<and> tree_greater k rt"
+  by (auto simp add: tree_greater_prop)
 
-lemmas tgt_nit = tgt_prop pint_keys
-lemmas tlt_nit = tlt_prop pint_keys
+lemmas tree_ord_props = tree_less_prop tree_greater_prop
 
-lemma tlt_trans: "\<lbrakk> t |\<guillemotleft> x; x < y \<rbrakk> \<Longrightarrow> t |\<guillemotleft> y"
-  and tgt_trans: "\<lbrakk> x < y; y \<guillemotleft>| t\<rbrakk> \<Longrightarrow> x \<guillemotleft>| t"
-by (auto simp: tlgt_props)
-
+lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys
+lemmas tree_less_nit = tree_less_prop entry_in_tree_keys
 
-primrec st :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
-where
-  "st Empty = True"
-| "st (Tr c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> st l \<and> st r)"
+lemma tree_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y"
+  and tree_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t"
+by (auto simp: tree_ord_props)
 
-primrec map_of :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
+primrec sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
 where
-  "map_of Empty k = None"
-| "map_of (Tr _ l x y r) k = (if k < x then map_of l k else if x < k then map_of r k else Some y)"
+  "sorted Empty = True"
+| "sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> sorted l \<and> sorted r)"
 
-lemma map_of_tlt[simp]: "t |\<guillemotleft> k \<Longrightarrow> map_of t k = None" 
+primrec lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
+where
+  "lookup Empty k = None"
+| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)"
+
+lemma lookup_tree_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> lookup t k = None" 
 by (induct t) auto
 
-lemma map_of_tgt[simp]: "k \<guillemotleft>| t \<Longrightarrow> map_of t k = None"
+lemma lookup_tree_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> lookup t k = None"
 by (induct t) auto
 
-lemma mapof_keys: "st t \<Longrightarrow> dom (map_of t) = keys t"
-by (induct t) (auto simp: dom_def tgt_prop tlt_prop)
+lemma lookup_keys: "sorted t \<Longrightarrow> dom (lookup t) = keys t"
+by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop)
 
-lemma mapof_pit: "st t \<Longrightarrow> (map_of t k = Some v) = pin_tree k v t"
-by (induct t) (auto simp: tlt_prop tgt_prop pint_keys)
+lemma lookup_pit: "sorted t \<Longrightarrow> (lookup t k = Some v) = entry_in_tree k v t"
+by (induct t) (auto simp: tree_less_prop tree_greater_prop entry_in_tree_keys)
 
-lemma map_of_Empty: "map_of Empty = empty"
+lemma lookup_Empty: "lookup Empty = empty"
 by (rule ext) simp
 
 (* a kind of extensionality *)
-lemma mapof_from_pit: 
-  assumes st: "st t1" "st t2" 
-  and eq: "\<And>v. pin_tree (k\<Colon>'a\<Colon>linorder) v t1 = pin_tree k v t2" 
-  shows "map_of t1 k = map_of t2 k"
-proof (cases "map_of t1 k")
+lemma lookup_from_pit: 
+  assumes sorted: "sorted t1" "sorted t2" 
+  and eq: "\<And>v. entry_in_tree (k\<Colon>'a\<Colon>linorder) v t1 = entry_in_tree k v t2" 
+  shows "lookup t1 k = lookup t2 k"
+proof (cases "lookup t1 k")
   case None
-  then have "\<And>v. \<not> pin_tree k v t1"
-    by (simp add: mapof_pit[symmetric] st)
+  then have "\<And>v. \<not> entry_in_tree k v t1"
+    by (simp add: lookup_pit[symmetric] sorted)
   with None show ?thesis
-    by (cases "map_of t2 k") (auto simp: mapof_pit st eq)
+    by (cases "lookup t2 k") (auto simp: lookup_pit sorted eq)
 next
   case (Some a)
   then show ?thesis
-    apply (cases "map_of t2 k")
-    apply (auto simp: mapof_pit st eq)
-    by (auto simp add: mapof_pit[symmetric] st Some)
+    apply (cases "lookup t2 k")
+    apply (auto simp: lookup_pit sorted eq)
+    by (auto simp add: lookup_pit[symmetric] sorted Some)
 qed
 
 subsection {* Red-black properties *}
 
-primrec treec :: "('a,'b) rbt \<Rightarrow> color"
+primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
 where
-  "treec Empty = B"
-| "treec (Tr c _ _ _ _) = c"
+  "color_of Empty = B"
+| "color_of (Branch c _ _ _ _) = c"
 
-primrec inv1 :: "('a,'b) rbt \<Rightarrow> bool"
+primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
+where
+  "bheight Empty = 0"
+| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
+
+primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
 where
   "inv1 Empty = True"
-| "inv1 (Tr c lt k v rt) = (inv1 lt \<and> inv1 rt \<and> (c = B \<or> treec lt = B \<and> treec rt = B))"
+| "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)"
 
-(* Weaker version *)
-primrec inv1l :: "('a,'b) rbt \<Rightarrow> bool"
+primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
 where
   "inv1l Empty = True"
-| "inv1l (Tr c l k v r) = (inv1 l \<and> inv1 r)"
+| "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)"
 lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
 
-primrec bh :: "('a,'b) rbt \<Rightarrow> nat"
-where
-  "bh Empty = 0"
-| "bh (Tr c lt k v rt) = (if c = B then Suc (bh lt) else bh lt)"
-
-primrec inv2 :: "('a,'b) rbt \<Rightarrow> bool"
+primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
 where
   "inv2 Empty = True"
-| "inv2 (Tr c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bh lt = bh rt)"
+| "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)"
 
-definition
-  "isrbt t = (inv1 t \<and> inv2 t \<and> treec t = B \<and> st t)"
-
-lemma isrbt_st[simp]: "isrbt t \<Longrightarrow> st t" by (simp add: isrbt_def)
+definition is_rbt :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
+  "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> sorted t"
 
-lemma rbt_cases:
-  obtains (Empty) "t = Empty" 
-  | (Red) l k v r where "t = Tr R l k v r" 
-  | (Black) l k v r where "t = Tr B l k v r" 
-by (cases t, simp) (case_tac "color", auto)
+lemma is_rbt_sorted [simp]:
+  "is_rbt t \<Longrightarrow> sorted t" by (simp add: is_rbt_def)
 
-theorem Empty_isrbt[simp]: "isrbt Empty"
-unfolding isrbt_def by simp
+theorem Empty_is_rbt [simp]:
+  "is_rbt Empty" by (simp add: is_rbt_def)
 
 
 subsection {* Insertion *}
@@ -147,80 +163,80 @@
 fun (* slow, due to massive case splitting *)
   balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "balance (Tr R a w x b) s t (Tr R c y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance (Tr R (Tr R a w x b) s t c) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance (Tr R a w x (Tr R b s t c)) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance a w x (Tr R b s t (Tr R c y z d)) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance a w x (Tr R (Tr R b s t c) y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance a s t b = Tr B a s t b"
+  "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a s t b = Branch B a s t b"
 
 lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" 
   by (induct l k v r rule: balance.induct) auto
 
-lemma balance_bh: "bh l = bh r \<Longrightarrow> bh (balance l k v r) = Suc (bh l)"
+lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)"
   by (induct l k v r rule: balance.induct) auto
 
 lemma balance_inv2: 
-  assumes "inv2 l" "inv2 r" "bh l = bh r"
+  assumes "inv2 l" "inv2 r" "bheight l = bheight r"
   shows "inv2 (balance l k v r)"
   using assms
   by (induct l k v r rule: balance.induct) auto
 
-lemma balance_tgt[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
+lemma balance_tree_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
   by (induct a k x b rule: balance.induct) auto
 
-lemma balance_tlt[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
+lemma balance_tree_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
   by (induct a k x b rule: balance.induct) auto
 
-lemma balance_st: 
+lemma balance_sorted: 
   fixes k :: "'a::linorder"
-  assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-  shows "st (balance l k v r)"
+  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+  shows "sorted (balance l k v r)"
 using assms proof (induct l k v r rule: balance.induct)
   case ("2_2" a x w b y t c z s va vb vd vc)
-  hence "y < z \<and> z \<guillemotleft>| Tr B va vb vd vc" 
-    by (auto simp add: tlgt_props)
-  hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+  hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" 
+    by (auto simp add: tree_ord_props)
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
   with "2_2" show ?case by simp
 next
   case ("3_2" va vb vd vc x w b y s c z)
-  from "3_2" have "x < y \<and> tlt x (Tr B va vb vd vc)" 
-    by (simp add: tlt.simps tgt.simps)
-  hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+  from "3_2" have "x < y \<and> tree_less x (Branch B va vb vd vc)" 
+    by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
   with "3_2" show ?case by simp
 next
   case ("3_3" x w b y s c z t va vb vd vc)
-  from "3_3" have "y < z \<and> tgt z (Tr B va vb vd vc)" by simp
-  hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+  from "3_3" have "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
   with "3_3" show ?case by simp
 next
   case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
-  hence "x < y \<and> tlt x (Tr B vd ve vg vf)" by simp
-  hence 1: "tlt y (Tr B vd ve vg vf)" by (blast dest: tlt_trans)
-  from "3_4" have "y < z \<and> tgt z (Tr B va vb vii vc)" by simp
-  hence "tgt y (Tr B va vb vii vc)" by (blast dest: tgt_trans)
+  hence "x < y \<and> tree_less x (Branch B vd ve vg vf)" by simp
+  hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans)
+  from "3_4" have "y < z \<and> tree_greater z (Branch B va vb vii vc)" by simp
+  hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans)
   with 1 "3_4" show ?case by simp
 next
   case ("4_2" va vb vd vc x w b y s c z t dd)
-  hence "x < y \<and> tlt x (Tr B va vb vd vc)" by simp
-  hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
   with "4_2" show ?case by simp
 next
   case ("5_2" x w b y s c z t va vb vd vc)
-  hence "y < z \<and> tgt z (Tr B va vb vd vc)" by simp
-  hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+  hence "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
   with "5_2" show ?case by simp
 next
   case ("5_3" va vb vd vc x w b y s c z t)
-  hence "x < y \<and> tlt x (Tr B va vb vd vc)" by simp
-  hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
   with "5_3" show ?case by simp
 next
   case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
-  hence "x < y \<and> tlt x (Tr B va vb vg vc)" by simp
-  hence 1: "tlt y (Tr B va vb vg vc)" by (blast dest: tlt_trans)
-  from "5_4" have "y < z \<and> tgt z (Tr B vd ve vii vf)" by simp
-  hence "tgt y (Tr B vd ve vii vf)" by (blast dest: tgt_trans)
+  hence "x < y \<and> tree_less x (Branch B va vb vg vc)" by simp
+  hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans)
+  from "5_4" have "y < z \<and> tree_greater z (Branch B vd ve vii vf)" by simp
+  hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans)
   with 1 "5_4" show ?case by simp
 qed simp+
 
@@ -229,62 +245,62 @@
 by (induct l k v r rule: balance.induct) auto
 
 lemma balance_pit:  
-  "pin_tree k x (balance l v y r) = (pin_tree k x l \<or> k = v \<and> x = y \<or> pin_tree k x r)" 
+  "entry_in_tree k x (balance l v y r) = (entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r)" 
 by (induct l v y r rule: balance.induct) auto
 
-lemma map_of_balance[simp]: 
+lemma lookup_balance[simp]: 
 fixes k :: "'a::linorder"
-assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-shows "map_of (balance l k v r) x = map_of (Tr B l k v r) x"
-by (rule mapof_from_pit) (auto simp:assms balance_pit balance_st)
+assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x"
+by (rule lookup_from_pit) (auto simp:assms balance_pit balance_sorted)
 
 primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "paint c Empty = Empty"
-| "paint c (Tr _ l k v r) = Tr c l k v r"
+| "paint c (Branch _ l k v r) = Branch c l k v r"
 
 lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
 lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
 lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
-lemma paint_treec[simp]: "treec (paint B t) = B" by (cases t) auto
-lemma paint_st[simp]: "st t \<Longrightarrow> st (paint c t)" by (cases t) auto
-lemma paint_pit[simp]: "pin_tree k x (paint c t) = pin_tree k x t" by (cases t) auto
-lemma paint_mapof[simp]: "map_of (paint c t) = map_of t" by (rule ext) (cases t, auto)
-lemma paint_tgt[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
-lemma paint_tlt[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
+lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto
+lemma paint_sorted[simp]: "sorted t \<Longrightarrow> sorted (paint c t)" by (cases t) auto
+lemma paint_pit[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto
+lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto)
+lemma paint_tree_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
+lemma paint_tree_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
 
 fun
   ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "ins f k v Empty = Tr R Empty k v Empty" |
-  "ins f k v (Tr B l x y r) = (if k < x then balance (ins f k v l) x y r
+  "ins f k v Empty = Branch R Empty k v Empty" |
+  "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r
                                else if k > x then balance l x y (ins f k v r)
-                               else Tr B l x (f k y v) r)" |
-  "ins f k v (Tr R l x y r) = (if k < x then Tr R (ins f k v l) x y r
-                               else if k > x then Tr R l x y (ins f k v r)
-                               else Tr R l x (f k y v) r)"
+                               else Branch B l x (f k y v) r)" |
+  "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r
+                               else if k > x then Branch R l x y (ins f k v r)
+                               else Branch R l x (f k y v) r)"
 
 lemma ins_inv1_inv2: 
   assumes "inv1 t" "inv2 t"
-  shows "inv2 (ins f k x t)" "bh (ins f k x t) = bh t" 
-  "treec t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
+  shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" 
+  "color_of t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
   using assms
-  by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bh)
+  by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight)
 
-lemma ins_tgt[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
+lemma ins_tree_greater[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
   by (induct f k x t rule: ins.induct) auto
-lemma ins_tlt[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
+lemma ins_tree_less[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
   by (induct f k x t rule: ins.induct) auto
-lemma ins_st[simp]: "st t \<Longrightarrow> st (ins f k x t)"
-  by (induct f k x t rule: ins.induct) (auto simp: balance_st)
+lemma ins_sorted[simp]: "sorted t \<Longrightarrow> sorted (ins f k x t)"
+  by (induct f k x t rule: ins.induct) (auto simp: balance_sorted)
 
 lemma keys_ins: "keys (ins f k v t) = { k } \<union> keys t"
 by (induct f k v t rule: ins.induct) auto
 
-lemma map_of_ins: 
+lemma lookup_ins: 
   fixes k :: "'a::linorder"
-  assumes "st t"
-  shows "map_of (ins f k v t) x = ((map_of t)(k |-> case map_of t k of None \<Rightarrow> v 
+  assumes "sorted t"
+  shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
                                                        | Some w \<Rightarrow> f k w v)) x"
 using assms by (induct f k v t rule: ins.induct) auto
 
@@ -293,98 +309,97 @@
 where
   "insertwithkey f k v t = paint B (ins f k v t)"
 
-lemma insertwk_st: "st t \<Longrightarrow> st (insertwithkey f k x t)"
+lemma insertwk_sorted: "sorted t \<Longrightarrow> sorted (insertwithkey f k x t)"
   by (auto simp: insertwithkey_def)
 
-theorem insertwk_isrbt: 
-  assumes inv: "isrbt t" 
-  shows "isrbt (insertwithkey f k x t)"
+theorem insertwk_is_rbt: 
+  assumes inv: "is_rbt t" 
+  shows "is_rbt (insertwithkey f k x t)"
 using assms
-unfolding insertwithkey_def isrbt_def
+unfolding insertwithkey_def is_rbt_def
 by (auto simp: ins_inv1_inv2)
 
-lemma map_of_insertwk: 
-  assumes "st t"
-  shows "map_of (insertwithkey f k v t) x = ((map_of t)(k |-> case map_of t k of None \<Rightarrow> v 
+lemma lookup_insertwk: 
+  assumes "sorted t"
+  shows "lookup (insertwithkey f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
                                                        | Some w \<Rightarrow> f k w v)) x"
 unfolding insertwithkey_def using assms
-by (simp add:map_of_ins)
+by (simp add:lookup_ins)
 
 definition
   insertw_def: "insertwith f = insertwithkey (\<lambda>_. f)"
 
-lemma insertw_st: "st t \<Longrightarrow> st (insertwith f k v t)" by (simp add: insertwk_st insertw_def)
-theorem insertw_isrbt: "isrbt t \<Longrightarrow> isrbt (insertwith f k v t)" by (simp add: insertwk_isrbt insertw_def)
+lemma insertw_sorted: "sorted t \<Longrightarrow> sorted (insertwith f k v t)" by (simp add: insertwk_sorted insertw_def)
+theorem insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insertwith f k v t)" by (simp add: insertwk_is_rbt insertw_def)
 
-lemma map_of_insertw:
-  assumes "isrbt t"
-  shows "map_of (insertwith f k v t) = (map_of t)(k \<mapsto> (if k:dom (map_of t) then f (the (map_of t k)) v else v))"
+lemma lookup_insertw:
+  assumes "is_rbt t"
+  shows "lookup (insertwith f k v t) = (lookup t)(k \<mapsto> (if k:dom (lookup t) then f (the (lookup t k)) v else v))"
 using assms
 unfolding insertw_def
-by (rule_tac ext) (cases "map_of t k", auto simp:map_of_insertwk dom_def)
-
+by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def)
 
-definition
-  "insrt k v t = insertwithkey (\<lambda>_ _ nv. nv) k v t"
+definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
+  "insert k v t = insertwithkey (\<lambda>_ _ nv. nv) k v t"
 
-lemma insrt_st: "st t \<Longrightarrow> st (insrt k v t)" by (simp add: insertwk_st insrt_def)
-theorem insrt_isrbt: "isrbt t \<Longrightarrow> isrbt (insrt k v t)" by (simp add: insertwk_isrbt insrt_def)
+lemma insert_sorted: "sorted t \<Longrightarrow> sorted (insert k v t)" by (simp add: insertwk_sorted insert_def)
+theorem insert_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def)
 
-lemma map_of_insert: 
-  assumes "isrbt t"
-  shows "map_of (insrt k v t) = (map_of t)(k\<mapsto>v)"
-unfolding insrt_def
+lemma lookup_insert: 
+  assumes "is_rbt t"
+  shows "lookup (insert k v t) = (lookup t)(k\<mapsto>v)"
+unfolding insert_def
 using assms
-by (rule_tac ext) (simp add: map_of_insertwk split:option.split)
+by (rule_tac ext) (simp add: lookup_insertwk split:option.split)
 
 
 subsection {* Deletion *}
 
-lemma bh_paintR'[simp]: "treec t = B \<Longrightarrow> bh (paint R t) = bh t - 1"
+lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1"
 by (cases t rule: rbt_cases) auto
 
 fun
   balleft :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "balleft (Tr R a k x b) s y c = Tr R (Tr B a k x b) s y c" |
-  "balleft bl k x (Tr B a s y b) = balance bl k x (Tr R a s y b)" |
-  "balleft bl k x (Tr R (Tr B a s y b) t z c) = Tr R (Tr B bl k x a) s y (balance b t z (paint R c))" |
+  "balleft (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" |
+  "balleft bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" |
+  "balleft bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" |
   "balleft t k x s = Empty"
 
 lemma balleft_inv2_with_inv1:
-  assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "inv1 rt"
-  shows "bh (balleft lt k v rt) = bh lt + 1"
+  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt"
+  shows "bheight (balleft lt k v rt) = bheight lt + 1"
   and   "inv2 (balleft lt k v rt)"
 using assms 
-by (induct lt k v rt rule: balleft.induct) (auto simp: balance_inv2 balance_bh)
+by (induct lt k v rt rule: balleft.induct) (auto simp: balance_inv2 balance_bheight)
 
 lemma balleft_inv2_app: 
-  assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "treec rt = B"
+  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B"
   shows "inv2 (balleft lt k v rt)" 
-        "bh (balleft lt k v rt) = bh rt"
+        "bheight (balleft lt k v rt) = bheight rt"
 using assms 
-by (induct lt k v rt rule: balleft.induct) (auto simp add: balance_inv2 balance_bh)+ 
+by (induct lt k v rt rule: balleft.induct) (auto simp add: balance_inv2 balance_bheight)+ 
 
-lemma balleft_inv1: "\<lbrakk>inv1l a; inv1 b; treec b = B\<rbrakk> \<Longrightarrow> inv1 (balleft a k x b)"
+lemma balleft_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balleft a k x b)"
   by (induct a k x b rule: balleft.induct) (simp add: balance_inv1)+
 
 lemma balleft_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balleft lt k x rt)"
 by (induct lt k x rt rule: balleft.induct) (auto simp: balance_inv1)
 
-lemma balleft_st: "\<lbrakk> st l; st r; tlt k l; tgt k r \<rbrakk> \<Longrightarrow> st (balleft l k v r)"
+lemma balleft_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balleft l k v r)"
 apply (induct l k v r rule: balleft.induct)
-apply (auto simp: balance_st)
-apply (unfold tgt_prop tlt_prop)
+apply (auto simp: balance_sorted)
+apply (unfold tree_greater_prop tree_less_prop)
 by force+
 
-lemma balleft_tgt: 
+lemma balleft_tree_greater: 
   fixes k :: "'a::order"
   assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
   shows "k \<guillemotleft>| balleft a x t b"
 using assms 
 by (induct a x t b rule: balleft.induct) auto
 
-lemma balleft_tlt: 
+lemma balleft_tree_less: 
   fixes k :: "'a::order"
   assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
   shows "balleft a x t b |\<guillemotleft> k"
@@ -392,52 +407,52 @@
 by (induct a x t b rule: balleft.induct) auto
 
 lemma balleft_pit: 
-  assumes "inv1l l" "inv1 r" "bh l + 1 = bh r"
-  shows "pin_tree k v (balleft l a b r) = (pin_tree k v l \<or> k = a \<and> v = b \<or> pin_tree k v r)"
+  assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r"
+  shows "entry_in_tree k v (balleft l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)"
 using assms 
 by (induct l k v r rule: balleft.induct) (auto simp: balance_pit)
 
 fun
   balright :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "balright a k x (Tr R b s y c) = Tr R a k x (Tr B b s y c)" |
-  "balright (Tr B a k x b) s y bl = balance (Tr R a k x b) s y bl" |
-  "balright (Tr R a k x (Tr B b s y c)) t z bl = Tr R (balance (paint R a) k x b) s y (Tr B c t z bl)" |
+  "balright a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" |
+  "balright (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" |
+  "balright (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" |
   "balright t k x s = Empty"
 
 lemma balright_inv2_with_inv1:
-  assumes "inv2 lt" "inv2 rt" "bh lt = bh rt + 1" "inv1 lt"
-  shows "inv2 (balright lt k v rt) \<and> bh (balright lt k v rt) = bh lt"
+  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt"
+  shows "inv2 (balright lt k v rt) \<and> bheight (balright lt k v rt) = bheight lt"
 using assms
-by (induct lt k v rt rule: balright.induct) (auto simp: balance_inv2 balance_bh)
+by (induct lt k v rt rule: balright.induct) (auto simp: balance_inv2 balance_bheight)
 
-lemma balright_inv1: "\<lbrakk>inv1 a; inv1l b; treec a = B\<rbrakk> \<Longrightarrow> inv1 (balright a k x b)"
+lemma balright_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balright a k x b)"
 by (induct a k x b rule: balright.induct) (simp add: balance_inv1)+
 
 lemma balright_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balright lt k x rt)"
 by (induct lt k x rt rule: balright.induct) (auto simp: balance_inv1)
 
-lemma balright_st: "\<lbrakk> st l; st r; tlt k l; tgt k r \<rbrakk> \<Longrightarrow> st (balright l k v r)"
+lemma balright_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balright l k v r)"
 apply (induct l k v r rule: balright.induct)
-apply (auto simp:balance_st)
-apply (unfold tlt_prop tgt_prop)
+apply (auto simp:balance_sorted)
+apply (unfold tree_less_prop tree_greater_prop)
 by force+
 
-lemma balright_tgt: 
+lemma balright_tree_greater: 
   fixes k :: "'a::order"
   assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
   shows "k \<guillemotleft>| balright a x t b"
 using assms by (induct a x t b rule: balright.induct) auto
 
-lemma balright_tlt: 
+lemma balright_tree_less: 
   fixes k :: "'a::order"
   assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
   shows "balright a x t b |\<guillemotleft> k"
 using assms by (induct a x t b rule: balright.induct) auto
 
 lemma balright_pit:
-  assumes "inv1 l" "inv1l r" "bh l = bh r + 1" "inv2 l" "inv2 r"
-  shows "pin_tree x y (balright l k v r) = (pin_tree x y l \<or> x = k \<and> y = v \<or> pin_tree x y r)"
+  assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r"
+  shows "entry_in_tree x y (balright l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)"
 using assms by (induct l k v r rule: balright.induct) (auto simp: balance_pit)
 
 
@@ -448,50 +463,50 @@
 where
   "app Empty x = x" 
 | "app x Empty = x" 
-| "app (Tr R a k x b) (Tr R c s y d) = (case (app b c) of
-                                      Tr R b2 t z c2 \<Rightarrow> (Tr R (Tr R a k x b2) t z (Tr R c2 s y d)) |
-                                      bc \<Rightarrow> Tr R a k x (Tr R bc s y d))" 
-| "app (Tr B a k x b) (Tr B c s y d) = (case (app b c) of
-                                      Tr R b2 t z c2 \<Rightarrow> Tr R (Tr B a k x b2) t z (Tr B c2 s y d) |
-                                      bc \<Rightarrow> balleft a k x (Tr B bc s y d))" 
-| "app a (Tr R b k x c) = Tr R (app a b) k x c" 
-| "app (Tr R a k x b) c = Tr R a k x (app b c)" 
+| "app (Branch R a k x b) (Branch R c s y d) = (case (app b c) of
+                                      Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) |
+                                      bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" 
+| "app (Branch B a k x b) (Branch B c s y d) = (case (app b c) of
+                                      Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) |
+                                      bc \<Rightarrow> balleft a k x (Branch B bc s y d))" 
+| "app a (Branch R b k x c) = Branch R (app a b) k x c" 
+| "app (Branch R a k x b) c = Branch R a k x (app b c)" 
 
 lemma app_inv2:
-  assumes "inv2 lt" "inv2 rt" "bh lt = bh rt"
-  shows "bh (app lt rt) = bh lt" "inv2 (app lt rt)"
+  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt"
+  shows "bheight (app lt rt) = bheight lt" "inv2 (app lt rt)"
 using assms 
 by (induct lt rt rule: app.induct) 
    (auto simp: balleft_inv2_app split: rbt.splits color.splits)
 
 lemma app_inv1: 
   assumes "inv1 lt" "inv1 rt"
-  shows "treec lt = B \<Longrightarrow> treec rt = B \<Longrightarrow> inv1 (app lt rt)"
+  shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (app lt rt)"
          "inv1l (app lt rt)"
 using assms 
 by (induct lt rt rule: app.induct)
    (auto simp: balleft_inv1 split: rbt.splits color.splits)
 
-lemma app_tgt[simp]: 
+lemma app_tree_greater[simp]: 
   fixes k :: "'a::linorder"
   assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" 
   shows "k \<guillemotleft>| app l r"
 using assms 
 by (induct l r rule: app.induct)
-   (auto simp: balleft_tgt split:rbt.splits color.splits)
+   (auto simp: balleft_tree_greater split:rbt.splits color.splits)
 
-lemma app_tlt[simp]: 
+lemma app_tree_less[simp]: 
   fixes k :: "'a::linorder"
   assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" 
   shows "app l r |\<guillemotleft> k"
 using assms 
 by (induct l r rule: app.induct)
-   (auto simp: balleft_tlt split:rbt.splits color.splits)
+   (auto simp: balleft_tree_less split:rbt.splits color.splits)
 
-lemma app_st: 
+lemma app_sorted: 
   fixes k :: "'a::linorder"
-  assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-  shows "st (app l r)"
+  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+  shows "sorted (app l r)"
 using assms proof (induct l r rule: app.induct)
   case (3 a x v b c y w d)
   hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
@@ -500,55 +515,55 @@
   show ?case
     apply (cases "app b c" rule: rbt_cases)
     apply auto
-    by (metis app_tgt app_tlt ineqs ineqs tlt.simps(2) tgt.simps(2) tgt_trans tlt_trans)+
+    by (metis app_tree_greater app_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+
 next
   case (4 a x v b c y w d)
-  hence "x < k \<and> tgt k c" by simp
-  hence "tgt x c" by (blast dest: tgt_trans)
-  with 4 have 2: "tgt x (app b c)" by (simp add: app_tgt)
-  from 4 have "k < y \<and> tlt k b" by simp
-  hence "tlt y b" by (blast dest: tlt_trans)
-  with 4 have 3: "tlt y (app b c)" by (simp add: app_tlt)
+  hence "x < k \<and> tree_greater k c" by simp
+  hence "tree_greater x c" by (blast dest: tree_greater_trans)
+  with 4 have 2: "tree_greater x (app b c)" by (simp add: app_tree_greater)
+  from 4 have "k < y \<and> tree_less k b" by simp
+  hence "tree_less y b" by (blast dest: tree_less_trans)
+  with 4 have 3: "tree_less y (app b c)" by (simp add: app_tree_less)
   show ?case
   proof (cases "app b c" rule: rbt_cases)
     case Empty
-    from 4 have "x < y \<and> tgt y d" by auto
-    hence "tgt x d" by (blast dest: tgt_trans)
-    with 4 Empty have "st a" and "st (Tr B Empty y w d)" and "tlt x a" and "tgt x (Tr B Empty y w d)" by auto
-    with Empty show ?thesis by (simp add: balleft_st)
+    from 4 have "x < y \<and> tree_greater y d" by auto
+    hence "tree_greater x d" by (blast dest: tree_greater_trans)
+    with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto
+    with Empty show ?thesis by (simp add: balleft_sorted)
   next
     case (Red lta va ka rta)
-    with 2 4 have "x < va \<and> tlt x a" by simp
-    hence 5: "tlt va a" by (blast dest: tlt_trans)
-    from Red 3 4 have "va < y \<and> tgt y d" by simp
-    hence "tgt va d" by (blast dest: tgt_trans)
+    with 2 4 have "x < va \<and> tree_less x a" by simp
+    hence 5: "tree_less va a" by (blast dest: tree_less_trans)
+    from Red 3 4 have "va < y \<and> tree_greater y d" by simp
+    hence "tree_greater va d" by (blast dest: tree_greater_trans)
     with Red 2 3 4 5 show ?thesis by simp
   next
     case (Black lta va ka rta)
-    from 4 have "x < y \<and> tgt y d" by auto
-    hence "tgt x d" by (blast dest: tgt_trans)
-    with Black 2 3 4 have "st a" and "st (Tr B (app b c) y w d)" and "tlt x a" and "tgt x (Tr B (app b c) y w d)" by auto
-    with Black show ?thesis by (simp add: balleft_st)
+    from 4 have "x < y \<and> tree_greater y d" by auto
+    hence "tree_greater x d" by (blast dest: tree_greater_trans)
+    with Black 2 3 4 have "sorted a" and "sorted (Branch B (app b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (app b c) y w d)" by auto
+    with Black show ?thesis by (simp add: balleft_sorted)
   qed
 next
   case (5 va vb vd vc b x w c)
-  hence "k < x \<and> tlt k (Tr B va vb vd vc)" by simp
-  hence "tlt x (Tr B va vb vd vc)" by (blast dest: tlt_trans)
-  with 5 show ?case by (simp add: app_tlt)
+  hence "k < x \<and> tree_less k (Branch B va vb vd vc)" by simp
+  hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
+  with 5 show ?case by (simp add: app_tree_less)
 next
   case (6 a x v b va vb vd vc)
-  hence "x < k \<and> tgt k (Tr B va vb vd vc)" by simp
-  hence "tgt x (Tr B va vb vd vc)" by (blast dest: tgt_trans)
-  with 6 show ?case by (simp add: app_tgt)
+  hence "x < k \<and> tree_greater k (Branch B va vb vd vc)" by simp
+  hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
+  with 6 show ?case by (simp add: app_tree_greater)
 qed simp+
 
 lemma app_pit: 
-  assumes "inv2 l" "inv2 r" "bh l = bh r" "inv1 l" "inv1 r"
-  shows "pin_tree k v (app l r) = (pin_tree k v l \<or> pin_tree k v r)"
+  assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r"
+  shows "entry_in_tree k v (app l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)"
 using assms 
 proof (induct l r rule: app.induct)
   case (4 _ _ _ b c)
-  hence a: "bh (app b c) = bh b" by (simp add: app_inv2)
+  hence a: "bheight (app b c) = bheight b" by (simp add: app_inv2)
   from 4 have b: "inv1l (app b c)" by (simp add: app_inv1)
 
   show ?case
@@ -570,21 +585,21 @@
   del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "del x Empty = Empty" |
-  "del x (Tr c a y s b) = (if x < y then delformLeft x a y s b else (if x > y then delformRight x a y s b else app a b))" |
-  "delformLeft x (Tr B lt z v rt) y s b = balleft (del x (Tr B lt z v rt)) y s b" |
-  "delformLeft x a y s b = Tr R (del x a) y s b" |
-  "delformRight x a y s (Tr B lt z v rt) = balright a y s (del x (Tr B lt z v rt))" | 
-  "delformRight x a y s b = Tr R a y s (del x b)"
+  "del x (Branch c a y s b) = (if x < y then delformLeft x a y s b else (if x > y then delformRight x a y s b else app a b))" |
+  "delformLeft x (Branch B lt z v rt) y s b = balleft (del x (Branch B lt z v rt)) y s b" |
+  "delformLeft x a y s b = Branch R (del x a) y s b" |
+  "delformRight x a y s (Branch B lt z v rt) = balright a y s (del x (Branch B lt z v rt))" | 
+  "delformRight x a y s b = Branch R a y s (del x b)"
 
 lemma 
   assumes "inv2 lt" "inv1 lt"
   shows
-  "\<lbrakk>inv2 rt; bh lt = bh rt; inv1 rt\<rbrakk> \<Longrightarrow>
-  inv2 (delformLeft x lt k v rt) \<and> bh (delformLeft x lt k v rt) = bh lt \<and> (treec lt = B \<and> treec rt = B \<and> inv1 (delformLeft x lt k v rt) \<or> (treec lt \<noteq> B \<or> treec rt \<noteq> B) \<and> inv1l (delformLeft x lt k v rt))"
-  and "\<lbrakk>inv2 rt; bh lt = bh rt; inv1 rt\<rbrakk> \<Longrightarrow>
-  inv2 (delformRight x lt k v rt) \<and> bh (delformRight x lt k v rt) = bh lt \<and> (treec lt = B \<and> treec rt = B \<and> inv1 (delformRight x lt k v rt) \<or> (treec lt \<noteq> B \<or> treec rt \<noteq> B) \<and> inv1l (delformRight x lt k v rt))"
-  and del_inv1_inv2: "inv2 (del x lt) \<and> (treec lt = R \<and> bh (del x lt) = bh lt \<and> inv1 (del x lt) 
-  \<or> treec lt = B \<and> bh (del x lt) = bh lt - 1 \<and> inv1l (del x lt))"
+  "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
+  inv2 (delformLeft x lt k v rt) \<and> bheight (delformLeft x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (delformLeft x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (delformLeft x lt k v rt))"
+  and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
+  inv2 (delformRight x lt k v rt) \<and> bheight (delformRight x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (delformRight x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (delformRight x lt k v rt))"
+  and del_inv1_inv2: "inv2 (del x lt) \<and> (color_of lt = R \<and> bheight (del x lt) = bheight lt \<and> inv1 (del x lt) 
+  \<or> color_of lt = B \<and> bheight (del x lt) = bheight lt - 1 \<and> inv1l (del x lt))"
 using assms
 proof (induct x lt k v rt and x lt k v rt and x lt rule: delformLeft_delformRight_del.induct)
 case (2 y c _ y')
@@ -601,55 +616,55 @@
   qed
 next
   case (3 y lt z v rta y' ss bb) 
-  thus ?case by (cases "treec (Tr B lt z v rta) = B \<and> treec bb = B") (simp add: balleft_inv2_with_inv1 balleft_inv1 balleft_inv1l)+
+  thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balleft_inv2_with_inv1 balleft_inv1 balleft_inv1l)+
 next
   case (5 y a y' ss lt z v rta)
-  thus ?case by (cases "treec a = B \<and> treec (Tr B lt z v rta) = B") (simp add: balright_inv2_with_inv1 balright_inv1 balright_inv1l)+
+  thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balright_inv2_with_inv1 balright_inv1 balright_inv1l)+
 next
-  case ("6_1" y a y' ss) thus ?case by (cases "treec a = B \<and> treec Empty = B") simp+
+  case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
 qed auto
 
 lemma 
-  delformLeft_tlt: "\<lbrakk>tlt v lt; tlt v rt; k < v\<rbrakk> \<Longrightarrow> tlt v (delformLeft x lt k y rt)"
-  and delformRight_tlt: "\<lbrakk>tlt v lt; tlt v rt; k < v\<rbrakk> \<Longrightarrow> tlt v (delformRight x lt k y rt)"
-  and del_tlt: "tlt v lt \<Longrightarrow> tlt v (del x lt)"
+  delformLeft_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (delformLeft x lt k y rt)"
+  and delformRight_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (delformRight x lt k y rt)"
+  and del_tree_less: "tree_less v lt \<Longrightarrow> tree_less v (del x lt)"
 by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct) 
-   (auto simp: balleft_tlt balright_tlt)
+   (auto simp: balleft_tree_less balright_tree_less)
 
-lemma delformLeft_tgt: "\<lbrakk>tgt v lt; tgt v rt; k > v\<rbrakk> \<Longrightarrow> tgt v (delformLeft x lt k y rt)"
-  and delformRight_tgt: "\<lbrakk>tgt v lt; tgt v rt; k > v\<rbrakk> \<Longrightarrow> tgt v (delformRight x lt k y rt)"
-  and del_tgt: "tgt v lt \<Longrightarrow> tgt v (del x lt)"
+lemma delformLeft_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (delformLeft x lt k y rt)"
+  and delformRight_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (delformRight x lt k y rt)"
+  and del_tree_greater: "tree_greater v lt \<Longrightarrow> tree_greater v (del x lt)"
 by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
-   (auto simp: balleft_tgt balright_tgt)
+   (auto simp: balleft_tree_greater balright_tree_greater)
 
-lemma "\<lbrakk>st lt; st rt; tlt k lt; tgt k rt\<rbrakk> \<Longrightarrow> st (delformLeft x lt k y rt)"
-  and "\<lbrakk>st lt; st rt; tlt k lt; tgt k rt\<rbrakk> \<Longrightarrow> st (delformRight x lt k y rt)"
-  and del_st: "st lt \<Longrightarrow> st (del x lt)"
+lemma "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (delformLeft x lt k y rt)"
+  and "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (delformRight x lt k y rt)"
+  and del_sorted: "sorted lt \<Longrightarrow> sorted (del x lt)"
 proof (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
   case (3 x lta zz v rta yy ss bb)
-  from 3 have "tlt yy (Tr B lta zz v rta)" by simp
-  hence "tlt yy (del x (Tr B lta zz v rta))" by (rule del_tlt)
-  with 3 show ?case by (simp add: balleft_st)
+  from 3 have "tree_less yy (Branch B lta zz v rta)" by simp
+  hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less)
+  with 3 show ?case by (simp add: balleft_sorted)
 next
   case ("4_2" x vaa vbb vdd vc yy ss bb)
-  hence "tlt yy (Tr R vaa vbb vdd vc)" by simp
-  hence "tlt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tlt)
+  hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp
+  hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less)
   with "4_2" show ?case by simp
 next
   case (5 x aa yy ss lta zz v rta) 
-  hence "tgt yy (Tr B lta zz v rta)" by simp
-  hence "tgt yy (del x (Tr B lta zz v rta))" by (rule del_tgt)
-  with 5 show ?case by (simp add: balright_st)
+  hence "tree_greater yy (Branch B lta zz v rta)" by simp
+  hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater)
+  with 5 show ?case by (simp add: balright_sorted)
 next
   case ("6_2" x aa yy ss vaa vbb vdd vc)
-  hence "tgt yy (Tr R vaa vbb vdd vc)" by simp
-  hence "tgt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tgt)
+  hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp
+  hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater)
   with "6_2" show ?case by simp
-qed (auto simp: app_st)
+qed (auto simp: app_sorted)
 
-lemma "\<lbrakk>st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x < kt\<rbrakk> \<Longrightarrow> pin_tree k v (delformLeft x lt kt y rt) = (False \<or> (x \<noteq> k \<and> pin_tree k v (Tr c lt kt y rt)))"
-  and "\<lbrakk>st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x > kt\<rbrakk> \<Longrightarrow> pin_tree k v (delformRight x lt kt y rt) = (False \<or> (x \<noteq> k \<and> pin_tree k v (Tr c lt kt y rt)))"
-  and del_pit: "\<lbrakk>st t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> pin_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> pin_tree k v t))"
+lemma "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (delformLeft x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
+  and "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (delformRight x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
+  and del_pit: "\<lbrakk>sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))"
 proof (induct x lt kt y rt and x lt kt y rt and x t rule: delformLeft_delformRight_del.induct)
   case (2 xx c aa yy ss bb)
   have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
@@ -657,68 +672,68 @@
     assume "xx = yy"
     with 2 show ?thesis proof (cases "xx = k")
       case True
-      from 2 `xx = yy` `xx = k` have "st (Tr c aa yy ss bb) \<and> k = yy" by simp
-      hence "\<not> pin_tree k v aa" "\<not> pin_tree k v bb" by (auto simp: tlt_nit tgt_prop)
+      from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \<and> k = yy" by simp
+      hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop)
       with `xx = yy` 2 `xx = k` show ?thesis by (simp add: app_pit)
     qed (simp add: app_pit)
   qed simp+
 next    
   case (3 xx lta zz vv rta yy ss bb)
-  def mt[simp]: mt == "Tr B lta zz vv rta"
+  def mt[simp]: mt == "Branch B lta zz vv rta"
   from 3 have "inv2 mt \<and> inv1 mt" by simp
-  hence "inv2 (del xx mt) \<and> (treec mt = R \<and> bh (del xx mt) = bh mt \<and> inv1 (del xx mt) \<or> treec mt = B \<and> bh (del xx mt) = bh mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
-  with 3 have 4: "pin_tree k v (delformLeft xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> pin_tree k v mt \<or> (k = yy \<and> v = ss) \<or> pin_tree k v bb)" by (simp add: balleft_pit)
+  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+  with 3 have 4: "entry_in_tree k v (delformLeft xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balleft_pit)
   thus ?case proof (cases "xx = k")
     case True
-    from 3 True have "tgt yy bb \<and> yy > k" by simp
-    hence "tgt k bb" by (blast dest: tgt_trans)
-    with 3 4 True show ?thesis by (auto simp: tgt_nit)
+    from 3 True have "tree_greater yy bb \<and> yy > k" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with 3 4 True show ?thesis by (auto simp: tree_greater_nit)
   qed auto
 next
   case ("4_1" xx yy ss bb)
   show ?case proof (cases "xx = k")
     case True
-    with "4_1" have "tgt yy bb \<and> k < yy" by simp
-    hence "tgt k bb" by (blast dest: tgt_trans)
+    with "4_1" have "tree_greater yy bb \<and> k < yy" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
     with "4_1" `xx = k` 
-   have "pin_tree k v (Tr R Empty yy ss bb) = pin_tree k v Empty" by (auto simp: tgt_nit)
+   have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit)
     thus ?thesis by auto
   qed simp+
 next
   case ("4_2" xx vaa vbb vdd vc yy ss bb)
   thus ?case proof (cases "xx = k")
     case True
-    with "4_2" have "k < yy \<and> tgt yy bb" by simp
-    hence "tgt k bb" by (blast dest: tgt_trans)
-    with True "4_2" show ?thesis by (auto simp: tgt_nit)
+    with "4_2" have "k < yy \<and> tree_greater yy bb" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with True "4_2" show ?thesis by (auto simp: tree_greater_nit)
   qed simp
 next
   case (5 xx aa yy ss lta zz vv rta)
-  def mt[simp]: mt == "Tr B lta zz vv rta"
+  def mt[simp]: mt == "Branch B lta zz vv rta"
   from 5 have "inv2 mt \<and> inv1 mt" by simp
-  hence "inv2 (del xx mt) \<and> (treec mt = R \<and> bh (del xx mt) = bh mt \<and> inv1 (del xx mt) \<or> treec mt = B \<and> bh (del xx mt) = bh mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
-  with 5 have 3: "pin_tree k v (delformRight xx aa yy ss mt) = (pin_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> pin_tree k v mt)" by (simp add: balright_pit)
+  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+  with 5 have 3: "entry_in_tree k v (delformRight xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balright_pit)
   thus ?case proof (cases "xx = k")
     case True
-    from 5 True have "tlt yy aa \<and> yy < k" by simp
-    hence "tlt k aa" by (blast dest: tlt_trans)
-    with 3 5 True show ?thesis by (auto simp: tlt_nit)
+    from 5 True have "tree_less yy aa \<and> yy < k" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with 3 5 True show ?thesis by (auto simp: tree_less_nit)
   qed auto
 next
   case ("6_1" xx aa yy ss)
   show ?case proof (cases "xx = k")
     case True
-    with "6_1" have "tlt yy aa \<and> k > yy" by simp
-    hence "tlt k aa" by (blast dest: tlt_trans)
-    with "6_1" `xx = k` show ?thesis by (auto simp: tlt_nit)
+    with "6_1" have "tree_less yy aa \<and> k > yy" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit)
   qed simp
 next
   case ("6_2" xx aa yy ss vaa vbb vdd vc)
   thus ?case proof (cases "xx = k")
     case True
-    with "6_2" have "k > yy \<and> tlt yy aa" by simp
-    hence "tlt k aa" by (blast dest: tlt_trans)
-    with True "6_2" show ?thesis by (auto simp: tlt_nit)
+    with "6_2" have "k > yy \<and> tree_less yy aa" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with True "6_2" show ?thesis by (auto simp: tree_less_nit)
   qed simp
 qed simp
 
@@ -726,36 +741,36 @@
 definition delete where
   delete_def: "delete k t = paint B (del k t)"
 
-theorem delete_isrbt[simp]: assumes "isrbt t" shows "isrbt (delete k t)"
+theorem delete_is_rbt[simp]: assumes "is_rbt t" shows "is_rbt (delete k t)"
 proof -
-  from assms have "inv2 t" and "inv1 t" unfolding isrbt_def by auto 
-  hence "inv2 (del k t) \<and> (treec t = R \<and> bh (del k t) = bh t \<and> inv1 (del k t) \<or> treec t = B \<and> bh (del k t) = bh t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
-  hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "treec t") auto
+  from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto 
+  hence "inv2 (del k t) \<and> (color_of t = R \<and> bheight (del k t) = bheight t \<and> inv1 (del k t) \<or> color_of t = B \<and> bheight (del k t) = bheight t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
+  hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "color_of t") auto
   with assms show ?thesis
-    unfolding isrbt_def delete_def
-    by (auto intro: paint_st del_st)
+    unfolding is_rbt_def delete_def
+    by (auto intro: paint_sorted del_sorted)
 qed
 
 lemma delete_pit: 
-  assumes "isrbt t" 
-  shows "pin_tree k v (delete x t) = (x \<noteq> k \<and> pin_tree k v t)"
-  using assms unfolding isrbt_def delete_def
+  assumes "is_rbt t" 
+  shows "entry_in_tree k v (delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)"
+  using assms unfolding is_rbt_def delete_def
   by (auto simp: del_pit)
 
-lemma map_of_delete:
-  assumes isrbt: "isrbt t"
-  shows "map_of (delete k t) = (map_of t)|`(-{k})"
+lemma lookup_delete:
+  assumes is_rbt: "is_rbt t"
+  shows "lookup (delete k t) = (lookup t)|`(-{k})"
 proof
   fix x
-  show "map_of (delete k t) x = (map_of t |` (-{k})) x" 
+  show "lookup (delete k t) x = (lookup t |` (-{k})) x" 
   proof (cases "x = k")
     assume "x = k" 
-    with isrbt show ?thesis
-      by (cases "map_of (delete k t) k") (auto simp: mapof_pit delete_pit)
+    with is_rbt show ?thesis
+      by (cases "lookup (delete k t) k") (auto simp: lookup_pit delete_pit)
   next
     assume "x \<noteq> k"
     thus ?thesis
-      by auto (metis isrbt delete_isrbt delete_pit isrbt_st mapof_from_pit)
+      by auto (metis is_rbt delete_is_rbt delete_pit is_rbt_sorted lookup_from_pit)
   qed
 qed
 
@@ -765,43 +780,43 @@
   unionwithkey :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "unionwithkey f t Empty = t"
-| "unionwithkey f t (Tr c lt k v rt) = unionwithkey f (unionwithkey f (insertwithkey f k v t) lt) rt"
+| "unionwithkey f t (Branch c lt k v rt) = unionwithkey f (unionwithkey f (insertwithkey f k v t) lt) rt"
 
-lemma unionwk_st: "st lt \<Longrightarrow> st (unionwithkey f lt rt)" 
-  by (induct rt arbitrary: lt) (auto simp: insertwk_st)
-theorem unionwk_isrbt[simp]: "isrbt lt \<Longrightarrow> isrbt (unionwithkey f lt rt)" 
-  by (induct rt arbitrary: lt) (simp add: insertwk_isrbt)+
+lemma unionwk_sorted: "sorted lt \<Longrightarrow> sorted (unionwithkey f lt rt)" 
+  by (induct rt arbitrary: lt) (auto simp: insertwk_sorted)
+theorem unionwk_is_rbt[simp]: "is_rbt lt \<Longrightarrow> is_rbt (unionwithkey f lt rt)" 
+  by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+
 
 definition
   unionwith where
   "unionwith f = unionwithkey (\<lambda>_. f)"
 
-theorem unionw_isrbt: "isrbt lt \<Longrightarrow> isrbt (unionwith f lt rt)" unfolding unionwith_def by simp
+theorem unionw_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (unionwith f lt rt)" unfolding unionwith_def by simp
 
 definition union where
   "union = unionwithkey (%_ _ rv. rv)"
 
-theorem union_isrbt: "isrbt lt \<Longrightarrow> isrbt (union lt rt)" unfolding union_def by simp
+theorem union_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union lt rt)" unfolding union_def by simp
 
-lemma union_Tr[simp]:
-  "union t (Tr c lt k v rt) = union (union (insrt k v t) lt) rt"
-  unfolding union_def insrt_def
+lemma union_Branch[simp]:
+  "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt"
+  unfolding union_def insert_def
   by simp
 
-lemma map_of_union:
-  assumes "isrbt s" "st t"
-  shows "map_of (union s t) = map_of s ++ map_of t"
+lemma lookup_union:
+  assumes "is_rbt s" "sorted t"
+  shows "lookup (union s t) = lookup s ++ lookup t"
 using assms
 proof (induct t arbitrary: s)
   case Empty thus ?case by (auto simp: union_def)
 next
-  case (Tr c l k v r s)
-  hence strl: "st r" "st l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
+  case (Branch c l k v r s)
+  hence sortedrl: "sorted r" "sorted l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
 
-  have meq: "map_of s(k \<mapsto> v) ++ map_of l ++ map_of r =
-    map_of s ++
-    (\<lambda>a. if a < k then map_of l a
-    else if k < a then map_of r a else Some v)" (is "?m1 = ?m2")
+  have meq: "lookup s(k \<mapsto> v) ++ lookup l ++ lookup r =
+    lookup s ++
+    (\<lambda>a. if a < k then lookup l a
+    else if k < a then lookup r a else Some v)" (is "?m1 = ?m2")
   proof (rule ext)
     fix a
 
@@ -809,7 +824,7 @@
     thus "?m1 a = ?m2 a"
     proof (elim disjE)
       assume "k < a"
-      with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tlt_trans)
+      with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tree_less_trans)
       with `k < a` show ?thesis
         by (auto simp: map_add_def split: option.splits)
     next
@@ -818,20 +833,20 @@
       show ?thesis by (auto simp: map_add_def)
     next
       assume "a < k"
-      from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tgt_trans)
+      from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tree_greater_trans)
       with `a < k` show ?thesis
         by (auto simp: map_add_def split: option.splits)
     qed
   qed
 
-  from Tr
+  from Branch
   have IHs:
-    "map_of (union (union (insrt k v s) l) r) = map_of (union (insrt k v s) l) ++ map_of r"
-    "map_of (union (insrt k v s) l) = map_of (insrt k v s) ++ map_of l"
-    by (auto intro: union_isrbt insrt_isrbt)
+    "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r"
+    "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l"
+    by (auto intro: union_is_rbt insert_is_rbt)
   
   with meq show ?case
-    by (auto simp: map_of_insert[OF Tr(3)])
+    by (auto simp: lookup_insert[OF Branch(3)])
 qed
 
 subsection {* Adjust *}
@@ -840,33 +855,33 @@
   adjustwithkey :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "adjustwithkey f k Empty = Empty"
-| "adjustwithkey f k (Tr c lt x v rt) = (if k < x then (Tr c (adjustwithkey f k lt) x v rt) else if k > x then (Tr c lt x v (adjustwithkey f k rt)) else (Tr c lt x (f x v) rt))"
+| "adjustwithkey f k (Branch c lt x v rt) = (if k < x then (Branch c (adjustwithkey f k lt) x v rt) else if k > x then (Branch c lt x v (adjustwithkey f k rt)) else (Branch c lt x (f x v) rt))"
 
-lemma adjustwk_treec: "treec (adjustwithkey f k t) = treec t" by (induct t) simp+
-lemma adjustwk_inv1: "inv1 (adjustwithkey f k t) = inv1 t" by (induct t) (simp add: adjustwk_treec)+
-lemma adjustwk_inv2: "inv2 (adjustwithkey f k t) = inv2 t" "bh (adjustwithkey f k t) = bh t" by (induct t) simp+
-lemma adjustwk_tgt: "tgt k (adjustwithkey f kk t) = tgt k t" by (induct t) simp+
-lemma adjustwk_tlt: "tlt k (adjustwithkey f kk t) = tlt k t" by (induct t) simp+
-lemma adjustwk_st: "st (adjustwithkey f k t) = st t" by (induct t) (simp add: adjustwk_tlt adjustwk_tgt)+
+lemma adjustwk_color_of: "color_of (adjustwithkey f k t) = color_of t" by (induct t) simp+
+lemma adjustwk_inv1: "inv1 (adjustwithkey f k t) = inv1 t" by (induct t) (simp add: adjustwk_color_of)+
+lemma adjustwk_inv2: "inv2 (adjustwithkey f k t) = inv2 t" "bheight (adjustwithkey f k t) = bheight t" by (induct t) simp+
+lemma adjustwk_tree_greater: "tree_greater k (adjustwithkey f kk t) = tree_greater k t" by (induct t) simp+
+lemma adjustwk_tree_less: "tree_less k (adjustwithkey f kk t) = tree_less k t" by (induct t) simp+
+lemma adjustwk_sorted: "sorted (adjustwithkey f k t) = sorted t" by (induct t) (simp add: adjustwk_tree_less adjustwk_tree_greater)+
 
-theorem adjustwk_isrbt[simp]: "isrbt (adjustwithkey f k t) = isrbt t" 
-unfolding isrbt_def by (simp add: adjustwk_inv2 adjustwk_treec adjustwk_st adjustwk_inv1 )
+theorem adjustwk_is_rbt[simp]: "is_rbt (adjustwithkey f k t) = is_rbt t" 
+unfolding is_rbt_def by (simp add: adjustwk_inv2 adjustwk_color_of adjustwk_sorted adjustwk_inv1 )
 
 theorem adjustwithkey_map[simp]:
-  "map_of (adjustwithkey f k t) x = 
-  (if x = k then case map_of t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f k y)
-            else map_of t x)"
+  "lookup (adjustwithkey f k t) x = 
+  (if x = k then case lookup t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f k y)
+            else lookup t x)"
 by (induct t arbitrary: x) (auto split:option.splits)
 
 definition adjust where
   "adjust f = adjustwithkey (\<lambda>_. f)"
 
-theorem adjust_isrbt[simp]: "isrbt (adjust f k t) = isrbt t" unfolding adjust_def by simp
+theorem adjust_is_rbt[simp]: "is_rbt (adjust f k t) = is_rbt t" unfolding adjust_def by simp
 
 theorem adjust_map[simp]:
-  "map_of (adjust f k t) x = 
-  (if x = k then case map_of t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f y)
-            else map_of t x)"
+  "lookup (adjust f k t) x = 
+  (if x = k then case lookup t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f y)
+            else lookup t x)"
 unfolding adjust_def by simp
 
 subsection {* Map *}
@@ -875,27 +890,27 @@
   mapwithkey :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'c) rbt"
 where
   "mapwithkey f Empty = Empty"
-| "mapwithkey f (Tr c lt k v rt) = Tr c (mapwithkey f lt) k (f k v) (mapwithkey f rt)"
+| "mapwithkey f (Branch c lt k v rt) = Branch c (mapwithkey f lt) k (f k v) (mapwithkey f rt)"
 
 theorem mapwk_keys[simp]: "keys (mapwithkey f t) = keys t" by (induct t) auto
-lemma mapwk_tgt: "tgt k (mapwithkey f t) = tgt k t" by (induct t) simp+
-lemma mapwk_tlt: "tlt k (mapwithkey f t) = tlt k t" by (induct t) simp+
-lemma mapwk_st: "st (mapwithkey f t) = st t"  by (induct t) (simp add: mapwk_tlt mapwk_tgt)+
-lemma mapwk_treec: "treec (mapwithkey f t) = treec t" by (induct t) simp+
-lemma mapwk_inv1: "inv1 (mapwithkey f t) = inv1 t" by (induct t) (simp add: mapwk_treec)+
-lemma mapwk_inv2: "inv2 (mapwithkey f t) = inv2 t" "bh (mapwithkey f t) = bh t" by (induct t) simp+
-theorem mapwk_isrbt[simp]: "isrbt (mapwithkey f t) = isrbt t" 
-unfolding isrbt_def by (simp add: mapwk_inv1 mapwk_inv2 mapwk_st mapwk_treec)
+lemma mapwk_tree_greater: "tree_greater k (mapwithkey f t) = tree_greater k t" by (induct t) simp+
+lemma mapwk_tree_less: "tree_less k (mapwithkey f t) = tree_less k t" by (induct t) simp+
+lemma mapwk_sorted: "sorted (mapwithkey f t) = sorted t"  by (induct t) (simp add: mapwk_tree_less mapwk_tree_greater)+
+lemma mapwk_color_of: "color_of (mapwithkey f t) = color_of t" by (induct t) simp+
+lemma mapwk_inv1: "inv1 (mapwithkey f t) = inv1 t" by (induct t) (simp add: mapwk_color_of)+
+lemma mapwk_inv2: "inv2 (mapwithkey f t) = inv2 t" "bheight (mapwithkey f t) = bheight t" by (induct t) simp+
+theorem mapwk_is_rbt[simp]: "is_rbt (mapwithkey f t) = is_rbt t" 
+unfolding is_rbt_def by (simp add: mapwk_inv1 mapwk_inv2 mapwk_sorted mapwk_color_of)
 
-theorem map_of_mapwk[simp]: "map_of (mapwithkey f t) x = Option.map (f x) (map_of t x)"
+theorem lookup_mapwk[simp]: "lookup (mapwithkey f t) x = Option.map (f x) (lookup t x)"
 by (induct t) auto
 
 definition map
 where map_def: "map f == mapwithkey (\<lambda>_. f)"
 
 theorem map_keys[simp]: "keys (map f t) = keys t" unfolding map_def by simp
-theorem map_isrbt[simp]: "isrbt (map f t) = isrbt t" unfolding map_def by simp
-theorem map_of_map[simp]: "map_of (map f t) = Option.map f o map_of t"
+theorem map_is_rbt[simp]: "is_rbt (map f t) = is_rbt t" unfolding map_def by simp
+theorem lookup_map[simp]: "lookup (map f t) = Option.map f o lookup t"
   by (rule ext) (simp add:map_def)
 
 subsection {* Fold *}
@@ -906,62 +921,57 @@
   foldwithkey :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"
 where
   "foldwithkey f Empty v = v"
-| "foldwithkey f (Tr c lt k x rt) v = foldwithkey f rt (f k x (foldwithkey f lt v))"
+| "foldwithkey f (Branch c lt k x rt) v = foldwithkey f rt (f k x (foldwithkey f lt v))"
 
-primrec alist_of
-where 
-  "alist_of Empty = []"
-| "alist_of (Tr _ l k v r) = alist_of l @ (k,v) # alist_of r"
-
-lemma map_of_alist_of_aux: "st (Tr c t1 k v t2) \<Longrightarrow> RBT.map_of (Tr c t1 k v t2) = RBT.map_of t2 ++ [k\<mapsto>v] ++ RBT.map_of t1"
+lemma lookup_entries_aux: "sorted (Branch c t1 k v t2) \<Longrightarrow> RBT.lookup (Branch c t1 k v t2) = RBT.lookup t2 ++ [k\<mapsto>v] ++ RBT.lookup t1"
 proof (rule ext)
   fix x
-  assume ST: "st (Tr c t1 k v t2)"
-  let ?thesis = "RBT.map_of (Tr c t1 k v t2) x = (RBT.map_of t2 ++ [k \<mapsto> v] ++ RBT.map_of t1) x"
+  assume SORTED: "sorted (Branch c t1 k v t2)"
+  let ?thesis = "RBT.lookup (Branch c t1 k v t2) x = (RBT.lookup t2 ++ [k \<mapsto> v] ++ RBT.lookup t1) x"
 
-  have DOM_T1: "!!k'. k'\<in>dom (RBT.map_of t1) \<Longrightarrow> k>k'"
+  have DOM_T1: "!!k'. k'\<in>dom (RBT.lookup t1) \<Longrightarrow> k>k'"
   proof -
     fix k'
-    from ST have "t1 |\<guillemotleft> k" by simp
-    with tlt_prop have "\<forall>k'\<in>keys t1. k>k'" by auto
-    moreover assume "k'\<in>dom (RBT.map_of t1)"
-    ultimately show "k>k'" using RBT.mapof_keys ST by auto
+    from SORTED have "t1 |\<guillemotleft> k" by simp
+    with tree_less_prop have "\<forall>k'\<in>keys t1. k>k'" by auto
+    moreover assume "k'\<in>dom (RBT.lookup t1)"
+    ultimately show "k>k'" using RBT.lookup_keys SORTED by auto
   qed
 
-  have DOM_T2: "!!k'. k'\<in>dom (RBT.map_of t2) \<Longrightarrow> k<k'"
+  have DOM_T2: "!!k'. k'\<in>dom (RBT.lookup t2) \<Longrightarrow> k<k'"
   proof -
     fix k'
-    from ST have "k \<guillemotleft>| t2" by simp
-    with tgt_prop have "\<forall>k'\<in>keys t2. k<k'" by auto
-    moreover assume "k'\<in>dom (RBT.map_of t2)"
-    ultimately show "k<k'" using RBT.mapof_keys ST by auto
+    from SORTED have "k \<guillemotleft>| t2" by simp
+    with tree_greater_prop have "\<forall>k'\<in>keys t2. k<k'" by auto
+    moreover assume "k'\<in>dom (RBT.lookup t2)"
+    ultimately show "k<k'" using RBT.lookup_keys SORTED by auto
   qed
 
   {
     assume C: "x<k"
-    hence "RBT.map_of (Tr c t1 k v t2) x = RBT.map_of t1 x" by simp
+    hence "RBT.lookup (Branch c t1 k v t2) x = RBT.lookup t1 x" by simp
     moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
-    moreover have "x\<notin>dom (RBT.map_of t2)" proof
-      assume "x\<in>dom (RBT.map_of t2)"
+    moreover have "x\<notin>dom (RBT.lookup t2)" proof
+      assume "x\<in>dom (RBT.lookup t2)"
       with DOM_T2 have "k<x" by blast
       with C show False by simp
     qed
     ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
   } moreover {
     assume [simp]: "x=k"
-    hence "RBT.map_of (Tr c t1 k v t2) x = [k \<mapsto> v] x" by simp
-    moreover have "x\<notin>dom (RBT.map_of t1)" proof
-      assume "x\<in>dom (RBT.map_of t1)"
+    hence "RBT.lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp
+    moreover have "x\<notin>dom (RBT.lookup t1)" proof
+      assume "x\<in>dom (RBT.lookup t1)"
       with DOM_T1 have "k>x" by blast
       thus False by simp
     qed
     ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
   } moreover {
     assume C: "x>k"
-    hence "RBT.map_of (Tr c t1 k v t2) x = RBT.map_of t2 x" by (simp add: less_not_sym[of k x])
+    hence "RBT.lookup (Branch c t1 k v t2) x = RBT.lookup t2 x" by (simp add: less_not_sym[of k x])
     moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
-    moreover have "x\<notin>dom (RBT.map_of t1)" proof
-      assume "x\<in>dom (RBT.map_of t1)"
+    moreover have "x\<notin>dom (RBT.lookup t1)" proof
+      assume "x\<in>dom (RBT.lookup t1)"
       with DOM_T1 have "k>x" by simp
       with C show False by simp
     qed
@@ -969,35 +979,38 @@
   } ultimately show ?thesis using less_linear by blast
 qed
 
-lemma map_of_alist_of:
-  shows "st t \<Longrightarrow> Map.map_of (alist_of t) = map_of t"
+lemma map_of_entries:
+  shows "sorted t \<Longrightarrow> map_of (entries t) = lookup t"
 proof (induct t)
-  case Empty thus ?case by (simp add: RBT.map_of_Empty)
+  case Empty thus ?case by (simp add: RBT.lookup_Empty)
 next
-  case (Tr c t1 k v t2)
-  hence "Map.map_of (alist_of (Tr c t1 k v t2)) = RBT.map_of t2 ++ [k \<mapsto> v] ++ RBT.map_of t1" by simp
-  also note map_of_alist_of_aux[OF Tr.prems,symmetric]
+  case (Branch c t1 k v t2)
+  hence "map_of (entries (Branch c t1 k v t2)) = RBT.lookup t2 ++ [k \<mapsto> v] ++ RBT.lookup t1" by simp
+  also note lookup_entries_aux [OF Branch.prems,symmetric]
   finally show ?case .
 qed
 
-lemma fold_alist_fold:
-  "foldwithkey f t x = foldl (\<lambda>x (k,v). f k v x) x (alist_of t)"
+lemma fold_entries_fold:
+  "foldwithkey f t x = foldl (\<lambda>x (k,v). f k v x) x (entries t)"
 by (induct t arbitrary: x) auto
 
-lemma alist_pit[simp]: "(k, v) \<in> set (alist_of t) = pin_tree k v t"
+lemma entries_pit[simp]: "(k, v) \<in> set (entries t) = entry_in_tree k v t"
 by (induct t) auto
 
-lemma sorted_alist:
-  "st t \<Longrightarrow> sorted (List.map fst (alist_of t))"
+lemma sorted_entries:
+  "sorted t \<Longrightarrow> List.sorted (List.map fst (entries t))"
 by (induct t) 
-  (force simp: sorted_append sorted_Cons tlgt_props 
-      dest!:pint_keys)+
+  (force simp: sorted_append sorted_Cons tree_ord_props 
+      dest!: entry_in_tree_keys)+
 
-lemma distinct_alist:
-  "st t \<Longrightarrow> distinct (List.map fst (alist_of t))"
+lemma distinct_entries:
+  "sorted t \<Longrightarrow> distinct (List.map fst (entries t))"
 by (induct t) 
-  (force simp: sorted_append sorted_Cons tlgt_props 
-      dest!:pint_keys)+
+  (force simp: sorted_append sorted_Cons tree_ord_props 
+      dest!: entry_in_tree_keys)+
+
+hide (open) const Empty insert delete entries lookup map fold union adjust sorted
+
 (*>*)
 
 text {* 
@@ -1010,20 +1023,20 @@
 text {*
   The type @{typ "('k, 'v) rbt"} denotes red-black trees with keys of
   type @{typ "'k"} and values of type @{typ "'v"}. To function
-  properly, the key type must belong to the @{text "linorder"} class.
+  properly, the key type musorted belong to the @{text "linorder"} class.
 
   A value @{term t} of this type is a valid red-black tree if it
-  satisfies the invariant @{text "isrbt t"}.
+  satisfies the invariant @{text "is_rbt t"}.
   This theory provides lemmas to prove that the invariant is
   satisfied throughout the computation.
 
-  The interpretation function @{const "map_of"} returns the partial
+  The interpretation function @{const "RBT.lookup"} returns the partial
   map represented by a red-black tree:
-  @{term_type[display] "map_of"}
+  @{term_type[display] "RBT.lookup"}
 
   This function should be used for reasoning about the semantics of the RBT
   operations. Furthermore, it implements the lookup functionality for
-  the data structure: It is executable and the lookup is performed in
+  the data sortedructure: It is executable and the lookup is performed in
   $O(\log n)$.  
 *}
 
@@ -1032,19 +1045,19 @@
 text {*
   Currently, the following operations are supported:
 
-  @{term_type[display] "Empty"}
+  @{term_type[display] "RBT.Empty"}
   Returns the empty tree. $O(1)$
 
-  @{term_type[display] "insrt"}
+  @{term_type[display] "RBT.insert"}
   Updates the map at a given position. $O(\log n)$
 
-  @{term_type[display] "delete"}
+  @{term_type[display] "RBT.delete"}
   Deletes a map entry at a given position. $O(\log n)$
 
-  @{term_type[display] "union"}
+  @{term_type[display] "RBT.union"}
   Forms the union of two trees, preferring entries from the first one.
 
-  @{term_type[display] "map"}
+  @{term_type[display] "RBT.map"}
   Maps a function over the values of a map. $O(n)$
 *}
 
@@ -1053,47 +1066,47 @@
 
 text {*
   \noindent
-  @{thm Empty_isrbt}\hfill(@{text "Empty_isrbt"})
+  @{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})
 
   \noindent
-  @{thm insrt_isrbt}\hfill(@{text "insrt_isrbt"})
+  @{thm insert_is_rbt}\hfill(@{text "insert_is_rbt"})
 
   \noindent
-  @{thm delete_isrbt}\hfill(@{text "delete_isrbt"})
+  @{thm delete_is_rbt}\hfill(@{text "delete_is_rbt"})
 
   \noindent
-  @{thm union_isrbt}\hfill(@{text "union_isrbt"})
+  @{thm union_is_rbt}\hfill(@{text "union_is_rbt"})
 
   \noindent
-  @{thm map_isrbt}\hfill(@{text "map_isrbt"})
+  @{thm map_is_rbt}\hfill(@{text "map_is_rbt"})
 *}
 
 subsection {* Map Semantics *}
 
 text {*
   \noindent
-  \underline{@{text "map_of_Empty"}}
-  @{thm[display] map_of_Empty}
+  \underline{@{text "lookup_Empty"}}
+  @{thm[display] lookup_Empty}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_insert"}}
-  @{thm[display] map_of_insert}
+  \underline{@{text "lookup_insert"}}
+  @{thm[display] lookup_insert}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_delete"}}
-  @{thm[display] map_of_delete}
+  \underline{@{text "lookup_delete"}}
+  @{thm[display] lookup_delete}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_union"}}
-  @{thm[display] map_of_union}
+  \underline{@{text "lookup_union"}}
+  @{thm[display] lookup_union}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_map"}}
-  @{thm[display] map_of_map}
+  \underline{@{text "lookup_map"}}
+  @{thm[display] lookup_map}
   \vspace{1ex}
 *}
 
--- a/src/HOL/Library/Word.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Library/Word.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -311,11 +311,11 @@
 lemma norm_unsigned_idem [simp]: "norm_unsigned (norm_unsigned w) = norm_unsigned w"
   by (rule bit_list_induct [of _ w],simp_all)
 
-consts
+fun
   nat_to_bv_helper :: "nat => bit list => bit list"
-recdef nat_to_bv_helper "measure (\<lambda>n. n)"
-  "nat_to_bv_helper n = (%bs. (if n = 0 then bs
-                               else nat_to_bv_helper (n div 2) ((if n mod 2 = 0 then \<zero> else \<one>)#bs)))"
+where
+  "nat_to_bv_helper n bs = (if n = 0 then bs
+                               else nat_to_bv_helper (n div 2) ((if n mod 2 = 0 then \<zero> else \<one>)#bs))"
 
 definition
   nat_to_bv :: "nat => bit list" where
--- a/src/HOL/List.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/List.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -761,13 +761,13 @@
 by(induct ys, auto simp add: Cons_eq_map_conv)
 
 lemma map_eq_imp_length_eq:
-  assumes "map f xs = map f ys"
+  assumes "map f xs = map g ys"
   shows "length xs = length ys"
 using assms proof (induct ys arbitrary: xs)
   case Nil then show ?case by simp
 next
   case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto
-  from Cons xs have "map f zs = map f ys" by simp
+  from Cons xs have "map f zs = map g ys" by simp
   moreover with Cons have "length zs = length ys" by blast
   with xs show ?case by simp
 qed
--- a/src/HOL/MicroJava/BV/Effect.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/MicroJava/BV/Effect.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -34,33 +34,34 @@
 | "succs Throw pc              = [pc]"
 
 text "Effect of instruction on the state type:"
-consts 
-eff' :: "instr \<times> jvm_prog \<times> state_type \<Rightarrow> state_type"
 
-recdef eff' "{}"
-"eff' (Load idx,  G, (ST, LT))          = (ok_val (LT ! idx) # ST, LT)"
-"eff' (Store idx, G, (ts#ST, LT))       = (ST, LT[idx:= OK ts])"
-"eff' (LitPush v, G, (ST, LT))           = (the (typeof (\<lambda>v. None) v) # ST, LT)"
-"eff' (Getfield F C, G, (oT#ST, LT))    = (snd (the (field (G,C) F)) # ST, LT)"
-"eff' (Putfield F C, G, (vT#oT#ST, LT)) = (ST,LT)"
-"eff' (New C, G, (ST,LT))               = (Class C # ST, LT)"
-"eff' (Checkcast C, G, (RefT rt#ST,LT)) = (Class C # ST,LT)"
-"eff' (Pop, G, (ts#ST,LT))              = (ST,LT)"
-"eff' (Dup, G, (ts#ST,LT))              = (ts#ts#ST,LT)"
-"eff' (Dup_x1, G, (ts1#ts2#ST,LT))      = (ts1#ts2#ts1#ST,LT)"
-"eff' (Dup_x2, G, (ts1#ts2#ts3#ST,LT))  = (ts1#ts2#ts3#ts1#ST,LT)"
-"eff' (Swap, G, (ts1#ts2#ST,LT))        = (ts2#ts1#ST,LT)"
+fun eff' :: "instr \<times> jvm_prog \<times> state_type \<Rightarrow> state_type"
+where
+"eff' (Load idx,  G, (ST, LT))          = (ok_val (LT ! idx) # ST, LT)" |
+"eff' (Store idx, G, (ts#ST, LT))       = (ST, LT[idx:= OK ts])" |
+"eff' (LitPush v, G, (ST, LT))           = (the (typeof (\<lambda>v. None) v) # ST, LT)" |
+"eff' (Getfield F C, G, (oT#ST, LT))    = (snd (the (field (G,C) F)) # ST, LT)" |
+"eff' (Putfield F C, G, (vT#oT#ST, LT)) = (ST,LT)" |
+"eff' (New C, G, (ST,LT))               = (Class C # ST, LT)" |
+"eff' (Checkcast C, G, (RefT rt#ST,LT)) = (Class C # ST,LT)" |
+"eff' (Pop, G, (ts#ST,LT))              = (ST,LT)" |
+"eff' (Dup, G, (ts#ST,LT))              = (ts#ts#ST,LT)" |
+"eff' (Dup_x1, G, (ts1#ts2#ST,LT))      = (ts1#ts2#ts1#ST,LT)" |
+"eff' (Dup_x2, G, (ts1#ts2#ts3#ST,LT))  = (ts1#ts2#ts3#ts1#ST,LT)" |
+"eff' (Swap, G, (ts1#ts2#ST,LT))        = (ts2#ts1#ST,LT)" |
 "eff' (IAdd, G, (PrimT Integer#PrimT Integer#ST,LT)) 
-                                         = (PrimT Integer#ST,LT)"
-"eff' (Ifcmpeq b, G, (ts1#ts2#ST,LT))   = (ST,LT)"
-"eff' (Goto b, G, s)                    = s"
+                                         = (PrimT Integer#ST,LT)" |
+"eff' (Ifcmpeq b, G, (ts1#ts2#ST,LT))   = (ST,LT)" |
+"eff' (Goto b, G, s)                    = s" |
   -- "Return has no successor instruction in the same method"
-"eff' (Return, G, s)                    = s" 
+"eff' (Return, G, s)                    = s" |
   -- "Throw always terminates abruptly"
-"eff' (Throw, G, s)                     = s"
+"eff' (Throw, G, s)                     = s" |
 "eff' (Invoke C mn fpTs, G, (ST,LT))    = (let ST' = drop (length fpTs) ST 
   in  (fst (snd (the (method (G,C) (mn,fpTs))))#(tl ST'),LT))" 
 
+
+
 primrec match_any :: "jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list" where
   "match_any G pc [] = []"
 | "match_any G pc (e#es) = (let (start_pc, end_pc, handler_pc, catch_type) = e;
@@ -77,16 +78,16 @@
   "match G X pc et = (if \<exists>e \<in> set et. match_exception_entry G (Xcpt X) pc e then [Xcpt X] else [])"
   by (induct et) auto
 
-consts
+fun
   xcpt_names :: "instr \<times> jvm_prog \<times> p_count \<times> exception_table \<Rightarrow> cname list" 
-recdef xcpt_names "{}"
+where
   "xcpt_names (Getfield F C, G, pc, et) = match G NullPointer pc et" 
-  "xcpt_names (Putfield F C, G, pc, et) = match G NullPointer pc et" 
-  "xcpt_names (New C, G, pc, et)        = match G OutOfMemory pc et"
-  "xcpt_names (Checkcast C, G, pc, et)  = match G ClassCast pc et"
-  "xcpt_names (Throw, G, pc, et)        = match_any G pc et"
-  "xcpt_names (Invoke C m p, G, pc, et) = match_any G pc et" 
-  "xcpt_names (i, G, pc, et)            = []" 
+| "xcpt_names (Putfield F C, G, pc, et) = match G NullPointer pc et" 
+| "xcpt_names (New C, G, pc, et)        = match G OutOfMemory pc et"
+| "xcpt_names (Checkcast C, G, pc, et)  = match G ClassCast pc et"
+| "xcpt_names (Throw, G, pc, et)        = match_any G pc et"
+| "xcpt_names (Invoke C m p, G, pc, et) = match_any G pc et" 
+| "xcpt_names (i, G, pc, et)            = []" 
 
 
 definition xcpt_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> state_type option \<Rightarrow> exception_table \<Rightarrow> succ_type" where
@@ -118,53 +119,53 @@
 
 
 text "Conditions under which eff is applicable:"
-consts
+
+fun
 app' :: "instr \<times> jvm_prog \<times> p_count \<times> nat \<times> ty \<times> state_type \<Rightarrow> bool"
-
-recdef app' "{}"
+where
 "app' (Load idx, G, pc, maxs, rT, s) = 
-  (idx < length (snd s) \<and> (snd s) ! idx \<noteq> Err \<and> length (fst s) < maxs)"
+  (idx < length (snd s) \<and> (snd s) ! idx \<noteq> Err \<and> length (fst s) < maxs)" |
 "app' (Store idx, G, pc, maxs, rT, (ts#ST, LT)) = 
-  (idx < length LT)"
+  (idx < length LT)" |
 "app' (LitPush v, G, pc, maxs, rT, s) = 
-  (length (fst s) < maxs \<and> typeof (\<lambda>t. None) v \<noteq> None)"
+  (length (fst s) < maxs \<and> typeof (\<lambda>t. None) v \<noteq> None)" |
 "app' (Getfield F C, G, pc, maxs, rT, (oT#ST, LT)) = 
   (is_class G C \<and> field (G,C) F \<noteq> None \<and> fst (the (field (G,C) F)) = C \<and> 
-  G \<turnstile> oT \<preceq> (Class C))"
+  G \<turnstile> oT \<preceq> (Class C))" |
 "app' (Putfield F C, G, pc, maxs, rT, (vT#oT#ST, LT)) = 
   (is_class G C \<and> field (G,C) F \<noteq> None \<and> fst (the (field (G,C) F)) = C \<and>
-  G \<turnstile> oT \<preceq> (Class C) \<and> G \<turnstile> vT \<preceq> (snd (the (field (G,C) F))))" 
+  G \<turnstile> oT \<preceq> (Class C) \<and> G \<turnstile> vT \<preceq> (snd (the (field (G,C) F))))" |
 "app' (New C, G, pc, maxs, rT, s) = 
-  (is_class G C \<and> length (fst s) < maxs)"
+  (is_class G C \<and> length (fst s) < maxs)" |
 "app' (Checkcast C, G, pc, maxs, rT, (RefT rt#ST,LT)) = 
-  (is_class G C)"
+  (is_class G C)" |
 "app' (Pop, G, pc, maxs, rT, (ts#ST,LT)) = 
-  True"
+  True" |
 "app' (Dup, G, pc, maxs, rT, (ts#ST,LT)) = 
-  (1+length ST < maxs)"
+  (1+length ST < maxs)" |
 "app' (Dup_x1, G, pc, maxs, rT, (ts1#ts2#ST,LT)) = 
-  (2+length ST < maxs)"
+  (2+length ST < maxs)" |
 "app' (Dup_x2, G, pc, maxs, rT, (ts1#ts2#ts3#ST,LT)) = 
-  (3+length ST < maxs)"
+  (3+length ST < maxs)" |
 "app' (Swap, G, pc, maxs, rT, (ts1#ts2#ST,LT)) = 
-  True"
+  True" |
 "app' (IAdd, G, pc, maxs, rT, (PrimT Integer#PrimT Integer#ST,LT)) =
-  True"
+  True" |
 "app' (Ifcmpeq b, G, pc, maxs, rT, (ts#ts'#ST,LT)) = 
-  (0 \<le> int pc + b \<and> (isPrimT ts \<and> ts' = ts \<or> isRefT ts \<and> isRefT ts'))"
+  (0 \<le> int pc + b \<and> (isPrimT ts \<and> ts' = ts \<or> isRefT ts \<and> isRefT ts'))" |
 "app' (Goto b, G, pc, maxs, rT, s) = 
-  (0 \<le> int pc + b)"
+  (0 \<le> int pc + b)" |
 "app' (Return, G, pc, maxs, rT, (T#ST,LT)) = 
-  (G \<turnstile> T \<preceq> rT)"
+  (G \<turnstile> T \<preceq> rT)" |
 "app' (Throw, G, pc, maxs, rT, (T#ST,LT)) = 
-  isRefT T"
+  isRefT T" |
 "app' (Invoke C mn fpTs, G, pc, maxs, rT, s) = 
   (length fpTs < length (fst s) \<and> 
   (let apTs = rev (take (length fpTs) (fst s));
        X    = hd (drop (length fpTs) (fst s)) 
    in  
        G \<turnstile> X \<preceq> Class C \<and> is_class G C \<and> method (G,C) (mn,fpTs) \<noteq> None \<and>
-       list_all2 (\<lambda>x y. G \<turnstile> x \<preceq> y) apTs fpTs))"
+       list_all2 (\<lambda>x y. G \<turnstile> x \<preceq> y) apTs fpTs))" |
   
 "app' (i,G, pc,maxs,rT,s) = False"
 
@@ -208,7 +209,7 @@
 qed auto
 
 lemma 2: "\<not>(2 < length a) \<Longrightarrow> a = [] \<or> (\<exists> l. a = [l]) \<or> (\<exists> l l'. a = [l,l'])"
-proof -;
+proof -
   assume "\<not>(2 < length a)"
   hence "length a < (Suc (Suc (Suc 0)))" by simp
   hence * : "length a = 0 \<or> length a = Suc 0 \<or> length a = Suc (Suc 0)" 
@@ -268,7 +269,7 @@
   "(app (Checkcast C) G maxs rT pc et (Some s)) =  
   (\<exists>rT ST LT. s = (RefT rT#ST,LT) \<and> is_class G C \<and>
   (\<forall>x \<in> set (match G ClassCast pc et). is_class G x))"
-  by (cases s, cases "fst s", simp add: app_def) (cases "hd (fst s)", auto)
+  by (cases s, cases "fst s", simp) (cases "hd (fst s)", auto)
 
 lemma appPop[simp]: 
 "(app Pop G maxs rT pc et (Some s)) = (\<exists>ts ST LT. s = (ts#ST,LT))"
@@ -359,7 +360,7 @@
     assume app: "?app (a,b)"
     hence "a = (rev (rev (take (length fpTs) a))) @ (drop (length fpTs) a) \<and> 
            length fpTs < length a" (is "?a \<and> ?l") 
-      by (auto simp add: app_def)
+      by auto
     hence "?a \<and> 0 < length (drop (length fpTs) a)" (is "?a \<and> ?l") 
       by auto
     hence "?a \<and> ?l \<and> length (rev (take (length fpTs) a)) = length fpTs" 
@@ -374,7 +375,7 @@
     hence "\<exists>apTs X ST. a = rev apTs @ X # ST \<and> length apTs = length fpTs" 
       by blast
     with app
-    show ?thesis by (unfold app_def, clarsimp) blast
+    show ?thesis by clarsimp blast
   qed
   with Pair 
   have "?app s \<Longrightarrow> ?P s" by (simp only:)
--- a/src/HOL/MicroJava/JVM/JVMExec.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/MicroJava/JVM/JVMExec.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -8,21 +8,19 @@
 theory JVMExec imports JVMExecInstr JVMExceptions begin
 
 
-consts
+fun
   exec :: "jvm_prog \<times> jvm_state => jvm_state option"
-
-
--- "exec is not recursive. recdef is just used for pattern matching"
-recdef exec "{}"
+-- "exec is not recursive. fun is just used for pattern matching"
+where
   "exec (G, xp, hp, []) = None"
 
-  "exec (G, None, hp, (stk,loc,C,sig,pc)#frs) =
+| "exec (G, None, hp, (stk,loc,C,sig,pc)#frs) =
   (let 
      i = fst(snd(snd(snd(snd(the(method (G,C) sig)))))) ! pc;
      (xcpt', hp', frs') = exec_instr i G hp stk loc C sig pc frs
    in Some (find_handler G xcpt' hp' frs'))"
 
-  "exec (G, Some xp, hp, frs) = None" 
+| "exec (G, Some xp, hp, frs) = None" 
 
 
 definition exec_all :: "[jvm_prog,jvm_state,jvm_state] => bool"
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -15,8 +15,6 @@
 
 declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
 declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
-declare dot_ladd[simp] dot_radd[simp] dot_lsub[simp] dot_rsub[simp]
-declare dot_lmult[simp] dot_rmult[simp] dot_lneg[simp] dot_rneg[simp]
 declare UNIV_1[simp]
 
 (*lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto*)
@@ -1717,7 +1715,7 @@
     using norm_basis and dimindex_ge_1 by auto
   thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto
 next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms]
-    apply - apply(erule exE)+ unfolding dot_rzero apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
+    apply - apply(erule exE)+ unfolding inner.zero_right apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
 
 subsection {* Now set-to-set for closed/compact sets. *}
 
--- a/src/HOL/Multivariate_Analysis/Derivative.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -12,6 +12,9 @@
 (* Because I do not want to type this all the time *)
 lemmas linear_linear = linear_conv_bounded_linear[THEN sym]
 
+(** move this **)
+declare norm_vec1[simp]
+
 subsection {* Derivatives *}
 
 text {* The definition is slightly tricky since we make it work over
@@ -612,7 +615,7 @@
     finally have "\<bar>(f (x + c *\<^sub>R basis j) - f x - D *v (c *\<^sub>R basis j)) $ k\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" by simp
     hence "\<bar>f (x + c *\<^sub>R basis j) $ k - f x $ k - c * D $ k $ j\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>"
       unfolding vector_component_simps matrix_vector_mul_component unfolding smult_conv_scaleR[symmetric] 
-      unfolding dot_rmult dot_basis unfolding smult_conv_scaleR by simp  } note * = this
+      unfolding inner_simps dot_basis smult_conv_scaleR by simp  } note * = this
   have "x + d *\<^sub>R basis j \<in> ball x e" "x - d *\<^sub>R basis j \<in> ball x e"
     unfolding mem_ball vector_dist_norm using norm_basis[of j] d by auto
   hence **:"((f (x - d *\<^sub>R basis j))$k \<le> (f x)$k \<and> (f (x + d *\<^sub>R basis j))$k \<le> (f x)$k) \<or>
@@ -702,20 +705,17 @@
 
 subsection {* A nice generalization (see Havin's proof of 5.19 from Rudin's book). *}
 
-lemma inner_eq_dot: fixes a::"real^'n"
-  shows "a \<bullet> b = inner a b" unfolding inner_vector_def dot_def by auto
-
 lemma mvt_general: fixes f::"real\<Rightarrow>real^'n"
   assumes "a<b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_derivative f'(x)) (at x)"
   shows "\<exists>x\<in>{a<..<b}. norm(f b - f a) \<le> norm(f'(x) (b - a))" proof-
   have "\<exists>x\<in>{a<..<b}. (op \<bullet> (f b - f a) \<circ> f) b - (op \<bullet> (f b - f a) \<circ> f) a = (f b - f a) \<bullet> f' x (b - a)"
-    apply(rule mvt) apply(rule assms(1))unfolding inner_eq_dot apply(rule continuous_on_inner continuous_on_intros assms(2))+ 
+    apply(rule mvt) apply(rule assms(1)) apply(rule continuous_on_inner continuous_on_intros assms(2))+ 
     unfolding o_def apply(rule,rule has_derivative_lift_dot) using assms(3) by auto
   then guess x .. note x=this
   show ?thesis proof(cases "f a = f b")
     case False have "norm (f b - f a) * norm (f b - f a) = norm (f b - f a)^2" by(simp add:class_semiring.semiring_rules)
-    also have "\<dots> = (f b - f a) \<bullet> (f b - f a)" unfolding norm_pow_2 ..
-    also have "\<dots> = (f b - f a) \<bullet> f' x (b - a)" using x by auto
+    also have "\<dots> = (f b - f a) \<bullet> (f b - f a)" unfolding power2_norm_eq_inner ..
+    also have "\<dots> = (f b - f a) \<bullet> f' x (b - a)" using x unfolding inner_simps by auto
     also have "\<dots> \<le> norm (f b - f a) * norm (f' x (b - a))" by(rule norm_cauchy_schwarz)
     finally show ?thesis using False x(1) by(auto simp add: real_mult_left_cancel) next
     case True thus ?thesis using assms(1) apply(rule_tac x="(a + b) /2" in bexI) by auto qed qed
@@ -751,9 +751,6 @@
   also have "\<dots> \<le> B * norm(y - x)" apply(rule **) using * and u by auto
   finally show ?thesis by(auto simp add:norm_minus_commute) qed 
 
-(** move this **)
-declare norm_vec1[simp]
-
 lemma onorm_vec1: fixes f::"real \<Rightarrow> real"
   shows "onorm (\<lambda>x. vec1 (f (dest_vec1 x))) = onorm f" proof-
   have "\<forall>x::real^1. norm x = 1 \<longleftrightarrow> x\<in>{vec1 -1, vec1 (1::real)}" unfolding forall_vec1 by(auto simp add:Cart_eq)
--- a/src/HOL/Multivariate_Analysis/Determinants.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Determinants.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -837,7 +837,7 @@
   unfolding orthogonal_transformation_def
   apply auto
   apply (erule_tac x=v in allE)+
-  apply (simp add: real_vector_norm_def)
+  apply (simp add: norm_eq_sqrt_inner)
   by (simp add: dot_norm  linear_add[symmetric])
 
 definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1"
@@ -879,7 +879,7 @@
         by simp_all
       from fd[rule_format, of "basis i" "basis j", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul]
       have "?A$i$j = ?m1 $ i $ j"
-        by (simp add: dot_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def)}
+        by (simp add: inner_vector_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def)}
     hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector
     with lf have ?rhs by blast}
   moreover
@@ -929,8 +929,7 @@
       unfolding dot_norm_neg dist_norm[symmetric]
       unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)}
   note fc = this
-  show ?thesis unfolding linear_def vector_eq
-    by (simp add: dot_lmult dot_ladd dot_rmult dot_radd fc ring_simps)
+  show ?thesis unfolding linear_def vector_eq smult_conv_scaleR by (simp add: inner_simps fc ring_simps)
 qed
 
 lemma isometry_linear:
@@ -972,7 +971,7 @@
     "x' = norm x *s x0'" "y' = norm y *s y0'"
     "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"
     "norm(x0' - y0') = norm(x0 - y0)"
-
+    hence *:"x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 " by(simp add: norm_eq norm_eq_1 inner_simps)
     have "norm(x' - y') = norm(x - y)"
       apply (subst H(1))
       apply (subst H(2))
@@ -980,9 +979,8 @@
       apply (subst H(4))
       using H(5-9)
       apply (simp add: norm_eq norm_eq_1)
-      apply (simp add: dot_lsub dot_rsub dot_lmult dot_rmult)
-      apply (simp add: ring_simps)
-      by (simp only: right_distrib[symmetric])}
+      apply (simp add: inner_simps smult_conv_scaleR) unfolding *
+      by (simp add: ring_simps) }
   note th0 = this
   let ?g = "\<lambda>x. if x = 0 then 0 else norm x *s f (inverse (norm x) *s x)"
   {fix x:: "real ^'n" assume nx: "norm x = 1"
--- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -100,6 +100,12 @@
   instance ..
 end
 
+instantiation cart :: (scaleR, finite) scaleR
+begin
+  definition vector_scaleR_def: "scaleR = (\<lambda> r x.  (\<chi> i. scaleR r (x$i)))"
+  instance ..
+end
+
 instantiation cart :: (ord,finite) ord
 begin
   definition vector_le_def:
@@ -108,12 +114,31 @@
   instance by (intro_classes)
 end
 
-instantiation cart :: (scaleR, finite) scaleR
+text{* The ordering on real^1 is linear. *}
+
+class cart_one = assumes UNIV_one: "card (UNIV \<Colon> 'a set) = Suc 0"
 begin
-  definition vector_scaleR_def: "scaleR = (\<lambda> r x.  (\<chi> i. scaleR r (x$i)))"
-  instance ..
+  subclass finite
+  proof from UNIV_one show "finite (UNIV :: 'a set)"
+      by (auto intro!: card_ge_0_finite) qed
 end
 
+instantiation num1 :: cart_one begin
+instance proof
+  show "CARD(1) = Suc 0" by auto
+qed end
+
+instantiation cart :: (linorder,cart_one) linorder begin
+instance proof
+  guess a B using UNIV_one[where 'a='b] unfolding card_Suc_eq apply- by(erule exE)+
+  hence *:"UNIV = {a}" by auto
+  have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P a" unfolding * by auto hence all:"\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a" by auto
+  fix x y z::"'a^'b::cart_one" note * = vector_le_def vector_less_def all Cart_eq
+  show "x\<le>x" "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" "x\<le>y \<or> y\<le>x" unfolding * by(auto simp only:field_simps)
+  { assume "x\<le>y" "y\<le>z" thus "x\<le>z" unfolding * by(auto simp only:field_simps) }
+  { assume "x\<le>y" "y\<le>x" thus "x=y" unfolding * by(auto simp only:field_simps) }
+qed end
+
 text{* Also the scalar-vector multiplication. *}
 
 definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
@@ -123,25 +148,11 @@
 
 definition "vec x = (\<chi> i. x)"
 
-text{* Dot products. *}
-
-definition dot :: "'a::{comm_monoid_add, times} ^ 'n \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a" (infix "\<bullet>" 70) where
-  "x \<bullet> y = setsum (\<lambda>i. x$i * y$i) UNIV"
-
-lemma dot_1[simp]: "(x::'a::{comm_monoid_add, times}^1) \<bullet> y = (x$1) * (y$1)"
-  by (simp add: dot_def setsum_1)
-
-lemma dot_2[simp]: "(x::'a::{comm_monoid_add, times}^2) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2)"
-  by (simp add: dot_def setsum_2)
-
-lemma dot_3[simp]: "(x::'a::{comm_monoid_add, times}^3) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2) + (x$3) * (y$3)"
-  by (simp add: dot_def setsum_3)
-
 subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *}
 
 method_setup vector = {*
 let
-  val ss1 = HOL_basic_ss addsimps [@{thm dot_def}, @{thm setsum_addf} RS sym,
+  val ss1 = HOL_basic_ss addsimps [@{thm setsum_addf} RS sym,
   @{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
   @{thm setsum_left_distrib}, @{thm setsum_negf} RS sym]
   val ss2 = @{simpset} addsimps
@@ -165,8 +176,6 @@
 lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def)
 lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def)
 
-
-
 text{* Obvious "component-pushing". *}
 
 lemma vec_component [simp]: "vec x $ i = x"
@@ -791,6 +800,8 @@
 
 subsection {* Inner products *}
 
+abbreviation inner_bullet (infix "\<bullet>" 70)  where "x \<bullet> y \<equiv> inner x y"
+
 instantiation cart :: (real_inner, finite) real_inner
 begin
 
@@ -821,27 +832,6 @@
 
 end
 
-subsection{* Properties of the dot product.  *}
-
-lemma dot_sym: "(x::'a:: {comm_monoid_add, ab_semigroup_mult} ^ 'n) \<bullet> y = y \<bullet> x"
-  by (vector mult_commute)
-lemma dot_ladd: "((x::'a::ring ^ 'n) + y) \<bullet> z = (x \<bullet> z) + (y \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_radd: "x \<bullet> (y + (z::'a::ring ^ 'n)) = (x \<bullet> y) + (x \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_lsub: "((x::'a::ring ^ 'n) - y) \<bullet> z = (x \<bullet> z) - (y \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_rsub: "(x::'a::ring ^ 'n) \<bullet> (y - z) = (x \<bullet> y) - (x \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_lmult: "(c *s x) \<bullet> y = (c::'a::ring) * (x \<bullet> y)" by (vector ring_simps)
-lemma dot_rmult: "x \<bullet> (c *s y) = (c::'a::comm_ring) * (x \<bullet> y)" by (vector ring_simps)
-lemma dot_lneg: "(-x) \<bullet> (y::'a::ring ^ 'n) = -(x \<bullet> y)" by vector
-lemma dot_rneg: "(x::'a::ring ^ 'n) \<bullet> (-y) = -(x \<bullet> y)" by vector
-lemma dot_lzero[simp]: "0 \<bullet> x = (0::'a::{comm_monoid_add, mult_zero})" by vector
-lemma dot_rzero[simp]: "x \<bullet> 0 = (0::'a::{comm_monoid_add, mult_zero})" by vector
-lemma dot_pos_le[simp]: "(0::'a\<Colon>linordered_ring_strict) <= x \<bullet> x"
-  by (simp add: dot_def setsum_nonneg)
-
 lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\<forall>x \<in> F. f x \<ge> (0 ::'a::ordered_ab_group_add)" shows "setsum f F = 0 \<longleftrightarrow> (ALL x:F. f x = 0)"
 using fS fp setsum_nonneg[OF fp]
 proof (induct set: finite)
@@ -855,12 +845,6 @@
   show ?case by (simp add: h)
 qed
 
-lemma dot_eq_0: "x \<bullet> x = 0 \<longleftrightarrow> (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) = 0"
-  by (simp add: dot_def setsum_squares_eq_0_iff Cart_eq)
-
-lemma dot_pos_lt[simp]: "(0 < x \<bullet> x) \<longleftrightarrow> (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) \<noteq> 0" using dot_eq_0[of x] dot_pos_le[of x]
-  by (auto simp add: le_less)
-
 subsection{* The collapse of the general concepts to dimension one. *}
 
 lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
@@ -994,12 +978,8 @@
 lemma norm_mul[simp]: "norm(a *s x) = abs(a) * norm x"
   by (simp add: norm_vector_def vector_component setL2_right_distrib
            abs_mult cong: strong_setL2_cong)
-lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (x \<bullet> x = (0::real))"
-  by (simp add: norm_vector_def dot_def setL2_def power2_eq_square)
-lemma real_vector_norm_def: "norm x = sqrt (x \<bullet> x)"
-  by (simp add: norm_vector_def setL2_def dot_def power2_eq_square)
-lemma norm_pow_2: "norm x ^ 2 = x \<bullet> x"
-  by (simp add: real_vector_norm_def)
+lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (inner x x = (0::real))"
+  by (simp add: norm_vector_def setL2_def power2_eq_square)
 lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
 lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
   by vector
@@ -1011,34 +991,17 @@
   by (metis vector_mul_lcancel)
 lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
   by (metis vector_mul_rcancel)
+
 lemma norm_cauchy_schwarz:
   fixes x y :: "real ^ 'n"
-  shows "x \<bullet> y <= norm x * norm y"
-proof-
-  {assume "norm x = 0"
-    hence ?thesis by (simp add: dot_lzero dot_rzero)}
-  moreover
-  {assume "norm y = 0"
-    hence ?thesis by (simp add: dot_lzero dot_rzero)}
-  moreover
-  {assume h: "norm x \<noteq> 0" "norm y \<noteq> 0"
-    let ?z = "norm y *s x - norm x *s y"
-    from h have p: "norm x * norm y > 0" by (metis norm_ge_zero le_less zero_compare_simps)
-    from dot_pos_le[of ?z]
-    have "(norm x * norm y) * (x \<bullet> y) \<le> norm x ^2 * norm y ^2"
-      apply (simp add: dot_rsub dot_lsub dot_lmult dot_rmult ring_simps)
-      by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym)
-    hence "x\<bullet>y \<le> (norm x ^2 * norm y ^2) / (norm x * norm y)" using p
-      by (simp add: field_simps)
-    hence ?thesis using h by (simp add: power2_eq_square)}
-  ultimately show ?thesis by metis
-qed
+  shows "inner x y <= norm x * norm y"
+  using Cauchy_Schwarz_ineq2[of x y] by auto
 
 lemma norm_cauchy_schwarz_abs:
   fixes x y :: "real ^ 'n"
-  shows "\<bar>x \<bullet> y\<bar> \<le> norm x * norm y"
+  shows "\<bar>inner x y\<bar> \<le> norm x * norm y"
   using norm_cauchy_schwarz[of x y] norm_cauchy_schwarz[of x "-y"]
-  by (simp add: real_abs_def dot_rneg)
+  by (simp add: real_abs_def)
 
 lemma norm_triangle_sub:
   fixes x y :: "'a::real_normed_vector"
@@ -1064,21 +1027,21 @@
 lemma real_abs_sub_norm: "\<bar>norm (x::real ^ 'n) - norm y\<bar> <= norm(x - y)"
   by (rule norm_triangle_ineq3)
 lemma norm_le: "norm(x::real ^ 'n) <= norm(y) \<longleftrightarrow> x \<bullet> x <= y \<bullet> y"
-  by (simp add: real_vector_norm_def)
+  by (simp add: norm_eq_sqrt_inner) 
 lemma norm_lt: "norm(x::real ^ 'n) < norm(y) \<longleftrightarrow> x \<bullet> x < y \<bullet> y"
-  by (simp add: real_vector_norm_def)
-lemma norm_eq: "norm(x::real ^ 'n) = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
-  by (simp add: order_eq_iff norm_le)
+  by (simp add: norm_eq_sqrt_inner)
+lemma norm_eq: "norm(x::real ^ 'n) = norm (y::real ^ 'n) \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
+  apply(subst order_eq_iff) unfolding norm_le by auto
 lemma norm_eq_1: "norm(x::real ^ 'n) = 1 \<longleftrightarrow> x \<bullet> x = 1"
-  by (simp add: real_vector_norm_def)
+  unfolding norm_eq_sqrt_inner by auto
 
 text{* Squaring equations and inequalities involving norms.  *}
 
 lemma dot_square_norm: "x \<bullet> x = norm(x)^2"
-  by (simp add: real_vector_norm_def)
+  by (simp add: norm_eq_sqrt_inner)
 
 lemma norm_eq_square: "norm(x) = a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x = a^2"
-  by (auto simp add: real_vector_norm_def)
+  by (auto simp add: norm_eq_sqrt_inner)
 
 lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)^2 \<le> y^2"
 proof-
@@ -1106,12 +1069,14 @@
 
 text{* Dot product in terms of the norm rather than conversely. *}
 
+lemmas inner_simps = inner.add_left inner.add_right inner.diff_right inner.diff_left 
+inner.scaleR_left inner.scaleR_right
+
 lemma dot_norm: "x \<bullet> y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2"
-  by (simp add: norm_pow_2 dot_ladd dot_radd dot_sym)
+  unfolding power2_norm_eq_inner inner_simps inner_commute by auto 
 
 lemma dot_norm_neg: "x \<bullet> y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2"
-  by (simp add: norm_pow_2 dot_ladd dot_radd dot_lsub dot_rsub dot_sym)
-
+  unfolding power2_norm_eq_inner inner_simps inner_commute by(auto simp add:group_simps)
 
 text{* Equality of vectors in terms of @{term "op \<bullet>"} products.    *}
 
@@ -1120,14 +1085,12 @@
   assume "?lhs" then show ?rhs by simp
 next
   assume ?rhs
-  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y\<bullet> y = 0" by simp
-  hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
-    by (simp add: dot_rsub dot_lsub dot_sym)
-  then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps dot_lsub dot_rsub)
-  then show "x = y" by (simp add: dot_eq_0)
+  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" by simp
+  hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" by (simp add: inner_simps inner_commute)
+  then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps inner_simps inner_commute)
+  then show "x = y" by (simp)
 qed
 
-
 subsection{* General linear decision procedure for normed spaces. *}
 
 lemma norm_cmul_rule_thm:
@@ -1456,15 +1419,14 @@
   finally show ?thesis .
 qed
 
-lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{comm_ring}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
-  by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd dot_radd)
-
-lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{comm_ring}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
-  by (induct rule: finite_induct, auto simp add: dot_rzero dot_radd)
+lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{real_inner}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
+  apply(induct rule: finite_induct) by(auto simp add: inner_simps)
+
+lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{real_inner}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
+  apply(induct rule: finite_induct) by(auto simp add: inner_simps)
 
 subsection{* Basis vectors in coordinate directions. *}
 
-
 definition "basis k = (\<chi> i. if i = k then 1 else 0)"
 
 lemma basis_component [simp]: "basis k $ i = (if k=i then 1 else 0)"
@@ -1475,11 +1437,9 @@
 
 lemma norm_basis:
   shows "norm (basis k :: real ^'n) = 1"
-  apply (simp add: basis_def real_vector_norm_def dot_def)
+  apply (simp add: basis_def norm_eq_sqrt_inner) unfolding inner_vector_def
   apply (vector delta_mult_idempotent)
-  using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"]
-  apply auto
-  done
+  using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"] by auto
 
 lemma norm_basis_1: "norm(basis 1 :: real ^'n::{finite,one}) = 1"
   by (rule norm_basis)
@@ -1515,8 +1475,8 @@
   by auto
 
 lemma dot_basis:
-  shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i :: 'a^'n) = (x$i :: 'a::semiring_1)"
-  by (auto simp add: dot_def basis_def cond_application_beta  cond_value_iff setsum_delta cong del: if_weak_cong)
+  shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i) = (x$i)"
+  unfolding inner_vector_def by (auto simp add: basis_def cond_application_beta  cond_value_iff setsum_delta cong del: if_weak_cong)
 
 lemma inner_basis:
   fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n"
@@ -1532,7 +1492,7 @@
   shows "basis k \<noteq> (0:: 'a::semiring_1 ^'n)"
   by (simp add: basis_eq_0)
 
-lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::'a::semiring_1^'n)"
+lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::real^'n)"
   apply (auto simp add: Cart_eq dot_basis)
   apply (erule_tac x="basis i" in allE)
   apply (simp add: dot_basis)
@@ -1541,7 +1501,7 @@
   apply (simp add: Cart_eq)
   done
 
-lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::'a::semiring_1^'n)"
+lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::real^'n)"
   apply (auto simp add: Cart_eq dot_basis)
   apply (erule_tac x="basis i" in allE)
   apply (simp add: dot_basis)
@@ -1555,31 +1515,29 @@
 definition "orthogonal x y \<longleftrightarrow> (x \<bullet> y = 0)"
 
 lemma orthogonal_basis:
-  shows "orthogonal (basis i :: 'a^'n) x \<longleftrightarrow> x$i = (0::'a::ring_1)"
-  by (auto simp add: orthogonal_def dot_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
+  shows "orthogonal (basis i) x \<longleftrightarrow> x$i = (0::real)"
+  by (auto simp add: orthogonal_def inner_vector_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
 
 lemma orthogonal_basis_basis:
-  shows "orthogonal (basis i :: 'a::ring_1^'n) (basis j) \<longleftrightarrow> i \<noteq> j"
+  shows "orthogonal (basis i :: real^'n) (basis j) \<longleftrightarrow> i \<noteq> j"
   unfolding orthogonal_basis[of i] basis_component[of j] by simp
 
   (* FIXME : Maybe some of these require less than comm_ring, but not all*)
 lemma orthogonal_clauses:
-  "orthogonal a (0::'a::comm_ring ^'n)"
-  "orthogonal a x ==> orthogonal a (c *s x)"
+  "orthogonal a (0::real ^'n)"
+  "orthogonal a x ==> orthogonal a (c *\<^sub>R x)"
   "orthogonal a x ==> orthogonal a (-x)"
   "orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x + y)"
   "orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x - y)"
   "orthogonal 0 a"
-  "orthogonal x a ==> orthogonal (c *s x) a"
+  "orthogonal x a ==> orthogonal (c *\<^sub>R x) a"
   "orthogonal x a ==> orthogonal (-x) a"
   "orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x + y) a"
   "orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x - y) a"
-  unfolding orthogonal_def dot_rneg dot_rmult dot_radd dot_rsub
-  dot_lzero dot_rzero dot_lneg dot_lmult dot_ladd dot_lsub
-  by simp_all
-
-lemma orthogonal_commute: "orthogonal (x::'a::{ab_semigroup_mult,comm_monoid_add} ^'n)y \<longleftrightarrow> orthogonal y x"
-  by (simp add: orthogonal_def dot_sym)
+  unfolding orthogonal_def inner_simps by auto
+
+lemma orthogonal_commute: "orthogonal (x::real ^'n)y \<longleftrightarrow> orthogonal y x"
+  by (simp add: orthogonal_def inner_commute)
 
 subsection{* Explicit vector construction from lists. *}
 
@@ -1969,7 +1927,7 @@
 lemma choice_iff: "(\<forall>x. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x. P x (f x))" by metis
 
 lemma adjoint_works_lemma:
-  fixes f:: "'a::ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y"
 proof-
@@ -1977,8 +1935,8 @@
   let ?M = "UNIV :: 'm set"
   have fN: "finite ?N" by simp
   have fM: "finite ?M" by simp
-  {fix y:: "'a ^ 'm"
-    let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: 'a ^ 'n"
+  {fix y:: "real ^ 'm"
+    let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: real ^ 'n"
     {fix x
       have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *s basis i) ?N) \<bullet> y"
         by (simp only: basis_expansion)
@@ -1987,7 +1945,7 @@
         by (simp add: linear_cmul[OF lf])
       finally have "f x \<bullet> y = x \<bullet> ?w"
         apply (simp only: )
-        apply (simp add: dot_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
+        apply (simp add: inner_vector_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
         done}
   }
   then show ?thesis unfolding adjoint_def
@@ -1997,34 +1955,34 @@
 qed
 
 lemma adjoint_works:
-  fixes f:: "'a::ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "x \<bullet> adjoint f y = f x \<bullet> y"
   using adjoint_works_lemma[OF lf] by metis
 
-
 lemma adjoint_linear:
-  fixes f :: "'a::comm_ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "linear (adjoint f)"
-  by (simp add: linear_def vector_eq_ldot[symmetric] dot_radd dot_rmult adjoint_works[OF lf])
+  unfolding linear_def vector_eq_ldot[symmetric] apply safe
+  unfolding inner_simps smult_conv_scaleR adjoint_works[OF lf] by auto
 
 lemma adjoint_clauses:
-  fixes f:: "'a::comm_ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "x \<bullet> adjoint f y = f x \<bullet> y"
   and "adjoint f y \<bullet> x = y \<bullet> f x"
-  by (simp_all add: adjoint_works[OF lf] dot_sym )
+  by (simp_all add: adjoint_works[OF lf] inner_commute)
 
 lemma adjoint_adjoint:
-  fixes f:: "'a::comm_ring_1 ^ 'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "adjoint (adjoint f) = f"
   apply (rule ext)
   by (simp add: vector_eq_ldot[symmetric] adjoint_clauses[OF adjoint_linear[OF lf]] adjoint_clauses[OF lf])
 
 lemma adjoint_unique:
-  fixes f:: "'a::comm_ring_1 ^ 'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f" and u: "\<forall>x y. f' x \<bullet> y = x \<bullet> f y"
   shows "f' = adjoint f"
   apply (rule ext)
@@ -2101,11 +2059,11 @@
   by (auto simp add: basis_def cond_value_iff cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong)
 
 lemma matrix_vector_mul_component:
-  shows "((A::'a::semiring_1^_^_) *v x)$k = (A$k) \<bullet> x"
-  by (simp add: matrix_vector_mult_def dot_def)
-
-lemma dot_lmul_matrix: "((x::'a::comm_semiring_1 ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
-  apply (simp add: dot_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
+  shows "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
+  by (simp add: matrix_vector_mult_def inner_vector_def)
+
+lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
+  apply (simp add: inner_vector_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
   apply (subst setsum_commute)
   by simp
 
@@ -2133,7 +2091,7 @@
 text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *}
 
 lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
-  by (simp add: matrix_vector_mult_def dot_def)
+  by (simp add: matrix_vector_mult_def inner_vector_def)
 
 lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
   by (simp add: matrix_vector_mult_def Cart_eq column_def mult_commute)
@@ -2194,15 +2152,15 @@
 lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
   by (simp add: matrix_vector_mult_def transpose_def Cart_eq mult_commute)
 
-lemma adjoint_matrix: "adjoint(\<lambda>x. (A::'a::comm_ring_1^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
+lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
   apply (rule adjoint_unique[symmetric])
   apply (rule matrix_vector_mul_linear)
-  apply (simp add: transpose_def dot_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
+  apply (simp add: transpose_def inner_vector_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
   apply (subst setsum_commute)
   apply (auto simp add: mult_ac)
   done
 
-lemma matrix_adjoint: assumes lf: "linear (f :: 'a::comm_ring_1^'n \<Rightarrow> 'a ^'m)"
+lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
   shows "matrix(adjoint f) = transpose(matrix f)"
   apply (subst matrix_vector_mul[OF lf])
   unfolding adjoint_matrix matrix_of_matrix_vector_mul ..
@@ -2514,11 +2472,11 @@
   apply (auto simp add: Cart_eq matrix_vector_mult_def column_def  mult_commute UNIV_1)
   done
 
-lemma linear_to_scalars: assumes lf: "linear (f::'a::comm_ring_1 ^'n \<Rightarrow> 'a^1)"
+lemma linear_to_scalars: assumes lf: "linear (f::real ^'n \<Rightarrow> real^1)"
   shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))"
   apply (rule ext)
   apply (subst matrix_works[OF lf, symmetric])
-  apply (simp add: Cart_eq matrix_vector_mult_def row_def dot_def mult_commute forall_1)
+  apply (simp add: Cart_eq matrix_vector_mult_def row_def inner_vector_def mult_commute forall_1)
   done
 
 lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0"
@@ -2624,11 +2582,11 @@
   have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
     by (simp add: pastecart_fst_snd)
   have th1: "fstcart x \<bullet> fstcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
-    by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
+    by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def setsum_nonneg)
   then show ?thesis
     unfolding th0
-    unfolding real_vector_norm_def real_sqrt_le_iff id_def
-    by (simp add: dot_def)
+    unfolding norm_eq_sqrt_inner real_sqrt_le_iff id_def
+    by (simp add: inner_vector_def)
 qed
 
 lemma dist_fstcart: "dist(fstcart (x::real^_)) (fstcart y) <= dist x y"
@@ -2639,18 +2597,18 @@
   have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
     by (simp add: pastecart_fst_snd)
   have th1: "sndcart x \<bullet> sndcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
-    by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
+    by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def setsum_nonneg)
   then show ?thesis
     unfolding th0
-    unfolding real_vector_norm_def real_sqrt_le_iff id_def
-    by (simp add: dot_def)
+    unfolding norm_eq_sqrt_inner real_sqrt_le_iff id_def
+    by (simp add: inner_vector_def)
 qed
 
 lemma dist_sndcart: "dist(sndcart (x::real^_)) (sndcart y) <= dist x y"
   unfolding dist_norm by (metis sndcart_sub[symmetric] norm_sndcart)
 
-lemma dot_pastecart: "(pastecart (x1::'a::{times,comm_monoid_add}^'n) (x2::'a::{times,comm_monoid_add}^'m)) \<bullet> (pastecart y1 y2) =  x1 \<bullet> y1 + x2 \<bullet> y2"
-  by (simp add: dot_def setsum_UNIV_sum pastecart_def)
+lemma dot_pastecart: "(pastecart (x1::real^'n) (x2::real^'m)) \<bullet> (pastecart y1 y2) =  x1 \<bullet> y1 + x2 \<bullet> y2"
+  by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def)
 
 text {* TODO: move to NthRoot *}
 lemma sqrt_add_le_add_sqrt:
@@ -3586,8 +3544,8 @@
       {fix x assume xs: "x \<in> s"
         have t: "t \<subseteq> (insert b (insert a (t -{b})))" using b by auto
         from b(1) have "b \<in> span t" by (simp add: span_superset)
-        have bs: "b \<in> span (insert a (t - {b}))"
-          by (metis in_span_delete a sp mem_def subset_eq)
+        have bs: "b \<in> span (insert a (t - {b}))" apply(rule in_span_delete)
+          using  a sp unfolding subset_eq by auto
         from xs sp have "x \<in> span t" by blast
         with span_mono[OF t]
         have x: "x \<in> span (insert b (insert a (t - {b})))" ..
@@ -3842,11 +3800,8 @@
     (* FIXME : Move to some general theory ?*)
 definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
 
-lemma vector_sub_project_orthogonal: "(b::'a::linordered_field^'n) \<bullet> (x - ((b \<bullet> x) / (b\<bullet>b)) *s b) = 0"
-  apply (cases "b = 0", simp)
-  apply (simp add: dot_rsub dot_rmult)
-  unfolding times_divide_eq_right[symmetric]
-  by (simp add: field_simps dot_eq_0)
+lemma vector_sub_project_orthogonal: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0"
+  unfolding inner_simps smult_conv_scaleR by auto
 
 lemma basis_orthogonal:
   fixes B :: "(real ^'n) set"
@@ -3861,7 +3816,7 @@
   from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C`
   obtain C where C: "finite C" "card C \<le> card B"
     "span C = span B" "pairwise orthogonal C" by blast
-  let ?a = "a - setsum (\<lambda>x. (x\<bullet>a / (x\<bullet>x)) *s x) C"
+  let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *s x) C"
   let ?C = "insert ?a C"
   from C(1) have fC: "finite ?C" by simp
   from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" by (simp add: card_insert_if)
@@ -3887,13 +3842,12 @@
       have fth: "finite (C - {y})" using C by simp
       have "orthogonal x y"
         using xa ya
-        unfolding orthogonal_def xa dot_lsub dot_rsub diff_eq_0_iff_eq
+        unfolding orthogonal_def xa inner_simps diff_eq_0_iff_eq
         apply simp
         apply (subst Cy)
         using C(1) fth
-        apply (simp only: setsum_clauses)
-        thm dot_ladd
-        apply (auto simp add: dot_ladd dot_radd dot_lmult dot_rmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth])
+        apply (simp only: setsum_clauses) unfolding smult_conv_scaleR
+        apply (auto simp add: inner_simps inner_eq_zero_iff inner_commute[of y a] dot_lsum[OF fth])
         apply (rule setsum_0')
         apply clarsimp
         apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -3904,13 +3858,13 @@
       have fth: "finite (C - {x})" using C by simp
       have "orthogonal x y"
         using xa ya
-        unfolding orthogonal_def ya dot_rsub dot_lsub diff_eq_0_iff_eq
+        unfolding orthogonal_def ya inner_simps diff_eq_0_iff_eq
         apply simp
         apply (subst Cx)
         using C(1) fth
-        apply (simp only: setsum_clauses)
-        apply (subst dot_sym[of x])
-        apply (auto simp add: dot_radd dot_rmult dot_eq_0 dot_sym[of x a] dot_rsum[OF fth])
+        apply (simp only: setsum_clauses) unfolding smult_conv_scaleR
+        apply (subst inner_commute[of x])
+        apply (auto simp add: inner_simps inner_eq_zero_iff inner_commute[of x a] dot_rsum[OF fth])
         apply (rule setsum_0')
         apply clarsimp
         apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -3945,7 +3899,8 @@
 qed
 
 lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S"
-  by (metis set_eq_subset span_mono span_span span_inc) (* FIXME: slow *)
+  using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"]
+  by(auto simp add: span_span)
 
 (* ------------------------------------------------------------------------- *)
 (* Low-dimensional subset is in a hyperplane (weak orthogonal complement).   *)
@@ -3962,8 +3917,8 @@
   from B have fB: "finite B" "card B = dim S" using independent_bound by auto
   from span_mono[OF B(2)] span_mono[OF B(3)]
   have sSB: "span S = span B" by (simp add: span_span)
-  let ?a = "a - setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B"
-  have "setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B \<in> span S"
+  let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *s b) B"
+  have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *s b) B \<in> span S"
     unfolding sSB
     apply (rule span_setsum[OF fB(1)])
     apply clarsimp
@@ -3972,20 +3927,20 @@
   with a have a0:"?a  \<noteq> 0" by auto
   have "\<forall>x\<in>span B. ?a \<bullet> x = 0"
   proof(rule span_induct')
-    show "subspace (\<lambda>x. ?a \<bullet> x = 0)"
-      by (auto simp add: subspace_def mem_def dot_radd dot_rmult)
-  next
+    show "subspace (\<lambda>x. ?a \<bullet> x = 0)" by (auto simp add: subspace_def mem_def inner_simps smult_conv_scaleR)
+  
+next
     {fix x assume x: "x \<in> B"
       from x have B': "B = insert x (B - {x})" by blast
       have fth: "finite (B - {x})" using fB by simp
       have "?a \<bullet> x = 0"
         apply (subst B') using fB fth
         unfolding setsum_clauses(2)[OF fth]
-        apply simp
-        apply (clarsimp simp add: dot_lsub dot_ladd dot_lmult dot_lsum dot_eq_0)
+        apply simp unfolding inner_simps smult_conv_scaleR
+        apply (clarsimp simp add: inner_simps inner_eq_zero_iff smult_conv_scaleR dot_lsum)
         apply (rule setsum_0', rule ballI)
-        unfolding dot_sym
-        by (auto simp add: x field_simps dot_eq_0 intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
+        unfolding inner_commute
+        by (auto simp add: x field_simps inner_eq_zero_iff intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
     then show "\<forall>x \<in> B. ?a \<bullet> x = 0" by blast
   qed
   with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"])
@@ -4754,8 +4709,8 @@
   "columnvector (A *v v) = A ** columnvector v"
   by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
 
-lemma dot_matrix_product: "(x::'a::semiring_1^'n) \<bullet> y = (((rowvector x ::'a^'n^1) ** (columnvector y :: 'a^1^'n))$1)$1"
-  by (vector matrix_matrix_mult_def rowvector_def columnvector_def dot_def)
+lemma dot_matrix_product: "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
+  by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vector_def)
 
 lemma dot_matrix_vector_mul:
   fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
@@ -4911,20 +4866,18 @@
     by (auto intro: real_sqrt_pow2)
   have th: "sqrt (real ?d) * infnorm x \<ge> 0"
     by (simp add: zero_le_mult_iff real_sqrt_ge_0_iff infnorm_pos_le)
-  have th1: "x\<bullet>x \<le> (sqrt (real ?d) * infnorm x)^2"
+  have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)^2"
     unfolding power_mult_distrib d2
+    unfolding real_of_nat_def inner_vector_def
+    apply (subst power2_abs[symmetric]) 
+    apply (rule setsum_bounded)
+    apply(auto simp add: power2_eq_square[symmetric])
     apply (subst power2_abs[symmetric])
-    unfolding real_of_nat_def dot_def power2_eq_square[symmetric]
-    apply (subst power2_abs[symmetric])
-    apply (rule setsum_bounded)
     apply (rule power_mono)
-    unfolding abs_of_nonneg[OF infnorm_pos_le]
     unfolding infnorm_def  Sup_finite_ge_iff[OF infnorm_set_lemma]
-    unfolding infnorm_set_image bex_simps
-    apply blast
-    by (rule abs_ge_zero)
-  from real_le_lsqrt[OF dot_pos_le th th1]
-  show ?thesis unfolding real_vector_norm_def id_def .
+    unfolding infnorm_set_image bex_simps apply(rule_tac x=i in exI) by auto
+  from real_le_lsqrt[OF inner_ge_zero th th1]
+  show ?thesis unfolding norm_eq_sqrt_inner id_def .
 qed
 
 (* Equality in Cauchy-Schwarz and triangle inequalities.                     *)
@@ -4938,16 +4891,14 @@
     hence ?thesis by simp}
   moreover
   {assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
-    from dot_eq_0[of "norm y *s x - norm x *s y"]
+    from inner_eq_zero_iff[of "norm y *s x - norm x *s y"]
     have "?rhs \<longleftrightarrow> (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) =  0)"
       using x y
-      unfolding dot_rsub dot_lsub dot_lmult dot_rmult
-      unfolding norm_pow_2[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: dot_sym)
-      apply (simp add: ring_simps)
-      apply metis
-      done
+      unfolding inner_simps smult_conv_scaleR
+      unfolding power2_norm_eq_inner[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: inner_commute)
+      apply (simp add: ring_simps) by metis
     also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y
-      by (simp add: ring_simps dot_sym)
+      by (simp add: ring_simps inner_commute)
     also have "\<dots> \<longleftrightarrow> ?lhs" using x y
       apply simp
       by metis
@@ -4969,8 +4920,7 @@
     unfolding norm_minus_cancel
       norm_mul by blast
   also have "\<dots> \<longleftrightarrow> ?lhs"
-    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] dot_lneg
-    by arith
+    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps by auto
   finally show ?thesis ..
 qed
 
@@ -4993,8 +4943,8 @@
       by arith
     also have "\<dots> \<longleftrightarrow> norm x *s y = norm y *s x"
       unfolding norm_cauchy_schwarz_eq[symmetric]
-      unfolding norm_pow_2 dot_ladd dot_radd
-      by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym ring_simps)
+      unfolding power2_norm_eq_inner inner_simps
+      by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute ring_simps)
     finally have ?thesis .}
   ultimately show ?thesis by blast
 qed
@@ -5089,3 +5039,4 @@
 done
 
 end
+ 
\ No newline at end of file
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -1310,9 +1310,12 @@
 lemma integral_empty[simp]: shows "integral {} f = 0"
   apply(rule integral_unique) using has_integral_empty .
 
-lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}"
-  apply(rule has_integral_null) unfolding content_eq_0_interior
-  unfolding interior_closed_interval using interval_sing by auto
+lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a}"
+proof- have *:"{a} = {a..a}" apply(rule set_ext) unfolding mem_interval singleton_iff Cart_eq
+    apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps)
+  show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
+    apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior
+    unfolding interior_closed_interval using interval_sing by auto qed
 
 lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
 
@@ -2811,6 +2814,9 @@
 
 subsection {* Special case of additivity we need for the FCT. *}
 
+lemma interval_bound_sing[simp]: "interval_upperbound {a} = a"  "interval_lowerbound {a} = a"
+  unfolding interval_upperbound_def interval_lowerbound_def unfolding Cart_eq by auto
+
 lemma additive_tagged_division_1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector"
   assumes "dest_vec1 a \<le> dest_vec1 b" "p tagged_division_of {a..b}"
   shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"
--- a/src/HOL/Mutabelle/mutabelle_extra.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Mutabelle/mutabelle_extra.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -54,7 +54,7 @@
 
 (* quickcheck options *)
 (*val quickcheck_generator = "SML"*)
-val iterations = 100
+val iterations = 10
 val size = 5
 
 exception RANDOM;
--- a/src/HOL/Nominal/Examples/Fsub.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Nominal/Examples/Fsub.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -686,13 +686,13 @@
   have fresh_cond: "X\<sharp>\<Gamma>" by fact
   hence fresh_ty_dom: "X\<sharp>(ty_dom \<Gamma>)" by (simp add: fresh_dom)
   have "(\<forall>X<:T\<^isub>2. T\<^isub>1) closed_in \<Gamma>" by fact
-  hence closed\<^isub>T2: "T\<^isub>2 closed_in \<Gamma>" and closed\<^isub>T1: "T\<^isub>1 closed_in ((TVarB  X T\<^isub>2)#\<Gamma>)" 
+  hence closed\<^isub>T\<^isub>2: "T\<^isub>2 closed_in \<Gamma>" and closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in ((TVarB  X T\<^isub>2)#\<Gamma>)" 
     by (auto simp add: closed_in_def ty.supp abs_supp)
   have ok: "\<turnstile> \<Gamma> ok" by fact  
-  hence ok': "\<turnstile> ((TVarB X T\<^isub>2)#\<Gamma>) ok" using closed\<^isub>T2 fresh_ty_dom by simp
-  have "\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>2" using ih_T\<^isub>2 closed\<^isub>T2 ok by simp
+  hence ok': "\<turnstile> ((TVarB X T\<^isub>2)#\<Gamma>) ok" using closed\<^isub>T\<^isub>2 fresh_ty_dom by simp
+  have "\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>2" using ih_T\<^isub>2 closed\<^isub>T\<^isub>2 ok by simp
   moreover
-  have "((TVarB X T\<^isub>2)#\<Gamma>) \<turnstile> T\<^isub>1 <: T\<^isub>1" using ih_T\<^isub>1 closed\<^isub>T1 ok' by simp
+  have "((TVarB X T\<^isub>2)#\<Gamma>) \<turnstile> T\<^isub>1 <: T\<^isub>1" using ih_T\<^isub>1 closed\<^isub>T\<^isub>1 ok' by simp
   ultimately show "\<Gamma> \<turnstile> (\<forall>X<:T\<^isub>2. T\<^isub>1) <: (\<forall>X<:T\<^isub>2. T\<^isub>1)" using fresh_cond 
     by (simp add: subtype_of.SA_all)
 qed (auto simp add: closed_in_def ty.supp supp_atm)
@@ -783,10 +783,10 @@
   have ih\<^isub>1: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
   have ih\<^isub>2: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends ((TVarB X T\<^isub>1)#\<Gamma>) \<Longrightarrow> \<Delta> \<turnstile> S\<^isub>2 <: T\<^isub>2" by fact
   have lh_drv_prem: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
-  hence closed\<^isub>T1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
+  hence closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
   have ok: "\<turnstile> \<Delta> ok" by fact
   have ext: "\<Delta> extends \<Gamma>" by fact
-  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T1 by (simp only: extends_closed)
+  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T\<^isub>1 by (simp only: extends_closed)
   hence "\<turnstile> ((TVarB X T\<^isub>1)#\<Delta>) ok" using fresh_dom ok by force   
   moreover 
   have "((TVarB X T\<^isub>1)#\<Delta>) extends ((TVarB X T\<^isub>1)#\<Gamma>)" using ext by (force simp add: extends_def)
@@ -811,10 +811,10 @@
   have ih\<^isub>1: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
   have ih\<^isub>2: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends ((TVarB X T\<^isub>1)#\<Gamma>) \<Longrightarrow> \<Delta> \<turnstile> S\<^isub>2 <: T\<^isub>2" by fact
   have lh_drv_prem: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
-  hence closed\<^isub>T1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
+  hence closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
   have ok: "\<turnstile> \<Delta> ok" by fact
   have ext: "\<Delta> extends \<Gamma>" by fact
-  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T1 by (simp only: extends_closed)
+  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T\<^isub>1 by (simp only: extends_closed)
   hence "\<turnstile> ((TVarB X T\<^isub>1)#\<Delta>) ok" using fresh_dom ok by force   
   moreover
   have "((TVarB X T\<^isub>1)#\<Delta>) extends ((TVarB X T\<^isub>1)#\<Gamma>)" using ext by (force simp add: extends_def)
@@ -903,7 +903,7 @@
       case (SA_arrow \<Gamma> Q\<^isub>1 S\<^isub>1 S\<^isub>2 Q\<^isub>2) 
       then have rh_drv: "\<Gamma> \<turnstile> Q\<^isub>1 \<rightarrow> Q\<^isub>2 <: T" by simp
       from `Q\<^isub>1 \<rightarrow> Q\<^isub>2 = Q` 
-      have Q\<^isub>12_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" by auto
+      have Q\<^isub>1\<^isub>2_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" by auto
       have lh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> Q\<^isub>1 <: S\<^isub>1" by fact
       have lh_drv_prm\<^isub>2: "\<Gamma> \<turnstile> S\<^isub>2 <: Q\<^isub>2" by fact      
       from rh_drv have "T=Top \<or> (\<exists>T\<^isub>1 T\<^isub>2. T=T\<^isub>1\<rightarrow>T\<^isub>2 \<and> \<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1 \<and> \<Gamma>\<turnstile>Q\<^isub>2<:T\<^isub>2)" 
@@ -921,10 +921,10 @@
           and   rh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1 <: Q\<^isub>1"
           and   rh_drv_prm\<^isub>2: "\<Gamma> \<turnstile> Q\<^isub>2 <: T\<^isub>2" by force
         from IH_trans[of "Q\<^isub>1"] 
-        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using Q\<^isub>12_less rh_drv_prm\<^isub>1 lh_drv_prm\<^isub>1 by simp 
+        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>1 lh_drv_prm\<^isub>1 by simp 
         moreover
         from IH_trans[of "Q\<^isub>2"] 
-        have "\<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>12_less rh_drv_prm\<^isub>2 lh_drv_prm\<^isub>2 by simp
+        have "\<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>2 lh_drv_prm\<^isub>2 by simp
         ultimately have "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2" by auto
         then have "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T" using T_inst by simp
       }
@@ -954,15 +954,15 @@
           and   rh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1 <: Q\<^isub>1" 
           and   rh_drv_prm\<^isub>2:"((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> Q\<^isub>2 <: T\<^isub>2" by force
         have "(\<forall>X<:Q\<^isub>1. Q\<^isub>2) = Q" by fact 
-        then have Q\<^isub>12_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" 
+        then have Q\<^isub>1\<^isub>2_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" 
           using fresh_cond by auto
         from IH_trans[of "Q\<^isub>1"] 
-        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using lh_drv_prm\<^isub>1 rh_drv_prm\<^isub>1 Q\<^isub>12_less by blast
+        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using lh_drv_prm\<^isub>1 rh_drv_prm\<^isub>1 Q\<^isub>1\<^isub>2_less by blast
         moreover
         from IH_narrow[of "Q\<^isub>1" "[]"] 
-        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2" using Q\<^isub>12_less lh_drv_prm\<^isub>2 rh_drv_prm\<^isub>1 by simp
+        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2" using Q\<^isub>1\<^isub>2_less lh_drv_prm\<^isub>2 rh_drv_prm\<^isub>1 by simp
         with IH_trans[of "Q\<^isub>2"] 
-        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>12_less rh_drv_prm\<^isub>2 by simp
+        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>2 by simp
         ultimately have "\<Gamma> \<turnstile> (\<forall>X<:S\<^isub>1. S\<^isub>2) <: (\<forall>X<:T\<^isub>1. T\<^isub>2)"
           using fresh_cond by (simp add: subtype_of.SA_all)
         hence "\<Gamma> \<turnstile> (\<forall>X<:S\<^isub>1. S\<^isub>2) <: T" using T_inst by simp
@@ -1005,16 +1005,16 @@
         with IH_inner show "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Tvar Y <: N" by (simp add: subtype_of.SA_trans_TVar)
       next
         case True
-        have memb\<^isub>XQ: "(TVarB X Q)\<in>set (\<Delta>@[(TVarB X Q)]@\<Gamma>)" by simp
-        have memb\<^isub>XP: "(TVarB X P)\<in>set (\<Delta>@[(TVarB X P)]@\<Gamma>)" by simp
+        have memb\<^isub>X\<^isub>Q: "(TVarB X Q)\<in>set (\<Delta>@[(TVarB X Q)]@\<Gamma>)" by simp
+        have memb\<^isub>X\<^isub>P: "(TVarB X P)\<in>set (\<Delta>@[(TVarB X P)]@\<Gamma>)" by simp
         have eq: "X=Y" by fact 
-        hence "S=Q" using ok\<^isub>Q lh_drv_prm memb\<^isub>XQ by (simp only: uniqueness_of_ctxt)
+        hence "S=Q" using ok\<^isub>Q lh_drv_prm memb\<^isub>X\<^isub>Q by (simp only: uniqueness_of_ctxt)
         hence "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Q <: N" using IH_inner by simp
         moreover
         have "(\<Delta>@[(TVarB X P)]@\<Gamma>) extends \<Gamma>" by (simp add: extends_def)
         hence "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> P <: Q" using rh_drv ok\<^isub>P by (simp only: weakening)
         ultimately have "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> P <: N" by (simp add: transitivity_lemma) 
-        then show "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Tvar Y <: N" using memb\<^isub>XP eq by auto
+        then show "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Tvar Y <: N" using memb\<^isub>X\<^isub>P eq by auto
       qed
     next
       case (SA_refl_TVar Y \<Gamma> X \<Delta>)
@@ -1049,7 +1049,7 @@
 | T_Abs[intro]: "\<lbrakk> VarB x T\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T\<^isub>1. t\<^isub>2) : T\<^isub>1 \<rightarrow> T\<^isub>2"
 | T_Sub[intro]: "\<lbrakk> \<Gamma> \<turnstile> t : S; \<Gamma> \<turnstile> S <: T \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t : T"
 | T_TAbs[intro]:"\<lbrakk> TVarB X T\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>X<:T\<^isub>1. t\<^isub>2) : (\<forall>X<:T\<^isub>1. T\<^isub>2)"
-| T_TApp[intro]:"\<lbrakk>X\<sharp>(\<Gamma>,t\<^isub>1,T\<^isub>2); \<Gamma> \<turnstile> t\<^isub>1 : (\<forall>X<:T\<^isub>11. T\<^isub>12); \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>11\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2 : (T\<^isub>12[X \<mapsto> T\<^isub>2]\<^sub>\<tau>)" 
+| T_TApp[intro]:"\<lbrakk>X\<sharp>(\<Gamma>,t\<^isub>1,T\<^isub>2); \<Gamma> \<turnstile> t\<^isub>1 : (\<forall>X<:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2); \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2 : (T\<^isub>1\<^isub>2[X \<mapsto> T\<^isub>2]\<^sub>\<tau>)" 
 
 equivariance typing
 
@@ -1164,10 +1164,10 @@
 inductive 
   eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
 where
-  E_Abs         : "\<lbrakk> x \<sharp> v\<^isub>2; val v\<^isub>2 \<rbrakk> \<Longrightarrow> (\<lambda>x:T\<^isub>11. t\<^isub>12) \<cdot> v\<^isub>2 \<longmapsto> t\<^isub>12[x \<mapsto> v\<^isub>2]"
+  E_Abs         : "\<lbrakk> x \<sharp> v\<^isub>2; val v\<^isub>2 \<rbrakk> \<Longrightarrow> (\<lambda>x:T\<^isub>1\<^isub>1. t\<^isub>1\<^isub>2) \<cdot> v\<^isub>2 \<longmapsto> t\<^isub>1\<^isub>2[x \<mapsto> v\<^isub>2]"
 | E_App1 [intro]: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u"
 | E_App2 [intro]: "\<lbrakk> val v; t \<longmapsto> t' \<rbrakk> \<Longrightarrow> v \<cdot> t \<longmapsto> v \<cdot> t'"
-| E_TAbs        : "X \<sharp> (T\<^isub>11, T\<^isub>2) \<Longrightarrow> (\<lambda>X<:T\<^isub>11. t\<^isub>12) \<cdot>\<^sub>\<tau> T\<^isub>2 \<longmapsto> t\<^isub>12[X \<mapsto>\<^sub>\<tau> T\<^isub>2]"
+| E_TAbs        : "X \<sharp> (T\<^isub>1\<^isub>1, T\<^isub>2) \<Longrightarrow> (\<lambda>X<:T\<^isub>1\<^isub>1. t\<^isub>1\<^isub>2) \<cdot>\<^sub>\<tau> T\<^isub>2 \<longmapsto> t\<^isub>1\<^isub>2[X \<mapsto>\<^sub>\<tau> T\<^isub>2]"
 | E_TApp [intro]: "t \<longmapsto> t' \<Longrightarrow> t \<cdot>\<^sub>\<tau> T \<longmapsto> t' \<cdot>\<^sub>\<tau> T"
 
 lemma better_E_Abs[intro]:
@@ -1315,7 +1315,7 @@
   case (T_Var x T)
   then show ?case by auto
 next
-  case (T_App X t\<^isub>1 T\<^isub>2 T\<^isub>11 T\<^isub>12)
+  case (T_App X t\<^isub>1 T\<^isub>2 T\<^isub>1\<^isub>1 T\<^isub>1\<^isub>2)
   then show ?case by force
 next
   case (T_Abs y T\<^isub>1 t\<^isub>2 T\<^isub>2 \<Delta> \<Gamma>)
@@ -1744,68 +1744,68 @@
   assumes H: "\<Gamma> \<turnstile> t : T"
   shows "t \<longmapsto> t' \<Longrightarrow> \<Gamma> \<turnstile> t' : T" using H
 proof (nominal_induct avoiding: t' rule: typing.strong_induct)
-  case (T_App \<Gamma> t\<^isub>1 T\<^isub>11 T\<^isub>12 t\<^isub>2 t')
+  case (T_App \<Gamma> t\<^isub>1 T\<^isub>1\<^isub>1 T\<^isub>1\<^isub>2 t\<^isub>2 t')
   obtain x::vrs where x_fresh: "x \<sharp> (\<Gamma>, t\<^isub>1 \<cdot> t\<^isub>2, t')"
     by (rule exists_fresh) (rule fin_supp)
   obtain X::tyvrs where "X \<sharp> (t\<^isub>1 \<cdot> t\<^isub>2, t')"
     by (rule exists_fresh) (rule fin_supp)
   with `t\<^isub>1 \<cdot> t\<^isub>2 \<longmapsto> t'` show ?case
   proof (cases rule: eval.strong_cases [where x=x and X=X])
-    case (E_Abs v\<^isub>2 T\<^isub>11' t\<^isub>12)
-    with T_App and x_fresh have h: "\<Gamma> \<turnstile> (\<lambda>x:T\<^isub>11'. t\<^isub>12) : T\<^isub>11 \<rightarrow> T\<^isub>12"
+    case (E_Abs v\<^isub>2 T\<^isub>1\<^isub>1' t\<^isub>1\<^isub>2)
+    with T_App and x_fresh have h: "\<Gamma> \<turnstile> (\<lambda>x:T\<^isub>1\<^isub>1'. t\<^isub>1\<^isub>2) : T\<^isub>1\<^isub>1 \<rightarrow> T\<^isub>1\<^isub>2"
       by (simp add: trm.inject fresh_prod)
     moreover from x_fresh have "x \<sharp> \<Gamma>" by simp
     ultimately obtain S'
-      where T\<^isub>11: "\<Gamma> \<turnstile> T\<^isub>11 <: T\<^isub>11'"
-      and t\<^isub>12: "(VarB x T\<^isub>11') # \<Gamma> \<turnstile> t\<^isub>12 : S'"
-      and S': "\<Gamma> \<turnstile> S' <: T\<^isub>12"
+      where T\<^isub>1\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1\<^isub>1 <: T\<^isub>1\<^isub>1'"
+      and t\<^isub>1\<^isub>2: "(VarB x T\<^isub>1\<^isub>1') # \<Gamma> \<turnstile> t\<^isub>1\<^isub>2 : S'"
+      and S': "\<Gamma> \<turnstile> S' <: T\<^isub>1\<^isub>2"
       by (rule Abs_type') blast
-    from `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>11`
-    have "\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>11'" using T\<^isub>11 by (rule T_Sub)
-    with t\<^isub>12 have "\<Gamma> \<turnstile> t\<^isub>12[x \<mapsto> t\<^isub>2] : S'" 
+    from `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1`
+    have "\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1'" using T\<^isub>1\<^isub>1 by (rule T_Sub)
+    with t\<^isub>1\<^isub>2 have "\<Gamma> \<turnstile> t\<^isub>1\<^isub>2[x \<mapsto> t\<^isub>2] : S'" 
       by (rule subst_type [where \<Delta>="[]", simplified])
-    hence "\<Gamma> \<turnstile> t\<^isub>12[x \<mapsto> t\<^isub>2] : T\<^isub>12" using S' by (rule T_Sub)
+    hence "\<Gamma> \<turnstile> t\<^isub>1\<^isub>2[x \<mapsto> t\<^isub>2] : T\<^isub>1\<^isub>2" using S' by (rule T_Sub)
     with E_Abs and x_fresh show ?thesis by (simp add: trm.inject fresh_prod)
   next
     case (E_App1 t''' t'' u)
     hence "t\<^isub>1 \<longmapsto> t''" by (simp add:trm.inject) 
-    hence "\<Gamma> \<turnstile> t'' : T\<^isub>11 \<rightarrow> T\<^isub>12" by (rule T_App)
-    hence "\<Gamma> \<turnstile> t'' \<cdot> t\<^isub>2 : T\<^isub>12" using `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>11`
+    hence "\<Gamma> \<turnstile> t'' : T\<^isub>1\<^isub>1 \<rightarrow> T\<^isub>1\<^isub>2" by (rule T_App)
+    hence "\<Gamma> \<turnstile> t'' \<cdot> t\<^isub>2 : T\<^isub>1\<^isub>2" using `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1`
       by (rule typing.T_App)
     with E_App1 show ?thesis by (simp add:trm.inject)
   next
     case (E_App2 v t''' t'')
     hence "t\<^isub>2 \<longmapsto> t''" by (simp add:trm.inject) 
-    hence "\<Gamma> \<turnstile> t'' : T\<^isub>11" by (rule T_App)
-    with T_App(1) have "\<Gamma> \<turnstile> t\<^isub>1 \<cdot> t'' : T\<^isub>12"
+    hence "\<Gamma> \<turnstile> t'' : T\<^isub>1\<^isub>1" by (rule T_App)
+    with T_App(1) have "\<Gamma> \<turnstile> t\<^isub>1 \<cdot> t'' : T\<^isub>1\<^isub>2"
       by (rule typing.T_App)
     with E_App2 show ?thesis by (simp add:trm.inject) 
   qed (simp_all add: fresh_prod)
 next
-  case (T_TApp X \<Gamma> t\<^isub>1 T\<^isub>2  T\<^isub>11  T\<^isub>12 t')
+  case (T_TApp X \<Gamma> t\<^isub>1 T\<^isub>2  T\<^isub>1\<^isub>1  T\<^isub>1\<^isub>2 t')
   obtain x::vrs where "x \<sharp> (t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2, t')"
     by (rule exists_fresh) (rule fin_supp)
   with `t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2 \<longmapsto> t'`
   show ?case
   proof (cases rule: eval.strong_cases [where X=X and x=x])
-    case (E_TAbs T\<^isub>11' T\<^isub>2' t\<^isub>12)
-    with T_TApp have "\<Gamma> \<turnstile> (\<lambda>X<:T\<^isub>11'. t\<^isub>12) : (\<forall>X<:T\<^isub>11. T\<^isub>12)" and "X \<sharp> \<Gamma>" and "X \<sharp> T\<^isub>11'"
+    case (E_TAbs T\<^isub>1\<^isub>1' T\<^isub>2' t\<^isub>1\<^isub>2)
+    with T_TApp have "\<Gamma> \<turnstile> (\<lambda>X<:T\<^isub>1\<^isub>1'. t\<^isub>1\<^isub>2) : (\<forall>X<:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2)" and "X \<sharp> \<Gamma>" and "X \<sharp> T\<^isub>1\<^isub>1'"
       by (simp_all add: trm.inject)
-    moreover from `\<Gamma>\<turnstile>T\<^isub>2<:T\<^isub>11` and `X \<sharp> \<Gamma>` have "X \<sharp> T\<^isub>11"
+    moreover from `\<Gamma>\<turnstile>T\<^isub>2<:T\<^isub>1\<^isub>1` and `X \<sharp> \<Gamma>` have "X \<sharp> T\<^isub>1\<^isub>1"
       by (blast intro: closed_in_fresh fresh_dom dest: subtype_implies_closed)
     ultimately obtain S'
-      where "TVarB X T\<^isub>11 # \<Gamma> \<turnstile> t\<^isub>12 : S'"
-      and "(TVarB X T\<^isub>11 # \<Gamma>) \<turnstile> S' <: T\<^isub>12"
+      where "TVarB X T\<^isub>1\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>1\<^isub>2 : S'"
+      and "(TVarB X T\<^isub>1\<^isub>1 # \<Gamma>) \<turnstile> S' <: T\<^isub>1\<^isub>2"
       by (rule TAbs_type') blast
-    hence "TVarB X T\<^isub>11 # \<Gamma> \<turnstile> t\<^isub>12 : T\<^isub>12" by (rule T_Sub)
-    hence "\<Gamma> \<turnstile> t\<^isub>12[X \<mapsto>\<^sub>\<tau> T\<^isub>2] : T\<^isub>12[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>11`
+    hence "TVarB X T\<^isub>1\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>1\<^isub>2 : T\<^isub>1\<^isub>2" by (rule T_Sub)
+    hence "\<Gamma> \<turnstile> t\<^isub>1\<^isub>2[X \<mapsto>\<^sub>\<tau> T\<^isub>2] : T\<^isub>1\<^isub>2[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1`
       by (rule substT_type [where D="[]", simplified])
     with T_TApp and E_TAbs show ?thesis by (simp add: trm.inject)
   next
     case (E_TApp t''' t'' T)
     from E_TApp have "t\<^isub>1 \<longmapsto> t''" by (simp add: trm.inject)
-    then have "\<Gamma> \<turnstile> t'' : (\<forall>X<:T\<^isub>11. T\<^isub>12)" by (rule T_TApp)
-    then have "\<Gamma> \<turnstile> t'' \<cdot>\<^sub>\<tau> T\<^isub>2 : T\<^isub>12[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>11`
+    then have "\<Gamma> \<turnstile> t'' : (\<forall>X<:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2)" by (rule T_TApp)
+    then have "\<Gamma> \<turnstile> t'' \<cdot>\<^sub>\<tau> T\<^isub>2 : T\<^isub>1\<^isub>2[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1`
       by (rule better_T_TApp)
     with E_TApp show ?thesis by (simp add: trm.inject)
   qed (simp_all add: fresh_prod)
@@ -1845,7 +1845,7 @@
   shows "val t \<or> (\<exists>t'. t \<longmapsto> t')" 
 using assms
 proof (induct "[]::env" t T)
-  case (T_App t\<^isub>1 T\<^isub>11  T\<^isub>12 t\<^isub>2)
+  case (T_App t\<^isub>1 T\<^isub>1\<^isub>1  T\<^isub>1\<^isub>2 t\<^isub>2)
   hence "val t\<^isub>1 \<or> (\<exists>t'. t\<^isub>1 \<longmapsto> t')" by simp
   thus ?case
   proof
@@ -1871,7 +1871,7 @@
     thus ?case by auto
   qed
 next
-  case (T_TApp X t\<^isub>1 T\<^isub>2 T\<^isub>11 T\<^isub>12)
+  case (T_TApp X t\<^isub>1 T\<^isub>2 T\<^isub>1\<^isub>1 T\<^isub>1\<^isub>2)
   hence "val t\<^isub>1 \<or> (\<exists>t'. t\<^isub>1 \<longmapsto> t')" by simp
   thus ?case
   proof
--- a/src/HOL/Old_Number_Theory/Euler.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Old_Number_Theory/Euler.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -162,8 +162,11 @@
 lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
   by auto
 
+lemma d22set_induct_old: "(\<And>a::int. 1 < a \<longrightarrow> P (a - 1) \<Longrightarrow> P a) \<Longrightarrow> P x"
+using d22set.induct by blast
+
 lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
-  apply (induct p rule: d22set.induct)
+  apply (induct p rule: d22set_induct_old)
   apply auto
   apply (simp add: SRStar_def d22set.simps)
   apply (simp add: SRStar_def d22set.simps, clarify)
--- a/src/HOL/Old_Number_Theory/EulerFermat.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Old_Number_Theory/EulerFermat.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -25,20 +25,18 @@
   | insert: "A \<in> RsetR m ==> zgcd a m = 1 ==>
       \<forall>a'. a' \<in> A --> \<not> zcong a a' m ==> insert a A \<in> RsetR m"
 
-consts
-  BnorRset :: "int * int => int set"
-
-recdef BnorRset
-  "measure ((\<lambda>(a, m). nat a) :: int * int => nat)"
-  "BnorRset (a, m) =
+fun
+  BnorRset :: "int \<Rightarrow> int => int set"
+where
+  "BnorRset a m =
    (if 0 < a then
-    let na = BnorRset (a - 1, m)
+    let na = BnorRset (a - 1) m
     in (if zgcd a m = 1 then insert a na else na)
     else {})"
 
 definition
   norRRset :: "int => int set" where
-  "norRRset m = BnorRset (m - 1, m)"
+  "norRRset m = BnorRset (m - 1) m"
 
 definition
   noXRRset :: "int => int => int set" where
@@ -74,28 +72,27 @@
 
 lemma BnorRset_induct:
   assumes "!!a m. P {} a m"
-    and "!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
-      ==> P (BnorRset(a,m)) a m"
-  shows "P (BnorRset(u,v)) u v"
+    and "!!a m :: int. 0 < a ==> P (BnorRset (a - 1) m) (a - 1) m
+      ==> P (BnorRset a m) a m"
+  shows "P (BnorRset u v) u v"
   apply (rule BnorRset.induct)
-  apply safe
-   apply (case_tac [2] "0 < a")
-    apply (rule_tac [2] prems)
+   apply (case_tac "0 < a")
+    apply (rule_tac assms)
      apply simp_all
-   apply (simp_all add: BnorRset.simps prems)
+   apply (simp_all add: BnorRset.simps assms)
   done
 
-lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) \<longrightarrow> b \<le> a"
+lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset a m \<longrightarrow> b \<le> a"
   apply (induct a m rule: BnorRset_induct)
    apply simp
   apply (subst BnorRset.simps)
    apply (unfold Let_def, auto)
   done
 
-lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset (a, m)"
+lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset a m"
   by (auto dest: Bnor_mem_zle)
 
-lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset (a, m) --> 0 < b"
+lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset a m --> 0 < b"
   apply (induct a m rule: BnorRset_induct)
    prefer 2
    apply (subst BnorRset.simps)
@@ -103,7 +100,7 @@
   done
 
 lemma Bnor_mem_if [rule_format]:
-    "zgcd b m = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset (a, m)"
+    "zgcd b m = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset a m"
   apply (induct a m rule: BnorRset.induct, auto)
    apply (subst BnorRset.simps)
    defer
@@ -111,7 +108,7 @@
    apply (unfold Let_def, auto)
   done
 
-lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset (a, m) \<in> RsetR m"
+lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset a m \<in> RsetR m"
   apply (induct a m rule: BnorRset_induct, simp)
   apply (subst BnorRset.simps)
   apply (unfold Let_def, auto)
@@ -124,7 +121,7 @@
         apply (rule_tac [5] Bnor_mem_zg, auto)
   done
 
-lemma Bnor_fin: "finite (BnorRset (a, m))"
+lemma Bnor_fin: "finite (BnorRset a m)"
   apply (induct a m rule: BnorRset_induct)
    prefer 2
    apply (subst BnorRset.simps)
@@ -258,8 +255,8 @@
 by (unfold inj_on_def, auto)
 
 lemma Bnor_prod_power [rule_format]:
-  "x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset (a, m)) =
-      \<Prod>(BnorRset(a, m)) * x^card (BnorRset (a, m))"
+  "x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset a m) =
+      \<Prod>(BnorRset a m) * x^card (BnorRset a m)"
   apply (induct a m rule: BnorRset_induct)
    prefer 2
    apply (simplesubst BnorRset.simps)  --{*multiple redexes*}
@@ -284,7 +281,7 @@
   done
 
 lemma Bnor_prod_zgcd [rule_format]:
-    "a < m --> zgcd (\<Prod>(BnorRset(a, m))) m = 1"
+    "a < m --> zgcd (\<Prod>(BnorRset a m)) m = 1"
   apply (induct a m rule: BnorRset_induct)
    prefer 2
    apply (subst BnorRset.simps)
@@ -299,13 +296,13 @@
   apply (case_tac "x = 0")
    apply (case_tac [2] "m = 1")
     apply (rule_tac [3] iffD1)
-     apply (rule_tac [3] k = "\<Prod>(BnorRset(m - 1, m))"
+     apply (rule_tac [3] k = "\<Prod>(BnorRset (m - 1) m)"
        in zcong_cancel2)
       prefer 5
       apply (subst Bnor_prod_power [symmetric])
         apply (rule_tac [7] Bnor_prod_zgcd, simp_all)
   apply (rule bijzcong_zcong_prod)
-  apply (fold norRRset_def noXRRset_def)
+  apply (fold norRRset_def, fold noXRRset_def)
   apply (subst RRset2norRR_eq_norR [symmetric])
     apply (rule_tac [3] inj_func_bijR, auto)
      apply (unfold zcongm_def)
@@ -319,12 +316,12 @@
   done
 
 lemma Bnor_prime:
-  "\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset (a, p)) = nat a"
+  "\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset a p) = nat a"
   apply (induct a p rule: BnorRset.induct)
   apply (subst BnorRset.simps)
   apply (unfold Let_def, auto simp add:zless_zprime_imp_zrelprime)
-  apply (subgoal_tac "finite (BnorRset (a - 1,m))")
-   apply (subgoal_tac "a ~: BnorRset (a - 1,m)")
+  apply (subgoal_tac "finite (BnorRset (a - 1) m)")
+   apply (subgoal_tac "a ~: BnorRset (a - 1) m")
     apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1)
    apply (frule Bnor_mem_zle, arith)
   apply (frule Bnor_fin)
--- a/src/HOL/Old_Number_Theory/IntFact.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Old_Number_Theory/IntFact.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -14,14 +14,14 @@
   \bigskip
 *}
 
-consts
+fun
   zfact :: "int => int"
-  d22set :: "int => int set"
-
-recdef zfact  "measure ((\<lambda>n. nat n) :: int => nat)"
+where
   "zfact n = (if n \<le> 0 then 1 else n * zfact (n - 1))"
 
-recdef d22set  "measure ((\<lambda>a. nat a) :: int => nat)"
+fun
+  d22set :: "int => int set"
+where
   "d22set a = (if 1 < a then insert a (d22set (a - 1)) else {})"
 
 
@@ -38,12 +38,10 @@
     and "!!a. 1 < (a::int) ==> P (d22set (a - 1)) (a - 1) ==> P (d22set a) a"
   shows "P (d22set u) u"
   apply (rule d22set.induct)
-  apply safe
-   prefer 2
-   apply (case_tac "1 < a")
-    apply (rule_tac prems)
-     apply (simp_all (no_asm_simp))
-   apply (simp_all (no_asm_simp) add: d22set.simps prems)
+  apply (case_tac "1 < a")
+   apply (rule_tac assms)
+    apply (simp_all (no_asm_simp))
+  apply (simp_all (no_asm_simp) add: d22set.simps assms)
   done
 
 lemma d22set_g_1 [rule_format]: "b \<in> d22set a --> 1 < b"
@@ -66,7 +64,8 @@
 lemma d22set_mem: "1 < b \<Longrightarrow> b \<le> a \<Longrightarrow> b \<in> d22set a"
   apply (induct a rule: d22set.induct)
   apply auto
-   apply (simp_all add: d22set.simps)
+  apply (subst d22set.simps)
+  apply (case_tac "b < a", auto)
   done
 
 lemma d22set_fin: "finite (d22set a)"
@@ -81,8 +80,6 @@
 
 lemma d22set_prod_zfact: "\<Prod>(d22set a) = zfact a"
   apply (induct a rule: d22set.induct)
-  apply safe
-   apply (simp add: d22set.simps zfact.simps)
   apply (subst d22set.simps)
   apply (subst zfact.simps)
   apply (case_tac "1 < a")
--- a/src/HOL/Old_Number_Theory/IntPrimes.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Old_Number_Theory/IntPrimes.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -19,17 +19,14 @@
 
 subsection {* Definitions *}
 
-consts
-  xzgcda :: "int * int * int * int * int * int * int * int => int * int * int"
-
-recdef xzgcda
-  "measure ((\<lambda>(m, n, r', r, s', s, t', t). nat r)
-    :: int * int * int * int *int * int * int * int => nat)"
-  "xzgcda (m, n, r', r, s', s, t', t) =
+fun
+  xzgcda :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int => (int * int * int)"
+where
+  "xzgcda m n r' r s' s t' t =
         (if r \<le> 0 then (r', s', t')
-         else xzgcda (m, n, r, r' mod r, 
-                      s, s' - (r' div r) * s, 
-                      t, t' - (r' div r) * t))"
+         else xzgcda m n r (r' mod r) 
+                      s (s' - (r' div r) * s) 
+                      t (t' - (r' div r) * t))"
 
 definition
   zprime :: "int \<Rightarrow> bool" where
@@ -37,7 +34,7 @@
 
 definition
   xzgcd :: "int => int => int * int * int" where
-  "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)"
+  "xzgcd m n = xzgcda m n m n 1 0 0 1"
 
 definition
   zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))") where
@@ -307,9 +304,8 @@
 
 lemma xzgcd_correct_aux1:
   "zgcd r' r = k --> 0 < r -->
-    (\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn))"
-  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
-    z = s and aa = t' and ab = t in xzgcda.induct)
+    (\<exists>sn tn. xzgcda m n r' r s' s t' t = (k, sn, tn))"
+  apply (induct m n r' r s' s t' t rule: xzgcda.induct)
   apply (subst zgcd_eq)
   apply (subst xzgcda.simps, auto)
   apply (case_tac "r' mod r = 0")
@@ -321,17 +317,16 @@
   done
 
 lemma xzgcd_correct_aux2:
-  "(\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn)) --> 0 < r -->
+  "(\<exists>sn tn. xzgcda m n r' r s' s t' t = (k, sn, tn)) --> 0 < r -->
     zgcd r' r = k"
-  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
-    z = s and aa = t' and ab = t in xzgcda.induct)
+  apply (induct m n r' r s' s t' t rule: xzgcda.induct)
   apply (subst zgcd_eq)
   apply (subst xzgcda.simps)
   apply (auto simp add: linorder_not_le)
   apply (case_tac "r' mod r = 0")
    prefer 2
    apply (frule_tac a = "r'" in pos_mod_sign, auto)
-  apply (metis Pair_eq simps zle_refl)
+  apply (metis Pair_eq xzgcda.simps zle_refl)
   done
 
 lemma xzgcd_correct:
@@ -362,10 +357,9 @@
   by (rule iffD2 [OF order_less_le conjI])
 
 lemma xzgcda_linear [rule_format]:
-  "0 < r --> xzgcda (m, n, r', r, s', s, t', t) = (rn, sn, tn) -->
+  "0 < r --> xzgcda m n r' r s' s t' t = (rn, sn, tn) -->
     r' = s' * m + t' * n -->  r = s * m + t * n --> rn = sn * m + tn * n"
-  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
-    z = s and aa = t' and ab = t in xzgcda.induct)
+  apply (induct m n r' r s' s t' t rule: xzgcda.induct)
   apply (subst xzgcda.simps)
   apply (simp (no_asm))
   apply (rule impI)+
--- a/src/HOL/Old_Number_Theory/WilsonRuss.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Old_Number_Theory/WilsonRuss.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -17,14 +17,12 @@
   inv :: "int => int => int" where
   "inv p a = (a^(nat (p - 2))) mod p"
 
-consts
-  wset :: "int * int => int set"
-
-recdef wset
-  "measure ((\<lambda>(a, p). nat a) :: int * int => nat)"
-  "wset (a, p) =
+fun
+  wset :: "int \<Rightarrow> int => int set"
+where
+  "wset a p =
     (if 1 < a then
-      let ws = wset (a - 1, p)
+      let ws = wset (a - 1) p
       in (if a \<in> ws then ws else insert a (insert (inv p a) ws)) else {})"
 
 
@@ -163,35 +161,33 @@
 lemma wset_induct:
   assumes "!!a p. P {} a p"
     and "!!a p. 1 < (a::int) \<Longrightarrow>
-      P (wset (a - 1, p)) (a - 1) p ==> P (wset (a, p)) a p"
-  shows "P (wset (u, v)) u v"
-  apply (rule wset.induct, safe)
-   prefer 2
-   apply (case_tac "1 < a")
-    apply (rule prems)
-     apply simp_all
-   apply (simp_all add: wset.simps prems)
+      P (wset (a - 1) p) (a - 1) p ==> P (wset a p) a p"
+  shows "P (wset u v) u v"
+  apply (rule wset.induct)
+  apply (case_tac "1 < a")
+   apply (rule assms)
+    apply (simp_all add: wset.simps assms)
   done
 
 lemma wset_mem_imp_or [rule_format]:
-  "1 < a \<Longrightarrow> b \<notin> wset (a - 1, p)
-    ==> b \<in> wset (a, p) --> b = a \<or> b = inv p a"
+  "1 < a \<Longrightarrow> b \<notin> wset (a - 1) p
+    ==> b \<in> wset a p --> b = a \<or> b = inv p a"
   apply (subst wset.simps)
   apply (unfold Let_def, simp)
   done
 
-lemma wset_mem_mem [simp]: "1 < a ==> a \<in> wset (a, p)"
+lemma wset_mem_mem [simp]: "1 < a ==> a \<in> wset a p"
   apply (subst wset.simps)
   apply (unfold Let_def, simp)
   done
 
-lemma wset_subset: "1 < a \<Longrightarrow> b \<in> wset (a - 1, p) ==> b \<in> wset (a, p)"
+lemma wset_subset: "1 < a \<Longrightarrow> b \<in> wset (a - 1) p ==> b \<in> wset a p"
   apply (subst wset.simps)
   apply (unfold Let_def, auto)
   done
 
 lemma wset_g_1 [rule_format]:
-    "zprime p --> a < p - 1 --> b \<in> wset (a, p) --> 1 < b"
+    "zprime p --> a < p - 1 --> b \<in> wset a p --> 1 < b"
   apply (induct a p rule: wset_induct, auto)
   apply (case_tac "b = a")
    apply (case_tac [2] "b = inv p a")
@@ -203,7 +199,7 @@
   done
 
 lemma wset_less [rule_format]:
-    "zprime p --> a < p - 1 --> b \<in> wset (a, p) --> b < p - 1"
+    "zprime p --> a < p - 1 --> b \<in> wset a p --> b < p - 1"
   apply (induct a p rule: wset_induct, auto)
   apply (case_tac "b = a")
    apply (case_tac [2] "b = inv p a")
@@ -216,7 +212,7 @@
 
 lemma wset_mem [rule_format]:
   "zprime p -->
-    a < p - 1 --> 1 < b --> b \<le> a --> b \<in> wset (a, p)"
+    a < p - 1 --> 1 < b --> b \<le> a --> b \<in> wset a p"
   apply (induct a p rule: wset.induct, auto)
   apply (rule_tac wset_subset)
   apply (simp (no_asm_simp))
@@ -224,8 +220,8 @@
   done
 
 lemma wset_mem_inv_mem [rule_format]:
-  "zprime p --> 5 \<le> p --> a < p - 1 --> b \<in> wset (a, p)
-    --> inv p b \<in> wset (a, p)"
+  "zprime p --> 5 \<le> p --> a < p - 1 --> b \<in> wset a p
+    --> inv p b \<in> wset a p"
   apply (induct a p rule: wset_induct, auto)
    apply (case_tac "b = a")
     apply (subst wset.simps)
@@ -240,13 +236,13 @@
 
 lemma wset_inv_mem_mem:
   "zprime p \<Longrightarrow> 5 \<le> p \<Longrightarrow> a < p - 1 \<Longrightarrow> 1 < b \<Longrightarrow> b < p - 1
-    \<Longrightarrow> inv p b \<in> wset (a, p) \<Longrightarrow> b \<in> wset (a, p)"
+    \<Longrightarrow> inv p b \<in> wset a p \<Longrightarrow> b \<in> wset a p"
   apply (rule_tac s = "inv p (inv p b)" and t = b in subst)
    apply (rule_tac [2] wset_mem_inv_mem)
       apply (rule inv_inv, simp_all)
   done
 
-lemma wset_fin: "finite (wset (a, p))"
+lemma wset_fin: "finite (wset a p)"
   apply (induct a p rule: wset_induct)
    prefer 2
    apply (subst wset.simps)
@@ -255,27 +251,27 @@
 
 lemma wset_zcong_prod_1 [rule_format]:
   "zprime p -->
-    5 \<le> p --> a < p - 1 --> [(\<Prod>x\<in>wset(a, p). x) = 1] (mod p)"
+    5 \<le> p --> a < p - 1 --> [(\<Prod>x\<in>wset a p. x) = 1] (mod p)"
   apply (induct a p rule: wset_induct)
    prefer 2
    apply (subst wset.simps)
-   apply (unfold Let_def, auto)
+   apply (auto, unfold Let_def, auto)
   apply (subst setprod_insert)
     apply (tactic {* stac (thm "setprod_insert") 3 *})
       apply (subgoal_tac [5]
-        "zcong (a * inv p a * (\<Prod>x\<in> wset(a - 1, p). x)) (1 * 1) p")
+        "zcong (a * inv p a * (\<Prod>x\<in>wset (a - 1) p. x)) (1 * 1) p")
        prefer 5
        apply (simp add: zmult_assoc)
       apply (rule_tac [5] zcong_zmult)
        apply (rule_tac [5] inv_is_inv)
          apply (tactic "clarify_tac @{claset} 4")
-         apply (subgoal_tac [4] "a \<in> wset (a - 1, p)")
+         apply (subgoal_tac [4] "a \<in> wset (a - 1) p")
           apply (rule_tac [5] wset_inv_mem_mem)
                apply (simp_all add: wset_fin)
   apply (rule inv_distinct, auto)
   done
 
-lemma d22set_eq_wset: "zprime p ==> d22set (p - 2) = wset (p - 2, p)"
+lemma d22set_eq_wset: "zprime p ==> d22set (p - 2) = wset (p - 2) p"
   apply safe
    apply (erule wset_mem)
      apply (rule_tac [2] d22set_g_1)
--- a/src/HOL/RealPow.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/RealPow.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -113,9 +113,6 @@
 lemma real_le_add_half_cancel: "(x + y/2 \<le> (y::real)) = (x \<le> y /2)"
 by auto
 
-lemma real_minus_half_eq [simp]: "(x::real) - x/2 = x/2"
-by auto
-
 lemma real_mult_inverse_cancel:
      "[|(0::real) < x; 0 < x1; x1 * y < x * u |] 
       ==> inverse x * y < inverse x1 * u"
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -10,12 +10,10 @@
   val test_ref :
     ((unit -> int -> int -> int * int -> term list DSequence.dseq * (int * int)) option) Unsynchronized.ref
   val tracing : bool Unsynchronized.ref;
-  val quickcheck_compile_term : bool -> bool -> 
+  val quickcheck_compile_term : bool -> bool -> int ->
     Proof.context -> bool -> term -> int -> term list option * (bool list * bool);
 (*  val test_term : Proof.context -> bool -> int -> int -> int -> int -> term -> *)
-  val quiet : bool Unsynchronized.ref;
   val nrandom : int Unsynchronized.ref;
-  val depth : int Unsynchronized.ref;
   val debug : bool Unsynchronized.ref;
   val function_flattening : bool Unsynchronized.ref;
   val no_higher_order_predicate : string list Unsynchronized.ref;
@@ -31,19 +29,17 @@
 
 val tracing = Unsynchronized.ref false;
 
-val target = "Quickcheck"
+val quiet = Unsynchronized.ref true;
 
-val quiet = Unsynchronized.ref false;
+val target = "Quickcheck"
 
 val nrandom = Unsynchronized.ref 2;
 
-val depth = Unsynchronized.ref 8;
+val debug = Unsynchronized.ref false;
 
-val debug = Unsynchronized.ref false;
 val function_flattening = Unsynchronized.ref true;
 
-
-val no_higher_order_predicate = Unsynchronized.ref [];
+val no_higher_order_predicate = Unsynchronized.ref ([] : string list);
 
 val options = Options {
   expected_modes = NONE,
@@ -231,21 +227,21 @@
 
 (* quickcheck interface functions *)
 
-fun compile_term' options ctxt report t =
+fun compile_term' options depth ctxt report t =
   let
     val c = compile_term options ctxt t
     val dummy_report = ([], false)
   in
-    fn size => (try_upto (!quiet) (c size (!nrandom)) (!depth), dummy_report)
+    fn size => (try_upto (!quiet) (c size (!nrandom)) depth, dummy_report)
   end
 
-fun quickcheck_compile_term function_flattening fail_safe_function_flattening ctxt t =
+fun quickcheck_compile_term function_flattening fail_safe_function_flattening depth =
   let
      val options =
        set_fail_safe_function_flattening fail_safe_function_flattening
          (set_function_flattening function_flattening (get_options ()))
   in
-    compile_term' options ctxt t
+    compile_term' options depth
   end
 
 end;
--- a/src/HOL/ZF/Games.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/ZF/Games.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -1,4 +1,4 @@
-(*  Title:      HOL/ZF/Games.thy
+(*  Title:      HOL/ZF/MainZF.thy/Games.thy
     Author:     Steven Obua
 
 An application of HOLZF: Partizan Games.  See "Partizan Games in
@@ -347,13 +347,12 @@
     right_option_def[symmetric] left_option_def[symmetric])
   done
 
-consts
+function
   neg_game :: "game \<Rightarrow> game"
-
-recdef neg_game "option_of"
-  "neg_game g = Game (zimage neg_game (right_options g)) (zimage neg_game (left_options g))"
-
-declare neg_game.simps[simp del]
+where
+  [simp del]: "neg_game g = Game (zimage neg_game (right_options g)) (zimage neg_game (left_options g))"
+by auto
+termination by (relation "option_of") auto
 
 lemma "neg_game (neg_game g) = g"
   apply (induct g rule: neg_game.induct)
@@ -365,17 +364,16 @@
   apply (auto simp add: zet_ext_eq zimage_iff)
   done
 
-consts
+function
   ge_game :: "(game * game) \<Rightarrow> bool" 
-
-recdef ge_game "(gprod_2_1 option_of)"
-  "ge_game (G, H) = (\<forall> x. if zin x (right_options G) then (
+where
+  [simp del]: "ge_game (G, H) = (\<forall> x. if zin x (right_options G) then (
                           if zin x (left_options H) then \<not> (ge_game (H, x) \<or> (ge_game (x, G))) 
                                                     else \<not> (ge_game (H, x)))
                           else (if zin x (left_options H) then \<not> (ge_game (x, G)) else True))"
-(hints simp: gprod_2_1_def)
-
-declare ge_game.simps [simp del]
+by auto
+termination by (relation "(gprod_2_1 option_of)") 
+ (simp, auto simp: gprod_2_1_def)
 
 lemma ge_game_eq: "ge_game (G, H) = (\<forall> x. (zin x (right_options G) \<longrightarrow> \<not> ge_game (H, x)) \<and> (zin x (left_options H) \<longrightarrow> \<not> ge_game (x, G)))"
   apply (subst ge_game.simps[where G=G and H=H])
@@ -506,19 +504,18 @@
 definition zero_game :: game
  where  "zero_game \<equiv> Game zempty zempty"
 
-consts 
-  plus_game :: "game * game \<Rightarrow> game"
+function 
+  plus_game :: "game \<Rightarrow> game \<Rightarrow> game"
+where
+  [simp del]: "plus_game G H = Game (zunion (zimage (\<lambda> g. plus_game g H) (left_options G))
+                                   (zimage (\<lambda> h. plus_game G h) (left_options H)))
+                           (zunion (zimage (\<lambda> g. plus_game g H) (right_options G))
+                                   (zimage (\<lambda> h. plus_game G h) (right_options H)))"
+by auto
+termination by (relation "gprod_2_2 option_of")
+  (simp, auto simp: gprod_2_2_def)
 
-recdef plus_game "gprod_2_2 option_of"
-  "plus_game (G, H) = Game (zunion (zimage (\<lambda> g. plus_game (g, H)) (left_options G))
-                                   (zimage (\<lambda> h. plus_game (G, h)) (left_options H)))
-                           (zunion (zimage (\<lambda> g. plus_game (g, H)) (right_options G))
-                                   (zimage (\<lambda> h. plus_game (G, h)) (right_options H)))"
-(hints simp add: gprod_2_2_def)
-
-declare plus_game.simps[simp del]
-
-lemma plus_game_comm: "plus_game (G, H) = plus_game (H, G)"
+lemma plus_game_comm: "plus_game G H = plus_game H G"
 proof (induct G H rule: plus_game.induct)
   case (1 G H)
   show ?case
@@ -541,11 +538,11 @@
 lemma right_zero_game[simp]: "right_options (zero_game) = zempty"
   by (simp add: zero_game_def)
 
-lemma plus_game_zero_right[simp]: "plus_game (G, zero_game) = G"
+lemma plus_game_zero_right[simp]: "plus_game G zero_game = G"
 proof -
   { 
     fix G H
-    have "H = zero_game \<longrightarrow> plus_game (G, H) = G "
+    have "H = zero_game \<longrightarrow> plus_game G H = G "
     proof (induct G H rule: plus_game.induct, rule impI)
       case (goal1 G H)
       note induct_hyp = prems[simplified goal1, simplified] and prems
@@ -553,7 +550,7 @@
         apply (simp only: plus_game.simps[where G=G and H=H])
         apply (simp add: game_ext_eq prems)
         apply (auto simp add: 
-          zimage_cong[where f = "\<lambda> g. plus_game (g, zero_game)" and g = "id"] 
+          zimage_cong[where f = "\<lambda> g. plus_game g zero_game" and g = "id"] 
           induct_hyp)
         done
     qed
@@ -561,7 +558,7 @@
   then show ?thesis by auto
 qed
 
-lemma plus_game_zero_left: "plus_game (zero_game, G) = G"
+lemma plus_game_zero_left: "plus_game zero_game G = G"
   by (simp add: plus_game_comm)
 
 lemma left_imp_options[simp]: "zin opt (left_options g) \<Longrightarrow> zin opt (options g)"
@@ -571,11 +568,11 @@
   by (simp add: options_def zunion)
 
 lemma left_options_plus: 
-  "left_options (plus_game (u, v)) =  zunion (zimage (\<lambda>g. plus_game (g, v)) (left_options u)) (zimage (\<lambda>h. plus_game (u, h)) (left_options v))" 
+  "left_options (plus_game u v) =  zunion (zimage (\<lambda>g. plus_game g v) (left_options u)) (zimage (\<lambda>h. plus_game u h) (left_options v))" 
   by (subst plus_game.simps, simp)
 
 lemma right_options_plus:
-  "right_options (plus_game (u, v)) =  zunion (zimage (\<lambda>g. plus_game (g, v)) (right_options u)) (zimage (\<lambda>h. plus_game (u, h)) (right_options v))"
+  "right_options (plus_game u v) =  zunion (zimage (\<lambda>g. plus_game g v) (right_options u)) (zimage (\<lambda>h. plus_game u h) (right_options v))"
   by (subst plus_game.simps, simp)
 
 lemma left_options_neg: "left_options (neg_game u) = zimage neg_game (right_options u)"  
@@ -584,32 +581,32 @@
 lemma right_options_neg: "right_options (neg_game u) = zimage neg_game (left_options u)"
   by (subst neg_game.simps, simp)
   
-lemma plus_game_assoc: "plus_game (plus_game (F, G), H) = plus_game (F, plus_game (G, H))"
+lemma plus_game_assoc: "plus_game (plus_game F G) H = plus_game F (plus_game G H)"
 proof -
   { 
     fix a
-    have "\<forall> F G H. a = [F, G, H] \<longrightarrow> plus_game (plus_game (F, G), H) = plus_game (F, plus_game (G, H))"
+    have "\<forall> F G H. a = [F, G, H] \<longrightarrow> plus_game (plus_game F G) H = plus_game F (plus_game G H)"
     proof (induct a rule: induct_game, (rule impI | rule allI)+)
       case (goal1 x F G H)
-      let ?L = "plus_game (plus_game (F, G), H)"
-      let ?R = "plus_game (F, plus_game (G, H))"
+      let ?L = "plus_game (plus_game F G) H"
+      let ?R = "plus_game F (plus_game G H)"
       note options_plus = left_options_plus right_options_plus
       {
         fix opt
         note hyp = goal1(1)[simplified goal1(2), rule_format] 
-        have F: "zin opt (options F)  \<Longrightarrow> plus_game (plus_game (opt, G), H) = plus_game (opt, plus_game (G, H))"
+        have F: "zin opt (options F)  \<Longrightarrow> plus_game (plus_game opt G) H = plus_game opt (plus_game G H)"
           by (blast intro: hyp lprod_3_3)
-        have G: "zin opt (options G) \<Longrightarrow> plus_game (plus_game (F, opt), H) = plus_game (F, plus_game (opt, H))"
+        have G: "zin opt (options G) \<Longrightarrow> plus_game (plus_game F opt) H = plus_game F (plus_game opt H)"
           by (blast intro: hyp lprod_3_4)
-        have H: "zin opt (options H) \<Longrightarrow> plus_game (plus_game (F, G), opt) = plus_game (F, plus_game (G, opt))" 
+        have H: "zin opt (options H) \<Longrightarrow> plus_game (plus_game F G) opt = plus_game F (plus_game G opt)" 
           by (blast intro: hyp lprod_3_5)
         note F and G and H
       }
       note induct_hyp = this
       have "left_options ?L = left_options ?R \<and> right_options ?L = right_options ?R"
         by (auto simp add: 
-          plus_game.simps[where G="plus_game (F,G)" and H=H]
-          plus_game.simps[where G="F" and H="plus_game (G,H)"] 
+          plus_game.simps[where G="plus_game F G" and H=H]
+          plus_game.simps[where G="F" and H="plus_game G H"] 
           zet_ext_eq zunion zimage_iff options_plus
           induct_hyp left_imp_options right_imp_options)
       then show ?case
@@ -619,7 +616,7 @@
   then show ?thesis by auto
 qed
 
-lemma neg_plus_game: "neg_game (plus_game (G, H)) = plus_game(neg_game G, neg_game H)"
+lemma neg_plus_game: "neg_game (plus_game G H) = plus_game (neg_game G) (neg_game H)"
 proof (induct G H rule: plus_game.induct)
   case (1 G H)
   note opt_ops = 
@@ -627,26 +624,26 @@
     left_options_neg right_options_neg  
   show ?case
     by (auto simp add: opt_ops
-      neg_game.simps[of "plus_game (G,H)"]
+      neg_game.simps[of "plus_game G H"]
       plus_game.simps[of "neg_game G" "neg_game H"]
       Game_ext zet_ext_eq zunion zimage_iff prems)
 qed
 
-lemma eq_game_plus_inverse: "eq_game (plus_game (x, neg_game x)) zero_game"
+lemma eq_game_plus_inverse: "eq_game (plus_game x (neg_game x)) zero_game"
 proof (induct x rule: wf_induct[OF wf_option_of])
   case (goal1 x)
   { fix y
     assume "zin y (options x)"
-    then have "eq_game (plus_game (y, neg_game y)) zero_game"
+    then have "eq_game (plus_game y (neg_game y)) zero_game"
       by (auto simp add: prems)
   }
   note ihyp = this
   {
     fix y
     assume y: "zin y (right_options x)"
-    have "\<not> (ge_game (zero_game, plus_game (y, neg_game x)))"
+    have "\<not> (ge_game (zero_game, plus_game y (neg_game x)))"
       apply (subst ge_game.simps, simp)
-      apply (rule exI[where x="plus_game (y, neg_game y)"])
+      apply (rule exI[where x="plus_game y (neg_game y)"])
       apply (auto simp add: ihyp[of y, simplified y right_imp_options eq_game_def])
       apply (auto simp add: left_options_plus left_options_neg zunion zimage_iff intro: prems)
       done
@@ -655,9 +652,9 @@
   {
     fix y
     assume y: "zin y (left_options x)"
-    have "\<not> (ge_game (zero_game, plus_game (x, neg_game y)))"
+    have "\<not> (ge_game (zero_game, plus_game x (neg_game y)))"
       apply (subst ge_game.simps, simp)
-      apply (rule exI[where x="plus_game (y, neg_game y)"])
+      apply (rule exI[where x="plus_game y (neg_game y)"])
       apply (auto simp add: ihyp[of y, simplified y left_imp_options eq_game_def])
       apply (auto simp add: left_options_plus zunion zimage_iff intro: prems)
       done
@@ -666,9 +663,9 @@
   {
     fix y
     assume y: "zin y (left_options x)"
-    have "\<not> (ge_game (plus_game (y, neg_game x), zero_game))"
+    have "\<not> (ge_game (plus_game y (neg_game x), zero_game))"
       apply (subst ge_game.simps, simp)
-      apply (rule exI[where x="plus_game (y, neg_game y)"])
+      apply (rule exI[where x="plus_game y (neg_game y)"])
       apply (auto simp add: ihyp[of y, simplified y left_imp_options eq_game_def])
       apply (auto simp add: right_options_plus right_options_neg zunion zimage_iff intro: prems)
       done
@@ -677,9 +674,9 @@
   {
     fix y
     assume y: "zin y (right_options x)"
-    have "\<not> (ge_game (plus_game (x, neg_game y), zero_game))"
+    have "\<not> (ge_game (plus_game x (neg_game y), zero_game))"
       apply (subst ge_game.simps, simp)
-      apply (rule exI[where x="plus_game (y, neg_game y)"])
+      apply (rule exI[where x="plus_game y (neg_game y)"])
       apply (auto simp add: ihyp[of y, simplified y right_imp_options eq_game_def])
       apply (auto simp add: right_options_plus zunion zimage_iff intro: prems)
       done
@@ -687,28 +684,28 @@
   note case4 = this
   show ?case
     apply (simp add: eq_game_def)
-    apply (simp add: ge_game.simps[of "plus_game (x, neg_game x)" "zero_game"])
-    apply (simp add: ge_game.simps[of "zero_game" "plus_game (x, neg_game x)"])
+    apply (simp add: ge_game.simps[of "plus_game x (neg_game x)" "zero_game"])
+    apply (simp add: ge_game.simps[of "zero_game" "plus_game x (neg_game x)"])
     apply (simp add: right_options_plus left_options_plus right_options_neg left_options_neg zunion zimage_iff)
     apply (auto simp add: case1 case2 case3 case4)
     done
 qed
 
-lemma ge_plus_game_left: "ge_game (y,z) = ge_game(plus_game (x, y), plus_game (x, z))"
+lemma ge_plus_game_left: "ge_game (y,z) = ge_game (plus_game x y, plus_game x z)"
 proof -
   { fix a
-    have "\<forall> x y z. a = [x,y,z] \<longrightarrow> ge_game (y,z) = ge_game(plus_game (x, y), plus_game (x, z))"
+    have "\<forall> x y z. a = [x,y,z] \<longrightarrow> ge_game (y,z) = ge_game (plus_game x y, plus_game x z)"
     proof (induct a rule: induct_game, (rule impI | rule allI)+)
       case (goal1 a x y z)
       note induct_hyp = goal1(1)[rule_format, simplified goal1(2)]
       { 
-        assume hyp: "ge_game(plus_game (x, y), plus_game (x, z))"
+        assume hyp: "ge_game(plus_game x y, plus_game x z)"
         have "ge_game (y, z)"
         proof -
           { fix yr
             assume yr: "zin yr (right_options y)"
-            from hyp have "\<not> (ge_game (plus_game (x, z), plus_game (x, yr)))"
-              by (auto simp add: ge_game_eq[of "plus_game (x,y)" "plus_game(x,z)"]
+            from hyp have "\<not> (ge_game (plus_game x z, plus_game x yr))"
+              by (auto simp add: ge_game_eq[of "plus_game x y" "plus_game x z"]
                 right_options_plus zunion zimage_iff intro: yr)
             then have "\<not> (ge_game (z, yr))"
               apply (subst induct_hyp[where y="[x, z, yr]", of "x" "z" "yr"])
@@ -718,8 +715,8 @@
           note yr = this
           { fix zl
             assume zl: "zin zl (left_options z)"
-            from hyp have "\<not> (ge_game (plus_game (x, zl), plus_game (x, y)))"
-              by (auto simp add: ge_game_eq[of "plus_game (x,y)" "plus_game(x,z)"]
+            from hyp have "\<not> (ge_game (plus_game x zl, plus_game x y))"
+              by (auto simp add: ge_game_eq[of "plus_game x y" "plus_game x z"]
                 left_options_plus zunion zimage_iff intro: zl)
             then have "\<not> (ge_game (zl, y))"
               apply (subst goal1(1)[rule_format, where y="[x, zl, y]", of "x" "zl" "y"])
@@ -739,11 +736,11 @@
         {
           fix x'
           assume x': "zin x' (right_options x)"
-          assume hyp: "ge_game (plus_game (x, z), plus_game (x', y))"
-          then have n: "\<not> (ge_game (plus_game (x', y), plus_game (x', z)))"
-            by (auto simp add: ge_game_eq[of "plus_game (x,z)" "plus_game (x', y)"] 
+          assume hyp: "ge_game (plus_game x z, plus_game x' y)"
+          then have n: "\<not> (ge_game (plus_game x' y, plus_game x' z))"
+            by (auto simp add: ge_game_eq[of "plus_game x z" "plus_game x' y"] 
               right_options_plus zunion zimage_iff intro: x')
-          have t: "ge_game (plus_game (x', y), plus_game (x', z))"
+          have t: "ge_game (plus_game x' y, plus_game x' z)"
             apply (subst induct_hyp[symmetric])
             apply (auto intro: lprod_3_3 x' yz)
             done
@@ -753,11 +750,11 @@
         {
           fix x'
           assume x': "zin x' (left_options x)"
-          assume hyp: "ge_game (plus_game (x', z), plus_game (x, y))"
-          then have n: "\<not> (ge_game (plus_game (x', y), plus_game (x', z)))"
-            by (auto simp add: ge_game_eq[of "plus_game (x',z)" "plus_game (x, y)"] 
+          assume hyp: "ge_game (plus_game x' z, plus_game x y)"
+          then have n: "\<not> (ge_game (plus_game x' y, plus_game x' z))"
+            by (auto simp add: ge_game_eq[of "plus_game x' z" "plus_game x y"] 
               left_options_plus zunion zimage_iff intro: x')
-          have t: "ge_game (plus_game (x', y), plus_game (x', z))"
+          have t: "ge_game (plus_game x' y, plus_game x' z)"
             apply (subst induct_hyp[symmetric])
             apply (auto intro: lprod_3_3 x' yz)
             done
@@ -767,7 +764,7 @@
         {
           fix y'
           assume y': "zin y' (right_options y)"
-          assume hyp: "ge_game (plus_game(x, z), plus_game (x, y'))"
+          assume hyp: "ge_game (plus_game x z, plus_game x y')"
           then have "ge_game(z, y')"
             apply (subst induct_hyp[of "[x, z, y']" "x" "z" "y'"])
             apply (auto simp add: hyp lprod_3_6 y')
@@ -780,7 +777,7 @@
         {
           fix z'
           assume z': "zin z' (left_options z)"
-          assume hyp: "ge_game (plus_game(x, z'), plus_game (x, y))"
+          assume hyp: "ge_game (plus_game x z', plus_game x y)"
           then have "ge_game(z', y)"
             apply (subst induct_hyp[of "[x, z', y]" "x" "z'" "y"])
             apply (auto simp add: hyp lprod_3_7 z')
@@ -790,7 +787,7 @@
           with z' have "False" by (auto simp add: ge_game_leftright_refl)
         }
         note case4 = this   
-        have "ge_game(plus_game (x, y), plus_game (x, z))"
+        have "ge_game(plus_game x y, plus_game x z)"
           apply (subst ge_game_eq)
           apply (auto simp add: right_options_plus left_options_plus zunion zimage_iff)
           apply (auto intro: case1 case2 case3 case4)
@@ -804,7 +801,7 @@
   then show ?thesis by blast
 qed
 
-lemma ge_plus_game_right: "ge_game (y,z) = ge_game(plus_game (y, x), plus_game (z, x))"
+lemma ge_plus_game_right: "ge_game (y,z) = ge_game(plus_game y x, plus_game z x)"
   by (simp add: ge_plus_game_left plus_game_comm)
 
 lemma ge_neg_game: "ge_game (neg_game x, neg_game y) = ge_game (y, x)"
@@ -865,7 +862,7 @@
   Pg_minus_def: "- G = contents (\<Union> g \<in> Rep_Pg G. {Abs_Pg (eq_game_rel `` {neg_game g})})"
 
 definition
-  Pg_plus_def: "G + H = contents (\<Union> g \<in> Rep_Pg G. \<Union> h \<in> Rep_Pg H. {Abs_Pg (eq_game_rel `` {plus_game (g,h)})})"
+  Pg_plus_def: "G + H = contents (\<Union> g \<in> Rep_Pg G. \<Union> h \<in> Rep_Pg H. {Abs_Pg (eq_game_rel `` {plus_game g h})})"
 
 definition
   Pg_diff_def: "G - H = G + (- (H::Pg))"
@@ -891,14 +888,14 @@
   apply (simp add: eq_game_rel_def)
   done
 
-lemma char_Pg_plus[simp]: "Abs_Pg (eq_game_rel `` {g}) + Abs_Pg (eq_game_rel `` {h}) = Abs_Pg (eq_game_rel `` {plus_game (g, h)})"
+lemma char_Pg_plus[simp]: "Abs_Pg (eq_game_rel `` {g}) + Abs_Pg (eq_game_rel `` {h}) = Abs_Pg (eq_game_rel `` {plus_game g h})"
 proof -
-  have "(\<lambda> g h. {Abs_Pg (eq_game_rel `` {plus_game (g, h)})}) respects2 eq_game_rel" 
+  have "(\<lambda> g h. {Abs_Pg (eq_game_rel `` {plus_game g h})}) respects2 eq_game_rel" 
     apply (simp add: congruent2_def)
     apply (auto simp add: eq_game_rel_def eq_game_def)
-    apply (rule_tac y="plus_game (y1, z2)" in ge_game_trans)
+    apply (rule_tac y="plus_game y1 z2" in ge_game_trans)
     apply (simp add: ge_plus_game_left[symmetric] ge_plus_game_right[symmetric])+
-    apply (rule_tac y="plus_game (z1, y2)" in ge_game_trans)
+    apply (rule_tac y="plus_game z1 y2" in ge_game_trans)
     apply (simp add: ge_plus_game_left[symmetric] ge_plus_game_right[symmetric])+
     done
   then show ?thesis
--- a/src/HOL/ZF/HOLZF.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/ZF/HOLZF.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -6,7 +6,7 @@
 *)
 
 theory HOLZF 
-imports Helper
+imports Main
 begin
 
 typedecl ZF
@@ -298,7 +298,7 @@
   apply (rule_tac x="Fst z" in exI)
   apply (simp add: isOpair_def)
   apply (auto simp add: Fst Snd Opair)
-  apply (rule theI2')
+  apply (rule the1I2)
   apply auto
   apply (drule Fun_implies_PFun)
   apply (drule_tac x="Opair x ya" and y="Opair x yb" in PFun_inj)
@@ -306,7 +306,7 @@
   apply (drule Fun_implies_PFun)
   apply (drule_tac x="Opair x y" and y="Opair x ya" in PFun_inj)
   apply (auto simp add: Fst Snd)
-  apply (rule theI2')
+  apply (rule the1I2)
   apply (auto simp add: Fun_total)
   apply (drule Fun_implies_PFun)
   apply (drule_tac x="Opair a x" and y="Opair a y" in PFun_inj)
--- a/src/HOL/ZF/Helper.thy	Wed Mar 03 15:40:39 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,32 +0,0 @@
-(*  Title:      HOL/ZF/Helper.thy
-    ID:         $Id$
-    Author:     Steven Obua
-
-    Some helpful lemmas that probably will end up elsewhere. 
-*)
-
-theory Helper 
-imports Main
-begin
-
-lemma theI2' : "?! x. P x \<Longrightarrow> (!! x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (THE x. P x)"
-  apply auto
-  apply (subgoal_tac "P (THE x. P x)")
-  apply blast
-  apply (rule theI)
-  apply auto
-  done
-
-lemma in_range_superfluous: "(z \<in> range f & z \<in> (f ` x)) = (z \<in> f ` x)" 
-  by auto
-
-lemma f_x_in_range_f: "f x \<in> range f"
-  by (blast intro: image_eqI)
-
-lemma comp_inj: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (g o f)"
-  by (blast intro: comp_inj_on subset_inj_on)
-
-lemma comp_image_eq: "(g o f) ` x = g ` f ` x"
-  by auto
-  
-end
\ No newline at end of file
--- a/src/HOL/ZF/Zet.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/ZF/Zet.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -35,7 +35,7 @@
   apply (rule_tac x="Repl z (g o (inv_into A f))" in exI)
   apply (simp add: explode_Repl_eq)
   apply (subgoal_tac "explode z = f ` A")
-  apply (simp_all add: comp_image_eq)
+  apply (simp_all add: image_compose)
   done
 
 lemma zet_image_mem:
@@ -56,7 +56,7 @@
     apply (auto simp add: subset injf)
     done
   show ?thesis
-    apply (simp add: zet_def' comp_image_eq[symmetric])
+    apply (simp add: zet_def' image_compose[symmetric])
     apply (rule exI[where x="?w"])
     apply (simp add: injw image_zet_rep Azet)
     done
@@ -108,7 +108,7 @@
 lemma comp_zimage_eq: "zimage g (zimage f A) = zimage (g o f) A"
   apply (simp add: zimage_def)
   apply (subst Abs_zet_inverse)
-  apply (simp_all add: comp_image_eq zet_image_mem Rep_zet)
+  apply (simp_all add: image_compose zet_image_mem Rep_zet)
   done
     
 definition zunion :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> 'a zet" where
@@ -196,7 +196,7 @@
 lemma zimage_id[simp]: "zimage id A = A"
   by (simp add: zet_ext_eq zimage_iff)
 
-lemma zimage_cong[recdef_cong]: "\<lbrakk> M = N; !! x. zin x N \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> zimage f M = zimage g N"
+lemma zimage_cong[recdef_cong, fundef_cong]: "\<lbrakk> M = N; !! x. zin x N \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> zimage f M = zimage g N"
   by (auto simp add: zet_ext_eq zimage_iff)
 
 end
--- a/src/HOL/ex/Gauge_Integration.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/ex/Gauge_Integration.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -28,7 +28,7 @@
 
 definition
   gauge :: "[real set, real => real] => bool" where
-  [code del]:"gauge E g = (\<forall>x\<in>E. 0 < g(x))"
+  [code del]: "gauge E g = (\<forall>x\<in>E. 0 < g(x))"
 
 
 subsection {* Gauge-fine divisions *}
@@ -63,14 +63,20 @@
 apply (drule fine_imp_le, simp)
 done
 
-lemma empty_fine_imp_eq: "\<lbrakk>fine \<delta> (a, b) D; D = []\<rbrakk> \<Longrightarrow> a = b"
-by (induct set: fine, simp_all)
+lemma fine_Nil_iff: "fine \<delta> (a, b) [] \<longleftrightarrow> a = b"
+by (auto elim: fine.cases intro: fine.intros)
 
-lemma fine_eq: "fine \<delta> (a, b) D \<Longrightarrow> a = b \<longleftrightarrow> D = []"
-apply (cases "D = []")
-apply (drule (1) empty_fine_imp_eq, simp)
-apply (drule (1) nonempty_fine_imp_less, simp)
-done
+lemma fine_same_iff: "fine \<delta> (a, a) D \<longleftrightarrow> D = []"
+proof
+  assume "fine \<delta> (a, a) D" thus "D = []"
+    by (metis nonempty_fine_imp_less less_irrefl)
+next
+  assume "D = []" thus "fine \<delta> (a, a) D"
+    by (simp add: fine_Nil)
+qed
+
+lemma empty_fine_imp_eq: "\<lbrakk>fine \<delta> (a, b) D; D = []\<rbrakk> \<Longrightarrow> a = b"
+by (simp add: fine_Nil_iff)
 
 lemma mem_fine:
   "\<lbrakk>fine \<delta> (a, b) D; (u, x, v) \<in> set D\<rbrakk> \<Longrightarrow> u < v \<and> u \<le> x \<and> x \<le> v"
@@ -174,7 +180,7 @@
 
 lemma fine_\<delta>_expand:
   assumes "fine \<delta> (a,b) D"
-  and "\<And> x. \<lbrakk> a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow> \<delta> x \<le> \<delta>' x"
+  and "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<delta> x \<le> \<delta>' x"
   shows "fine \<delta>' (a,b) D"
 using assms proof induct
   case 1 show ?case by (rule fine_Nil)
@@ -258,6 +264,22 @@
                                (\<forall>D. fine \<delta> (a,b) D -->
                                          \<bar>rsum D f - k\<bar> < e)))"
 
+lemma Integral_eq:
+  "Integral (a, b) f k \<longleftrightarrow>
+    (\<forall>e>0. \<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a,b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e))"
+unfolding Integral_def by simp
+
+lemma IntegralI:
+  assumes "\<And>e. 0 < e \<Longrightarrow>
+    \<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e)"
+  shows "Integral (a, b) f k"
+using assms unfolding Integral_def by auto
+
+lemma IntegralE:
+  assumes "Integral (a, b) f k" and "0 < e"
+  obtains \<delta> where "gauge {a..b} \<delta>" and "\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e"
+using assms unfolding Integral_def by auto
+
 lemma Integral_def2:
   "Integral = (%(a,b) f k. \<forall>e>0. (\<exists>\<delta>. gauge {a..b} \<delta> &
                                (\<forall>D. fine \<delta> (a,b) D -->
@@ -272,60 +294,69 @@
 text{*The integral is unique if it exists*}
 
 lemma Integral_unique:
-    "[| a \<le> b; Integral(a,b) f k1; Integral(a,b) f k2 |] ==> k1 = k2"
-apply (simp add: Integral_def)
-apply (drule_tac x = "\<bar>k1 - k2\<bar> /2" in spec)+
-apply auto
-apply (drule gauge_min, assumption)
-apply (drule_tac \<delta> = "%x. min (\<delta> x) (\<delta>' x)"
-       in fine_exists, assumption, auto)
-apply (drule fine_min)
-apply (drule spec)+
-apply auto
-apply (subgoal_tac "\<bar>(rsum D f - k2) - (rsum D f - k1)\<bar> < \<bar>k1 - k2\<bar>")
-apply arith
-apply (drule add_strict_mono, assumption)
-apply (auto simp only: left_distrib [symmetric] mult_2_right [symmetric] 
-                mult_less_cancel_right)
+  assumes le: "a \<le> b"
+  assumes 1: "Integral (a, b) f k1"
+  assumes 2: "Integral (a, b) f k2"
+  shows "k1 = k2"
+proof (rule ccontr)
+  assume "k1 \<noteq> k2"
+  hence e: "0 < \<bar>k1 - k2\<bar> / 2" by simp
+  obtain d1 where "gauge {a..b} d1" and
+    d1: "\<forall>D. fine d1 (a, b) D \<longrightarrow> \<bar>rsum D f - k1\<bar> < \<bar>k1 - k2\<bar> / 2"
+    using 1 e by (rule IntegralE)
+  obtain d2 where "gauge {a..b} d2" and
+    d2: "\<forall>D. fine d2 (a, b) D \<longrightarrow> \<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2"
+    using 2 e by (rule IntegralE)
+  have "gauge {a..b} (\<lambda>x. min (d1 x) (d2 x))"
+    using `gauge {a..b} d1` and `gauge {a..b} d2`
+    by (rule gauge_min)
+  then obtain D where "fine (\<lambda>x. min (d1 x) (d2 x)) (a, b) D"
+    using fine_exists [OF le] by fast
+  hence "fine d1 (a, b) D" and "fine d2 (a, b) D"
+    by (auto dest: fine_min)
+  hence "\<bar>rsum D f - k1\<bar> < \<bar>k1 - k2\<bar> / 2" and "\<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2"
+    using d1 d2 by simp_all
+  hence "\<bar>rsum D f - k1\<bar> + \<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2 + \<bar>k1 - k2\<bar> / 2"
+    by (rule add_strict_mono)
+  thus False by auto
+qed
+
+lemma Integral_zero: "Integral(a,a) f 0"
+apply (rule IntegralI)
+apply (rule_tac x = "\<lambda>x. 1" in exI)
+apply (simp add: fine_same_iff gauge_def)
 done
 
-lemma Integral_zero [simp]: "Integral(a,a) f 0"
-apply (auto simp add: Integral_def)
-apply (rule_tac x = "%x. 1" in exI)
-apply (auto dest: fine_eq simp add: gauge_def rsum_def)
+lemma Integral_same_iff [simp]: "Integral (a, a) f k \<longleftrightarrow> k = 0"
+  by (auto intro: Integral_zero Integral_unique)
+
+lemma Integral_zero_fun: "Integral (a,b) (\<lambda>x. 0) 0"
+apply (rule IntegralI)
+apply (rule_tac x="\<lambda>x. 1" in exI, simp add: gauge_def)
 done
 
 lemma fine_rsum_const: "fine \<delta> (a,b) D \<Longrightarrow> rsum D (\<lambda>x. c) = (c * (b - a))"
 unfolding rsum_def
 by (induct set: fine, auto simp add: algebra_simps)
 
-lemma Integral_eq_diff_bounds: "a \<le> b ==> Integral(a,b) (%x. 1) (b - a)"
+lemma Integral_mult_const: "a \<le> b \<Longrightarrow> Integral(a,b) (\<lambda>x. c) (c * (b - a))"
 apply (cases "a = b", simp)
-apply (simp add: Integral_def, clarify)
-apply (rule_tac x = "%x. b - a" in exI)
+apply (rule IntegralI)
+apply (rule_tac x = "\<lambda>x. b - a" in exI)
 apply (rule conjI, simp add: gauge_def)
 apply (clarify)
 apply (subst fine_rsum_const, assumption, simp)
 done
 
-lemma Integral_mult_const: "a \<le> b ==> Integral(a,b) (%x. c)  (c*(b - a))"
-apply (cases "a = b", simp)
-apply (simp add: Integral_def, clarify)
-apply (rule_tac x = "%x. b - a" in exI)
-apply (rule conjI, simp add: gauge_def)
-apply (clarify)
-apply (subst fine_rsum_const, assumption, simp)
-done
+lemma Integral_eq_diff_bounds: "a \<le> b \<Longrightarrow> Integral(a,b) (\<lambda>x. 1) (b - a)"
+  using Integral_mult_const [of a b 1] by simp
 
 lemma Integral_mult:
      "[| a \<le> b; Integral(a,b) f k |] ==> Integral(a,b) (%x. c * f x) (c * k)"
-apply (auto simp add: order_le_less
-            dest: Integral_unique [OF order_refl Integral_zero])
-apply (auto simp add: Integral_def setsum_right_distrib[symmetric] mult_assoc)
-apply (case_tac "c = 0", force)
-apply (drule_tac x = "e/abs c" in spec)
-apply (simp add: divide_pos_pos)
-apply clarify
+apply (auto simp add: order_le_less)
+apply (cases "c = 0", simp add: Integral_zero_fun)
+apply (rule IntegralI)
+apply (erule_tac e="e / \<bar>c\<bar>" in IntegralE, simp add: divide_pos_pos)
 apply (rule_tac x="\<delta>" in exI, clarify)
 apply (drule_tac x="D" in spec, clarify)
 apply (simp add: pos_less_divide_eq abs_mult [symmetric]
@@ -337,22 +368,20 @@
   assumes "Integral (b, c) f x2"
   assumes "a \<le> b" and "b \<le> c"
   shows "Integral (a, c) f (x1 + x2)"
-proof (cases "a < b \<and> b < c", simp only: Integral_def split_conv, rule allI, rule impI)
+proof (cases "a < b \<and> b < c", rule IntegralI)
   fix \<epsilon> :: real assume "0 < \<epsilon>"
   hence "0 < \<epsilon> / 2" by auto
 
   assume "a < b \<and> b < c"
   hence "a < b" and "b < c" by auto
 
-  from `Integral (a, b) f x1`[simplified Integral_def split_conv,
-                              rule_format, OF `0 < \<epsilon>/2`]
   obtain \<delta>1 where \<delta>1_gauge: "gauge {a..b} \<delta>1"
-    and I1: "\<And> D. fine \<delta>1 (a,b) D \<Longrightarrow> \<bar> rsum D f - x1 \<bar> < (\<epsilon> / 2)" by auto
+    and I1: "\<And> D. fine \<delta>1 (a,b) D \<Longrightarrow> \<bar> rsum D f - x1 \<bar> < (\<epsilon> / 2)"
+    using IntegralE [OF `Integral (a, b) f x1` `0 < \<epsilon>/2`] by auto
 
-  from `Integral (b, c) f x2`[simplified Integral_def split_conv,
-                              rule_format, OF `0 < \<epsilon>/2`]
   obtain \<delta>2 where \<delta>2_gauge: "gauge {b..c} \<delta>2"
-    and I2: "\<And> D. fine \<delta>2 (b,c) D \<Longrightarrow> \<bar> rsum D f - x2 \<bar> < (\<epsilon> / 2)" by auto
+    and I2: "\<And> D. fine \<delta>2 (b,c) D \<Longrightarrow> \<bar> rsum D f - x2 \<bar> < (\<epsilon> / 2)"
+    using IntegralE [OF `Integral (b, c) f x2` `0 < \<epsilon>/2`] by auto
 
   def \<delta> \<equiv> "\<lambda> x. if x < b then min (\<delta>1 x) (b - x)
            else if x = b then min (\<delta>1 b) (\<delta>2 b)
@@ -360,6 +389,7 @@
 
   have "gauge {a..c} \<delta>"
     using \<delta>1_gauge \<delta>2_gauge unfolding \<delta>_def gauge_def by auto
+
   moreover {
     fix D :: "(real \<times> real \<times> real) list"
     assume fine: "fine \<delta> (a,c) D"
@@ -462,12 +492,12 @@
   thus ?thesis
   proof (rule disjE)
     assume "a = b" hence "x1 = 0"
-      using `Integral (a, b) f x1` Integral_zero Integral_unique[of a b] by auto
-    thus ?thesis using `a = b` `Integral (b, c) f x2` by auto
+      using `Integral (a, b) f x1` by simp
+    thus ?thesis using `a = b` `Integral (b, c) f x2` by simp
   next
     assume "b = c" hence "x2 = 0"
-      using `Integral (b, c) f x2` Integral_zero Integral_unique[of b c] by auto
-    thus ?thesis using `b = c` `Integral (a, b) f x1` by auto
+      using `Integral (b, c) f x2` by simp
+    thus ?thesis using `b = c` `Integral (a, b) f x1` by simp
   qed
 qed
 
@@ -486,7 +516,7 @@
 apply (rule_tac z1 = "\<bar>inverse (z - x)\<bar>" 
        in real_mult_le_cancel_iff2 [THEN iffD1])
  apply simp
-apply (simp del: abs_inverse abs_mult add: abs_mult [symmetric]
+apply (simp del: abs_inverse add: abs_mult [symmetric]
           mult_assoc [symmetric])
 apply (subgoal_tac "inverse (z - x) * (f z - f x - f' x * (z - x)) 
                     = (f z - f x) / (z - x) - f' x")
@@ -543,31 +573,51 @@
 qed
 
 lemma fundamental_theorem_of_calculus:
-  "\<lbrakk> a \<le> b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) \<rbrakk>
-             \<Longrightarrow> Integral(a,b) f' (f(b) - f(a))"
- apply (drule order_le_imp_less_or_eq, auto)
- apply (auto simp add: Integral_def2)
- apply (drule_tac e = "e / (b - a)" in lemma_straddle)
-  apply (simp add: divide_pos_pos)
- apply clarify
- apply (rule_tac x="g" in exI, clarify)
- apply (clarsimp simp add: rsum_def)
- apply (frule fine_listsum_eq_diff [where f=f])
- apply (erule subst)
- apply (subst listsum_subtractf [symmetric])
- apply (rule listsum_abs [THEN order_trans])
- apply (subst map_map [unfolded o_def])
- apply (subgoal_tac "e = (\<Sum>(u, x, v)\<leftarrow>D. (e / (b - a)) * (v - u))")
-  apply (erule ssubst)
-  apply (simp add: abs_minus_commute)
-  apply (rule listsum_mono)
-  apply (clarify, rename_tac u x v)
-  apply ((drule spec)+, erule mp)
-  apply (simp add: mem_fine mem_fine2 mem_fine3)
- apply (frule fine_listsum_eq_diff [where f="\<lambda>x. x"])
- apply (simp only: split_def)
- apply (subst listsum_const_mult)
- apply simp
-done
+  assumes "a \<le> b"
+  assumes f': "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> DERIV f x :> f'(x)"
+  shows "Integral (a, b) f' (f(b) - f(a))"
+proof (cases "a = b")
+  assume "a = b" thus ?thesis by simp
+next
+  assume "a \<noteq> b" with `a \<le> b` have "a < b" by simp
+  show ?thesis
+  proof (simp add: Integral_def2, clarify)
+    fix e :: real assume "0 < e"
+    with `a < b` have "0 < e / (b - a)" by (simp add: divide_pos_pos)
+
+    from lemma_straddle [OF f' this]
+    obtain \<delta> where "gauge {a..b} \<delta>"
+      and \<delta>: "\<And>x u v. \<lbrakk>a \<le> u; u \<le> x; x \<le> v; v \<le> b; v - u < \<delta> x\<rbrakk> \<Longrightarrow>
+           \<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u) / (b - a)" by auto
+
+    have "\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f' - (f b - f a)\<bar> \<le> e"
+    proof (clarify)
+      fix D assume D: "fine \<delta> (a, b) D"
+      hence "(\<Sum>(u, x, v)\<leftarrow>D. f v - f u) = f b - f a"
+        by (rule fine_listsum_eq_diff)
+      hence "\<bar>rsum D f' - (f b - f a)\<bar> = \<bar>rsum D f' - (\<Sum>(u, x, v)\<leftarrow>D. f v - f u)\<bar>"
+        by simp
+      also have "\<dots> = \<bar>(\<Sum>(u, x, v)\<leftarrow>D. f v - f u) - rsum D f'\<bar>"
+        by (rule abs_minus_commute)
+      also have "\<dots> = \<bar>\<Sum>(u, x, v)\<leftarrow>D. (f v - f u) - f' x * (v - u)\<bar>"
+        by (simp only: rsum_def listsum_subtractf split_def)
+      also have "\<dots> \<le> (\<Sum>(u, x, v)\<leftarrow>D. \<bar>(f v - f u) - f' x * (v - u)\<bar>)"
+        by (rule ord_le_eq_trans [OF listsum_abs], simp add: o_def split_def)
+      also have "\<dots> \<le> (\<Sum>(u, x, v)\<leftarrow>D. (e / (b - a)) * (v - u))"
+        apply (rule listsum_mono, clarify, rename_tac u x v)
+        using D apply (simp add: \<delta> mem_fine mem_fine2 mem_fine3)
+        done
+      also have "\<dots> = e"
+        using fine_listsum_eq_diff [OF D, where f="\<lambda>x. x"]
+        unfolding split_def listsum_const_mult
+        using `a < b` by simp
+      finally show "\<bar>rsum D f' - (f b - f a)\<bar> \<le> e" .
+    qed
+
+    with `gauge {a..b} \<delta>`
+    show "\<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f' - (f b - f a)\<bar> \<le> e)"
+      by auto
+  qed
+qed
 
 end
--- a/src/HOL/ex/Predicate_Compile_Quickcheck.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOL/ex/Predicate_Compile_Quickcheck.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -7,9 +7,9 @@
 uses "../Tools/Predicate_Compile/predicate_compile_quickcheck.ML"
 begin
 
-setup {* Quickcheck.add_generator ("predicate_compile_wo_ff", Predicate_Compile_Quickcheck.quickcheck_compile_term false true) *}
-setup {* Quickcheck.add_generator ("predicate_compile_ff_fs", Predicate_Compile_Quickcheck.quickcheck_compile_term true true) *}
-setup {* Quickcheck.add_generator ("predicate_compile_ff_nofs", Predicate_Compile_Quickcheck.quickcheck_compile_term true false) *}
+setup {* Quickcheck.add_generator ("predicate_compile_wo_ff", Predicate_Compile_Quickcheck.quickcheck_compile_term false true 8) *}
+setup {* Quickcheck.add_generator ("predicate_compile_ff_fs", Predicate_Compile_Quickcheck.quickcheck_compile_term true true 8) *}
+setup {* Quickcheck.add_generator ("predicate_compile_ff_nofs", Predicate_Compile_Quickcheck.quickcheck_compile_term true false 8) *}
 
 (*
 datatype alphabet = a | b
--- a/src/HOLCF/Bifinite.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Bifinite.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -295,7 +295,7 @@
     by (rule finite_range_imp_finite_fixes)
 qed
 
-instantiation "->" :: (profinite, profinite) profinite
+instantiation cfun :: (profinite, profinite) profinite
 begin
 
 definition
@@ -325,7 +325,7 @@
 
 end
 
-instance "->" :: (profinite, bifinite) bifinite ..
+instance cfun :: (profinite, bifinite) bifinite ..
 
 lemma approx_cfun: "approx n\<cdot>f\<cdot>x = approx n\<cdot>(f\<cdot>(approx n\<cdot>x))"
 by (simp add: approx_cfun_def)
--- a/src/HOLCF/Cfun.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Cfun.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -20,11 +20,11 @@
 lemma adm_cont: "adm cont"
 by (rule admI, rule cont_lub_fun)
 
-cpodef (CFun)  ('a, 'b) "->" (infixr "->" 0) = "{f::'a => 'b. cont f}"
+cpodef (CFun)  ('a, 'b) cfun (infixr "->" 0) = "{f::'a => 'b. cont f}"
 by (simp_all add: Ex_cont adm_cont)
 
 type_notation (xsymbols)
-  "->"  ("(_ \<rightarrow>/ _)" [1, 0] 0)
+  cfun  ("(_ \<rightarrow>/ _)" [1, 0] 0)
 
 notation
   Rep_CFun  ("(_$/_)" [999,1000] 999)
@@ -103,16 +103,16 @@
 lemma UU_CFun: "\<bottom> \<in> CFun"
 by (simp add: CFun_def inst_fun_pcpo cont_const)
 
-instance "->" :: (finite_po, finite_po) finite_po
+instance cfun :: (finite_po, finite_po) finite_po
 by (rule typedef_finite_po [OF type_definition_CFun])
 
-instance "->" :: (finite_po, chfin) chfin
+instance cfun :: (finite_po, chfin) chfin
 by (rule typedef_chfin [OF type_definition_CFun below_CFun_def])
 
-instance "->" :: (cpo, discrete_cpo) discrete_cpo
+instance cfun :: (cpo, discrete_cpo) discrete_cpo
 by intro_classes (simp add: below_CFun_def Rep_CFun_inject)
 
-instance "->" :: (cpo, pcpo) pcpo
+instance cfun :: (cpo, pcpo) pcpo
 by (rule typedef_pcpo [OF type_definition_CFun below_CFun_def UU_CFun])
 
 lemmas Rep_CFun_strict =
--- a/src/HOLCF/Domain.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Domain.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -9,8 +9,8 @@
 uses
   ("Tools/cont_consts.ML")
   ("Tools/cont_proc.ML")
+  ("Tools/Domain/domain_constructors.ML")
   ("Tools/Domain/domain_library.ML")
-  ("Tools/Domain/domain_syntax.ML")
   ("Tools/Domain/domain_axioms.ML")
   ("Tools/Domain/domain_theorems.ML")
   ("Tools/Domain/domain_extender.ML")
@@ -86,7 +86,10 @@
 lemma rep_defined_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)"
   by (rule iso.abs_defined_iff [OF iso.swap]) (rule iso_axioms)
 
-lemma (in iso) compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x"
+lemma casedist_rule: "rep\<cdot>x = \<bottom> \<or> P \<Longrightarrow> x = \<bottom> \<or> P"
+  by (simp add: rep_defined_iff)
+
+lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x"
 proof (unfold compact_def)
   assume "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> y)"
   with cont_Rep_CFun2
@@ -228,11 +231,50 @@
 lemmas con_eq_iff_rules =
   sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_defined_iff_rules
 
+lemmas sel_strict_rules =
+  cfcomp2 sscase1 sfst_strict ssnd_strict fup1
+
+lemma sel_app_extra_rules:
+  "sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot>x) = \<bottom>"
+  "sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinl\<cdot>x) = x"
+  "sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinl\<cdot>x) = \<bottom>"
+  "sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinr\<cdot>x) = x"
+  "fup\<cdot>ID\<cdot>(up\<cdot>x) = x"
+by (cases "x = \<bottom>", simp, simp)+
+
+lemmas sel_app_rules =
+  sel_strict_rules sel_app_extra_rules
+  ssnd_spair sfst_spair up_defined spair_defined
+
+lemmas sel_defined_iff_rules =
+  cfcomp2 sfst_defined_iff ssnd_defined_iff
+
+lemmas take_con_rules =
+  ID1 ssum_map_sinl' ssum_map_sinr' ssum_map_strict
+  sprod_map_spair' sprod_map_strict u_map_up u_map_strict
+
+lemma lub_ID_take_lemma:
+  assumes "chain t" and "(\<Squnion>n. t n) = ID"
+  assumes "\<And>n. t n\<cdot>x = t n\<cdot>y" shows "x = y"
+proof -
+  have "(\<Squnion>n. t n\<cdot>x) = (\<Squnion>n. t n\<cdot>y)"
+    using assms(3) by simp
+  then have "(\<Squnion>n. t n)\<cdot>x = (\<Squnion>n. t n)\<cdot>y"
+    using assms(1) by (simp add: lub_distribs)
+  then show "x = y"
+    using assms(2) by simp
+qed
+
+lemma lub_ID_reach:
+  assumes "chain t" and "(\<Squnion>n. t n) = ID"
+  shows "(\<Squnion>n. t n\<cdot>x) = x"
+using assms by (simp add: lub_distribs)
+
 use "Tools/cont_consts.ML"
 use "Tools/cont_proc.ML"
 use "Tools/Domain/domain_library.ML"
-use "Tools/Domain/domain_syntax.ML"
 use "Tools/Domain/domain_axioms.ML"
+use "Tools/Domain/domain_constructors.ML"
 use "Tools/Domain/domain_theorems.ML"
 use "Tools/Domain/domain_extender.ML"
 
--- a/src/HOLCF/FOCUS/Fstream.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/FOCUS/Fstream.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -83,7 +83,7 @@
 by (simp add: fscons_def2)
 
 lemma fstream_prefix: "a~> s << t ==> ? tt. t = a~> tt &  s << tt"
-apply (rule_tac x="t" in stream.casedist)
+apply (cases t)
 apply (cut_tac fscons_not_empty)
 apply (fast dest: eq_UU_iff [THEN iffD2])
 apply (simp add: fscons_def2)
--- a/src/HOLCF/Fixrec.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Fixrec.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -6,7 +6,9 @@
 
 theory Fixrec
 imports Sprod Ssum Up One Tr Fix
-uses ("Tools/fixrec.ML")
+uses
+  ("Tools/holcf_library.ML")
+  ("Tools/fixrec.ML")
 begin
 
 subsection {* Maybe monad type *}
@@ -265,7 +267,7 @@
 *}
 
 translations
-  "x" <= "_match Fixrec.return (_variable x)"
+  "x" <= "_match (CONST Fixrec.return) (_variable x)"
 
 
 subsection {* Pattern combinators for data constructors *}
@@ -603,6 +605,7 @@
 
 subsection {* Initializing the fixrec package *}
 
+use "Tools/holcf_library.ML"
 use "Tools/fixrec.ML"
 
 setup {* Fixrec.setup *}
--- a/src/HOLCF/HOLCF.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/HOLCF.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -6,8 +6,10 @@
 
 theory HOLCF
 imports
-  Domain ConvexPD Algebraic Universal Sum_Cpo Main
-  Representable
+  Main
+  Domain
+  Powerdomains
+  Sum_Cpo
 uses
   "holcf_logic.ML"
   "Tools/adm_tac.ML"
--- a/src/HOLCF/IOA/meta_theory/Seq.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/IOA/meta_theory/Seq.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -191,7 +191,7 @@
 by simp
 
 lemma nil_less_is_nil: "nil<<x ==> nil=x"
-apply (rule_tac x="x" in seq.casedist)
+apply (cases x)
 apply simp
 apply simp
 apply simp
@@ -286,8 +286,8 @@
 
 lemma Finite_upward: "\<lbrakk>Finite x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> Finite y"
 apply (induct arbitrary: y set: Finite)
-apply (rule_tac x=y in seq.casedist, simp, simp, simp)
-apply (rule_tac x=y in seq.casedist, simp, simp)
+apply (case_tac y, simp, simp, simp)
+apply (case_tac y, simp, simp)
 apply simp
 done
 
--- a/src/HOLCF/IOA/meta_theory/Sequence.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/IOA/meta_theory/Sequence.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -163,8 +163,7 @@
 
 lemma Last_cons: "Last$(x>>xs)= (if xs=nil then Def x else Last$xs)"
 apply (simp add: Last_def Consq_def)
-apply (rule_tac x="xs" in seq.casedist)
-apply simp
+apply (cases xs)
 apply simp_all
 done
 
@@ -208,7 +207,7 @@
 lemma Zip_UU2: "x~=nil ==> Zip$x$UU =UU"
 apply (subst Zip_unfold)
 apply simp
-apply (rule_tac x="x" in seq.casedist)
+apply (cases x)
 apply simp_all
 done
 
@@ -902,15 +901,10 @@
   shows "s1<<s2"
 apply (rule_tac t="s1" in seq.reach [THEN subst])
 apply (rule_tac t="s2" in seq.reach [THEN subst])
-apply (rule fix_def2 [THEN ssubst])
-apply (subst contlub_cfun_fun)
-apply (rule chain_iterate)
-apply (subst contlub_cfun_fun)
-apply (rule chain_iterate)
 apply (rule lub_mono)
-apply (rule chain_iterate [THEN ch2ch_Rep_CFunL])
-apply (rule chain_iterate [THEN ch2ch_Rep_CFunL])
-apply (rule prems [unfolded seq.take_def])
+apply (rule seq.chain_take [THEN ch2ch_Rep_CFunL])
+apply (rule seq.chain_take [THEN ch2ch_Rep_CFunL])
+apply (rule assms)
 done
 
 
--- a/src/HOLCF/IsaMakefile	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/IsaMakefile	Wed Mar 03 16:43:55 2010 +0100
@@ -51,6 +51,7 @@
   Pcpodef.thy \
   Pcpo.thy \
   Porder.thy \
+  Powerdomains.thy \
   Product_Cpo.thy \
   Representable.thy \
   Sprod.thy \
@@ -63,11 +64,13 @@
   Tools/adm_tac.ML \
   Tools/cont_consts.ML \
   Tools/cont_proc.ML \
+  Tools/holcf_library.ML \
   Tools/Domain/domain_extender.ML \
   Tools/Domain/domain_axioms.ML \
+  Tools/Domain/domain_constructors.ML \
   Tools/Domain/domain_isomorphism.ML \
   Tools/Domain/domain_library.ML \
-  Tools/Domain/domain_syntax.ML \
+  Tools/Domain/domain_take_proofs.ML \
   Tools/Domain/domain_theorems.ML \
   Tools/fixrec.ML \
   Tools/pcpodef.ML \
--- a/src/HOLCF/Pcpo.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Pcpo.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -91,6 +91,10 @@
     \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
   by (simp only: expand_fun_eq [symmetric])
 
+lemma lub_eq:
+  "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
+  by simp
+
 text {* more results about mono and = of lubs of chains *}
 
 lemma lub_mono2:
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Powerdomains.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -0,0 +1,313 @@
+(*  Title:      HOLCF/Powerdomains.thy
+    Author:     Brian Huffman
+*)
+
+header {* Powerdomains *}
+
+theory Powerdomains
+imports Representable ConvexPD
+begin
+
+subsection {* Powerdomains are representable *}
+
+text "Upper powerdomain of a representable type is representable."
+
+instantiation upper_pd :: (rep) rep
+begin
+
+definition emb_upper_pd_def: "emb = udom_emb oo upper_map\<cdot>emb"
+definition prj_upper_pd_def: "prj = upper_map\<cdot>prj oo udom_prj"
+
+instance
+ apply (intro_classes, unfold emb_upper_pd_def prj_upper_pd_def)
+ apply (intro ep_pair_comp ep_pair_upper_map ep_pair_emb_prj ep_pair_udom)
+done
+
+end
+
+text "Lower powerdomain of a representable type is representable."
+
+instantiation lower_pd :: (rep) rep
+begin
+
+definition emb_lower_pd_def: "emb = udom_emb oo lower_map\<cdot>emb"
+definition prj_lower_pd_def: "prj = lower_map\<cdot>prj oo udom_prj"
+
+instance
+ apply (intro_classes, unfold emb_lower_pd_def prj_lower_pd_def)
+ apply (intro ep_pair_comp ep_pair_lower_map ep_pair_emb_prj ep_pair_udom)
+done
+
+end
+
+text "Convex powerdomain of a representable type is representable."
+
+instantiation convex_pd :: (rep) rep
+begin
+
+definition emb_convex_pd_def: "emb = udom_emb oo convex_map\<cdot>emb"
+definition prj_convex_pd_def: "prj = convex_map\<cdot>prj oo udom_prj"
+
+instance
+ apply (intro_classes, unfold emb_convex_pd_def prj_convex_pd_def)
+ apply (intro ep_pair_comp ep_pair_convex_map ep_pair_emb_prj ep_pair_udom)
+done
+
+end
+
+subsection {* Finite deflation lemmas *}
+
+text "TODO: move these lemmas somewhere else"
+
+lemma finite_compact_range_imp_finite_range:
+  fixes d :: "'a::profinite \<rightarrow> 'b::cpo"
+  assumes "finite ((\<lambda>x. d\<cdot>x) ` {x. compact x})"
+  shows "finite (range (\<lambda>x. d\<cdot>x))"
+proof (rule finite_subset [OF _ prems])
+  {
+    fix x :: 'a
+    have "range (\<lambda>i. d\<cdot>(approx i\<cdot>x)) \<subseteq> (\<lambda>x. d\<cdot>x) ` {x. compact x}"
+      by auto
+    hence "finite (range (\<lambda>i. d\<cdot>(approx i\<cdot>x)))"
+      using prems by (rule finite_subset)
+    hence "finite_chain (\<lambda>i. d\<cdot>(approx i\<cdot>x))"
+      by (simp add: finite_range_imp_finch)
+    hence "\<exists>i. (\<Squnion>i. d\<cdot>(approx i\<cdot>x)) = d\<cdot>(approx i\<cdot>x)"
+      by (simp add: finite_chain_def maxinch_is_thelub)
+    hence "\<exists>i. d\<cdot>x = d\<cdot>(approx i\<cdot>x)"
+      by (simp add: lub_distribs)
+    hence "d\<cdot>x \<in> (\<lambda>x. d\<cdot>x) ` {x. compact x}"
+      by auto
+  }
+  thus "range (\<lambda>x. d\<cdot>x) \<subseteq> (\<lambda>x. d\<cdot>x) ` {x. compact x}"
+    by clarsimp
+qed
+
+lemma finite_deflation_upper_map:
+  assumes "finite_deflation d" shows "finite_deflation (upper_map\<cdot>d)"
+proof (intro finite_deflation.intro finite_deflation_axioms.intro)
+  interpret d: finite_deflation d by fact
+  have "deflation d" by fact
+  thus "deflation (upper_map\<cdot>d)" by (rule deflation_upper_map)
+  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
+  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
+  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
+  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
+  hence "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
+  hence "finite ((\<lambda>xs. upper_map\<cdot>d\<cdot>xs) ` range upper_principal)"
+    apply (rule finite_subset [COMP swap_prems_rl])
+    apply (clarsimp, rename_tac t)
+    apply (induct_tac t rule: pd_basis_induct)
+    apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit)
+    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDUnit)
+    apply (rule image_eqI)
+    apply (erule sym)
+    apply simp
+    apply (rule exI)
+    apply (rule Abs_compact_basis_inverse [symmetric])
+    apply (simp add: d.compact)
+    apply (simp only: upper_plus_principal [symmetric] upper_map_plus)
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDPlus)
+    done
+  moreover have "{xs::'a upper_pd. compact xs} = range upper_principal"
+    by (auto dest: upper_pd.compact_imp_principal)
+  ultimately have "finite ((\<lambda>xs. upper_map\<cdot>d\<cdot>xs) ` {xs::'a upper_pd. compact xs})"
+    by simp
+  hence "finite (range (\<lambda>xs. upper_map\<cdot>d\<cdot>xs))"
+    by (rule finite_compact_range_imp_finite_range)
+  thus "finite {xs. upper_map\<cdot>d\<cdot>xs = xs}"
+    by (rule finite_range_imp_finite_fixes)
+qed
+
+lemma finite_deflation_lower_map:
+  assumes "finite_deflation d" shows "finite_deflation (lower_map\<cdot>d)"
+proof (intro finite_deflation.intro finite_deflation_axioms.intro)
+  interpret d: finite_deflation d by fact
+  have "deflation d" by fact
+  thus "deflation (lower_map\<cdot>d)" by (rule deflation_lower_map)
+  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
+  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
+  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
+  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
+  hence "finite (lower_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
+  hence "finite ((\<lambda>xs. lower_map\<cdot>d\<cdot>xs) ` range lower_principal)"
+    apply (rule finite_subset [COMP swap_prems_rl])
+    apply (clarsimp, rename_tac t)
+    apply (induct_tac t rule: pd_basis_induct)
+    apply (simp only: lower_unit_Rep_compact_basis [symmetric] lower_map_unit)
+    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDUnit)
+    apply (rule image_eqI)
+    apply (erule sym)
+    apply simp
+    apply (rule exI)
+    apply (rule Abs_compact_basis_inverse [symmetric])
+    apply (simp add: d.compact)
+    apply (simp only: lower_plus_principal [symmetric] lower_map_plus)
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDPlus)
+    done
+  moreover have "{xs::'a lower_pd. compact xs} = range lower_principal"
+    by (auto dest: lower_pd.compact_imp_principal)
+  ultimately have "finite ((\<lambda>xs. lower_map\<cdot>d\<cdot>xs) ` {xs::'a lower_pd. compact xs})"
+    by simp
+  hence "finite (range (\<lambda>xs. lower_map\<cdot>d\<cdot>xs))"
+    by (rule finite_compact_range_imp_finite_range)
+  thus "finite {xs. lower_map\<cdot>d\<cdot>xs = xs}"
+    by (rule finite_range_imp_finite_fixes)
+qed
+
+lemma finite_deflation_convex_map:
+  assumes "finite_deflation d" shows "finite_deflation (convex_map\<cdot>d)"
+proof (intro finite_deflation.intro finite_deflation_axioms.intro)
+  interpret d: finite_deflation d by fact
+  have "deflation d" by fact
+  thus "deflation (convex_map\<cdot>d)" by (rule deflation_convex_map)
+  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
+  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
+  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
+  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
+  hence "finite (convex_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
+  hence "finite ((\<lambda>xs. convex_map\<cdot>d\<cdot>xs) ` range convex_principal)"
+    apply (rule finite_subset [COMP swap_prems_rl])
+    apply (clarsimp, rename_tac t)
+    apply (induct_tac t rule: pd_basis_induct)
+    apply (simp only: convex_unit_Rep_compact_basis [symmetric] convex_map_unit)
+    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDUnit)
+    apply (rule image_eqI)
+    apply (erule sym)
+    apply simp
+    apply (rule exI)
+    apply (rule Abs_compact_basis_inverse [symmetric])
+    apply (simp add: d.compact)
+    apply (simp only: convex_plus_principal [symmetric] convex_map_plus)
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDPlus)
+    done
+  moreover have "{xs::'a convex_pd. compact xs} = range convex_principal"
+    by (auto dest: convex_pd.compact_imp_principal)
+  ultimately have "finite ((\<lambda>xs. convex_map\<cdot>d\<cdot>xs) ` {xs::'a convex_pd. compact xs})"
+    by simp
+  hence "finite (range (\<lambda>xs. convex_map\<cdot>d\<cdot>xs))"
+    by (rule finite_compact_range_imp_finite_range)
+  thus "finite {xs. convex_map\<cdot>d\<cdot>xs = xs}"
+    by (rule finite_range_imp_finite_fixes)
+qed
+
+subsection {* Deflation combinators *}
+
+definition "upper_defl = TypeRep_fun1 upper_map"
+definition "lower_defl = TypeRep_fun1 lower_map"
+definition "convex_defl = TypeRep_fun1 convex_map"
+
+lemma cast_upper_defl:
+  "cast\<cdot>(upper_defl\<cdot>A) = udom_emb oo upper_map\<cdot>(cast\<cdot>A) oo udom_prj"
+unfolding upper_defl_def
+apply (rule cast_TypeRep_fun1)
+apply (erule finite_deflation_upper_map)
+done
+
+lemma cast_lower_defl:
+  "cast\<cdot>(lower_defl\<cdot>A) = udom_emb oo lower_map\<cdot>(cast\<cdot>A) oo udom_prj"
+unfolding lower_defl_def
+apply (rule cast_TypeRep_fun1)
+apply (erule finite_deflation_lower_map)
+done
+
+lemma cast_convex_defl:
+  "cast\<cdot>(convex_defl\<cdot>A) = udom_emb oo convex_map\<cdot>(cast\<cdot>A) oo udom_prj"
+unfolding convex_defl_def
+apply (rule cast_TypeRep_fun1)
+apply (erule finite_deflation_convex_map)
+done
+
+lemma REP_upper: "REP('a upper_pd) = upper_defl\<cdot>REP('a)"
+apply (rule cast_eq_imp_eq, rule ext_cfun)
+apply (simp add: cast_REP cast_upper_defl)
+apply (simp add: prj_upper_pd_def)
+apply (simp add: emb_upper_pd_def)
+apply (simp add: upper_map_map cfcomp1)
+done
+
+lemma REP_lower: "REP('a lower_pd) = lower_defl\<cdot>REP('a)"
+apply (rule cast_eq_imp_eq, rule ext_cfun)
+apply (simp add: cast_REP cast_lower_defl)
+apply (simp add: prj_lower_pd_def)
+apply (simp add: emb_lower_pd_def)
+apply (simp add: lower_map_map cfcomp1)
+done
+
+lemma REP_convex: "REP('a convex_pd) = convex_defl\<cdot>REP('a)"
+apply (rule cast_eq_imp_eq, rule ext_cfun)
+apply (simp add: cast_REP cast_convex_defl)
+apply (simp add: prj_convex_pd_def)
+apply (simp add: emb_convex_pd_def)
+apply (simp add: convex_map_map cfcomp1)
+done
+
+lemma isodefl_upper:
+  "isodefl d t \<Longrightarrow> isodefl (upper_map\<cdot>d) (upper_defl\<cdot>t)"
+apply (rule isodeflI)
+apply (simp add: cast_upper_defl cast_isodefl)
+apply (simp add: emb_upper_pd_def prj_upper_pd_def)
+apply (simp add: upper_map_map)
+done
+
+lemma isodefl_lower:
+  "isodefl d t \<Longrightarrow> isodefl (lower_map\<cdot>d) (lower_defl\<cdot>t)"
+apply (rule isodeflI)
+apply (simp add: cast_lower_defl cast_isodefl)
+apply (simp add: emb_lower_pd_def prj_lower_pd_def)
+apply (simp add: lower_map_map)
+done
+
+lemma isodefl_convex:
+  "isodefl d t \<Longrightarrow> isodefl (convex_map\<cdot>d) (convex_defl\<cdot>t)"
+apply (rule isodeflI)
+apply (simp add: cast_convex_defl cast_isodefl)
+apply (simp add: emb_convex_pd_def prj_convex_pd_def)
+apply (simp add: convex_map_map)
+done
+
+subsection {* Domain package setup for powerdomains *}
+
+setup {*
+  fold Domain_Isomorphism.add_type_constructor
+    [(@{type_name "upper_pd"}, @{term upper_defl}, @{const_name upper_map},
+        @{thm REP_upper}, @{thm isodefl_upper}, @{thm upper_map_ID},
+          @{thm deflation_upper_map}),
+
+     (@{type_name "lower_pd"}, @{term lower_defl}, @{const_name lower_map},
+        @{thm REP_lower}, @{thm isodefl_lower}, @{thm lower_map_ID},
+          @{thm deflation_lower_map}),
+
+     (@{type_name "convex_pd"}, @{term convex_defl}, @{const_name convex_map},
+        @{thm REP_convex}, @{thm isodefl_convex}, @{thm convex_map_ID},
+          @{thm deflation_convex_map})]
+*}
+
+end
--- a/src/HOLCF/Representable.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Representable.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -5,9 +5,10 @@
 header {* Representable Types *}
 
 theory Representable
-imports Algebraic Universal Ssum Sprod One ConvexPD Fixrec
+imports Algebraic Universal Ssum Sprod One Fixrec
 uses
   ("Tools/repdef.ML")
+  ("Tools/Domain/domain_take_proofs.ML")
   ("Tools/Domain/domain_isomorphism.ML")
 begin
 
@@ -179,6 +180,33 @@
   shows "abs\<cdot>(rep\<cdot>x) = x"
 unfolding abs_def rep_def by (simp add: REP [symmetric])
 
+lemma deflation_abs_rep:
+  fixes abs and rep and d
+  assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x"
+  assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y"
+  shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)"
+by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)
+
+lemma deflation_chain_min:
+  assumes chain: "chain d"
+  assumes defl: "\<And>i. deflation (d i)"
+  shows "d i\<cdot>(d j\<cdot>x) = d (min i j)\<cdot>x"
+proof (rule linorder_le_cases)
+  assume "i \<le> j"
+  with chain have "d i \<sqsubseteq> d j" by (rule chain_mono)
+  then have "d i\<cdot>(d j\<cdot>x) = d i\<cdot>x"
+    by (rule deflation_below_comp1 [OF defl defl])
+  moreover from `i \<le> j` have "min i j = i" by simp
+  ultimately show ?thesis by simp
+next
+  assume "j \<le> i"
+  with chain have "d j \<sqsubseteq> d i" by (rule chain_mono)
+  then have "d i\<cdot>(d j\<cdot>x) = d j\<cdot>x"
+    by (rule deflation_below_comp2 [OF defl defl])
+  moreover from `j \<le> i` have "min i j = j" by simp
+  ultimately show ?thesis by simp
+qed
+
 
 subsection {* Proving a subtype is representable *}
 
@@ -387,7 +415,7 @@
 
 text "Functions between representable types are representable."
 
-instantiation "->" :: (rep, rep) rep
+instantiation cfun :: (rep, rep) rep
 begin
 
 definition emb_cfun_def: "emb = udom_emb oo cfun_map\<cdot>prj\<cdot>emb"
@@ -402,7 +430,7 @@
 
 text "Strict products of representable types are representable."
 
-instantiation "**" :: (rep, rep) rep
+instantiation sprod :: (rep, rep) rep
 begin
 
 definition emb_sprod_def: "emb = udom_emb oo sprod_map\<cdot>emb\<cdot>emb"
@@ -417,7 +445,7 @@
 
 text "Strict sums of representable types are representable."
 
-instantiation "++" :: (rep, rep) rep
+instantiation ssum :: (rep, rep) rep
 begin
 
 definition emb_ssum_def: "emb = udom_emb oo ssum_map\<cdot>emb\<cdot>emb"
@@ -460,214 +488,6 @@
 
 end
 
-text "Upper powerdomain of a representable type is representable."
-
-instantiation upper_pd :: (rep) rep
-begin
-
-definition emb_upper_pd_def: "emb = udom_emb oo upper_map\<cdot>emb"
-definition prj_upper_pd_def: "prj = upper_map\<cdot>prj oo udom_prj"
-
-instance
- apply (intro_classes, unfold emb_upper_pd_def prj_upper_pd_def)
- apply (intro ep_pair_comp ep_pair_upper_map ep_pair_emb_prj ep_pair_udom)
-done
-
-end
-
-text "Lower powerdomain of a representable type is representable."
-
-instantiation lower_pd :: (rep) rep
-begin
-
-definition emb_lower_pd_def: "emb = udom_emb oo lower_map\<cdot>emb"
-definition prj_lower_pd_def: "prj = lower_map\<cdot>prj oo udom_prj"
-
-instance
- apply (intro_classes, unfold emb_lower_pd_def prj_lower_pd_def)
- apply (intro ep_pair_comp ep_pair_lower_map ep_pair_emb_prj ep_pair_udom)
-done
-
-end
-
-text "Convex powerdomain of a representable type is representable."
-
-instantiation convex_pd :: (rep) rep
-begin
-
-definition emb_convex_pd_def: "emb = udom_emb oo convex_map\<cdot>emb"
-definition prj_convex_pd_def: "prj = convex_map\<cdot>prj oo udom_prj"
-
-instance
- apply (intro_classes, unfold emb_convex_pd_def prj_convex_pd_def)
- apply (intro ep_pair_comp ep_pair_convex_map ep_pair_emb_prj ep_pair_udom)
-done
-
-end
-
-subsection {* Finite deflation lemmas *}
-
-text "TODO: move these lemmas somewhere else"
-
-lemma finite_compact_range_imp_finite_range:
-  fixes d :: "'a::profinite \<rightarrow> 'b::cpo"
-  assumes "finite ((\<lambda>x. d\<cdot>x) ` {x. compact x})"
-  shows "finite (range (\<lambda>x. d\<cdot>x))"
-proof (rule finite_subset [OF _ prems])
-  {
-    fix x :: 'a
-    have "range (\<lambda>i. d\<cdot>(approx i\<cdot>x)) \<subseteq> (\<lambda>x. d\<cdot>x) ` {x. compact x}"
-      by auto
-    hence "finite (range (\<lambda>i. d\<cdot>(approx i\<cdot>x)))"
-      using prems by (rule finite_subset)
-    hence "finite_chain (\<lambda>i. d\<cdot>(approx i\<cdot>x))"
-      by (simp add: finite_range_imp_finch)
-    hence "\<exists>i. (\<Squnion>i. d\<cdot>(approx i\<cdot>x)) = d\<cdot>(approx i\<cdot>x)"
-      by (simp add: finite_chain_def maxinch_is_thelub)
-    hence "\<exists>i. d\<cdot>x = d\<cdot>(approx i\<cdot>x)"
-      by (simp add: lub_distribs)
-    hence "d\<cdot>x \<in> (\<lambda>x. d\<cdot>x) ` {x. compact x}"
-      by auto
-  }
-  thus "range (\<lambda>x. d\<cdot>x) \<subseteq> (\<lambda>x. d\<cdot>x) ` {x. compact x}"
-    by clarsimp
-qed
-
-lemma finite_deflation_upper_map:
-  assumes "finite_deflation d" shows "finite_deflation (upper_map\<cdot>d)"
-proof (intro finite_deflation.intro finite_deflation_axioms.intro)
-  interpret d: finite_deflation d by fact
-  have "deflation d" by fact
-  thus "deflation (upper_map\<cdot>d)" by (rule deflation_upper_map)
-  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
-  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
-    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
-  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
-  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
-    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
-  hence "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
-  hence "finite ((\<lambda>xs. upper_map\<cdot>d\<cdot>xs) ` range upper_principal)"
-    apply (rule finite_subset [COMP swap_prems_rl])
-    apply (clarsimp, rename_tac t)
-    apply (induct_tac t rule: pd_basis_induct)
-    apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit)
-    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
-    apply clarsimp
-    apply (rule imageI)
-    apply (rule vimageI2)
-    apply (simp add: Rep_PDUnit)
-    apply (rule image_eqI)
-    apply (erule sym)
-    apply simp
-    apply (rule exI)
-    apply (rule Abs_compact_basis_inverse [symmetric])
-    apply (simp add: d.compact)
-    apply (simp only: upper_plus_principal [symmetric] upper_map_plus)
-    apply clarsimp
-    apply (rule imageI)
-    apply (rule vimageI2)
-    apply (simp add: Rep_PDPlus)
-    done
-  moreover have "{xs::'a upper_pd. compact xs} = range upper_principal"
-    by (auto dest: upper_pd.compact_imp_principal)
-  ultimately have "finite ((\<lambda>xs. upper_map\<cdot>d\<cdot>xs) ` {xs::'a upper_pd. compact xs})"
-    by simp
-  hence "finite (range (\<lambda>xs. upper_map\<cdot>d\<cdot>xs))"
-    by (rule finite_compact_range_imp_finite_range)
-  thus "finite {xs. upper_map\<cdot>d\<cdot>xs = xs}"
-    by (rule finite_range_imp_finite_fixes)
-qed
-
-lemma finite_deflation_lower_map:
-  assumes "finite_deflation d" shows "finite_deflation (lower_map\<cdot>d)"
-proof (intro finite_deflation.intro finite_deflation_axioms.intro)
-  interpret d: finite_deflation d by fact
-  have "deflation d" by fact
-  thus "deflation (lower_map\<cdot>d)" by (rule deflation_lower_map)
-  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
-  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
-    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
-  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
-  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
-    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
-  hence "finite (lower_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
-  hence "finite ((\<lambda>xs. lower_map\<cdot>d\<cdot>xs) ` range lower_principal)"
-    apply (rule finite_subset [COMP swap_prems_rl])
-    apply (clarsimp, rename_tac t)
-    apply (induct_tac t rule: pd_basis_induct)
-    apply (simp only: lower_unit_Rep_compact_basis [symmetric] lower_map_unit)
-    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
-    apply clarsimp
-    apply (rule imageI)
-    apply (rule vimageI2)
-    apply (simp add: Rep_PDUnit)
-    apply (rule image_eqI)
-    apply (erule sym)
-    apply simp
-    apply (rule exI)
-    apply (rule Abs_compact_basis_inverse [symmetric])
-    apply (simp add: d.compact)
-    apply (simp only: lower_plus_principal [symmetric] lower_map_plus)
-    apply clarsimp
-    apply (rule imageI)
-    apply (rule vimageI2)
-    apply (simp add: Rep_PDPlus)
-    done
-  moreover have "{xs::'a lower_pd. compact xs} = range lower_principal"
-    by (auto dest: lower_pd.compact_imp_principal)
-  ultimately have "finite ((\<lambda>xs. lower_map\<cdot>d\<cdot>xs) ` {xs::'a lower_pd. compact xs})"
-    by simp
-  hence "finite (range (\<lambda>xs. lower_map\<cdot>d\<cdot>xs))"
-    by (rule finite_compact_range_imp_finite_range)
-  thus "finite {xs. lower_map\<cdot>d\<cdot>xs = xs}"
-    by (rule finite_range_imp_finite_fixes)
-qed
-
-lemma finite_deflation_convex_map:
-  assumes "finite_deflation d" shows "finite_deflation (convex_map\<cdot>d)"
-proof (intro finite_deflation.intro finite_deflation_axioms.intro)
-  interpret d: finite_deflation d by fact
-  have "deflation d" by fact
-  thus "deflation (convex_map\<cdot>d)" by (rule deflation_convex_map)
-  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
-  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
-    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
-  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
-  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
-    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
-  hence "finite (convex_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
-  hence "finite ((\<lambda>xs. convex_map\<cdot>d\<cdot>xs) ` range convex_principal)"
-    apply (rule finite_subset [COMP swap_prems_rl])
-    apply (clarsimp, rename_tac t)
-    apply (induct_tac t rule: pd_basis_induct)
-    apply (simp only: convex_unit_Rep_compact_basis [symmetric] convex_map_unit)
-    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
-    apply clarsimp
-    apply (rule imageI)
-    apply (rule vimageI2)
-    apply (simp add: Rep_PDUnit)
-    apply (rule image_eqI)
-    apply (erule sym)
-    apply simp
-    apply (rule exI)
-    apply (rule Abs_compact_basis_inverse [symmetric])
-    apply (simp add: d.compact)
-    apply (simp only: convex_plus_principal [symmetric] convex_map_plus)
-    apply clarsimp
-    apply (rule imageI)
-    apply (rule vimageI2)
-    apply (simp add: Rep_PDPlus)
-    done
-  moreover have "{xs::'a convex_pd. compact xs} = range convex_principal"
-    by (auto dest: convex_pd.compact_imp_principal)
-  ultimately have "finite ((\<lambda>xs. convex_map\<cdot>d\<cdot>xs) ` {xs::'a convex_pd. compact xs})"
-    by simp
-  hence "finite (range (\<lambda>xs. convex_map\<cdot>d\<cdot>xs))"
-    by (rule finite_compact_range_imp_finite_range)
-  thus "finite {xs. convex_map\<cdot>d\<cdot>xs = xs}"
-    by (rule finite_range_imp_finite_fixes)
-qed
-
 subsection {* Type combinators *}
 
 definition
@@ -697,9 +517,6 @@
 definition "sprod_defl = TypeRep_fun2 sprod_map"
 definition "cprod_defl = TypeRep_fun2 cprod_map"
 definition "u_defl = TypeRep_fun1 u_map"
-definition "upper_defl = TypeRep_fun1 upper_map"
-definition "lower_defl = TypeRep_fun1 lower_map"
-definition "convex_defl = TypeRep_fun1 convex_map"
 
 lemma Rep_fin_defl_mono: "a \<sqsubseteq> b \<Longrightarrow> Rep_fin_defl a \<sqsubseteq> Rep_fin_defl b"
 unfolding below_fin_defl_def .
@@ -783,27 +600,6 @@
 apply (erule finite_deflation_u_map)
 done
 
-lemma cast_upper_defl:
-  "cast\<cdot>(upper_defl\<cdot>A) = udom_emb oo upper_map\<cdot>(cast\<cdot>A) oo udom_prj"
-unfolding upper_defl_def
-apply (rule cast_TypeRep_fun1)
-apply (erule finite_deflation_upper_map)
-done
-
-lemma cast_lower_defl:
-  "cast\<cdot>(lower_defl\<cdot>A) = udom_emb oo lower_map\<cdot>(cast\<cdot>A) oo udom_prj"
-unfolding lower_defl_def
-apply (rule cast_TypeRep_fun1)
-apply (erule finite_deflation_lower_map)
-done
-
-lemma cast_convex_defl:
-  "cast\<cdot>(convex_defl\<cdot>A) = udom_emb oo convex_map\<cdot>(cast\<cdot>A) oo udom_prj"
-unfolding convex_defl_def
-apply (rule cast_TypeRep_fun1)
-apply (erule finite_deflation_convex_map)
-done
-
 text {* REP of type constructor = type combinator *}
 
 lemma REP_cfun: "REP('a \<rightarrow> 'b) = cfun_defl\<cdot>REP('a)\<cdot>REP('b)"
@@ -814,7 +610,6 @@
 apply (simp add: expand_cfun_eq ep_pair.e_eq_iff [OF ep_pair_udom])
 done
 
-
 lemma REP_ssum: "REP('a \<oplus> 'b) = ssum_defl\<cdot>REP('a)\<cdot>REP('b)"
 apply (rule cast_eq_imp_eq, rule ext_cfun)
 apply (simp add: cast_REP cast_ssum_defl)
@@ -847,39 +642,12 @@
 apply (simp add: u_map_map cfcomp1)
 done
 
-lemma REP_upper: "REP('a upper_pd) = upper_defl\<cdot>REP('a)"
-apply (rule cast_eq_imp_eq, rule ext_cfun)
-apply (simp add: cast_REP cast_upper_defl)
-apply (simp add: prj_upper_pd_def)
-apply (simp add: emb_upper_pd_def)
-apply (simp add: upper_map_map cfcomp1)
-done
-
-lemma REP_lower: "REP('a lower_pd) = lower_defl\<cdot>REP('a)"
-apply (rule cast_eq_imp_eq, rule ext_cfun)
-apply (simp add: cast_REP cast_lower_defl)
-apply (simp add: prj_lower_pd_def)
-apply (simp add: emb_lower_pd_def)
-apply (simp add: lower_map_map cfcomp1)
-done
-
-lemma REP_convex: "REP('a convex_pd) = convex_defl\<cdot>REP('a)"
-apply (rule cast_eq_imp_eq, rule ext_cfun)
-apply (simp add: cast_REP cast_convex_defl)
-apply (simp add: prj_convex_pd_def)
-apply (simp add: emb_convex_pd_def)
-apply (simp add: convex_map_map cfcomp1)
-done
-
 lemmas REP_simps =
   REP_cfun
   REP_ssum
   REP_sprod
   REP_cprod
   REP_up
-  REP_upper
-  REP_lower
-  REP_convex
 
 subsection {* Isomorphic deflations *}
 
@@ -1007,59 +775,27 @@
 apply (simp add: u_map_map)
 done
 
-lemma isodefl_upper:
-  "isodefl d t \<Longrightarrow> isodefl (upper_map\<cdot>d) (upper_defl\<cdot>t)"
-apply (rule isodeflI)
-apply (simp add: cast_upper_defl cast_isodefl)
-apply (simp add: emb_upper_pd_def prj_upper_pd_def)
-apply (simp add: upper_map_map)
-done
-
-lemma isodefl_lower:
-  "isodefl d t \<Longrightarrow> isodefl (lower_map\<cdot>d) (lower_defl\<cdot>t)"
-apply (rule isodeflI)
-apply (simp add: cast_lower_defl cast_isodefl)
-apply (simp add: emb_lower_pd_def prj_lower_pd_def)
-apply (simp add: lower_map_map)
-done
-
-lemma isodefl_convex:
-  "isodefl d t \<Longrightarrow> isodefl (convex_map\<cdot>d) (convex_defl\<cdot>t)"
-apply (rule isodeflI)
-apply (simp add: cast_convex_defl cast_isodefl)
-apply (simp add: emb_convex_pd_def prj_convex_pd_def)
-apply (simp add: convex_map_map)
-done
-
 subsection {* Constructing Domain Isomorphisms *}
 
+use "Tools/Domain/domain_take_proofs.ML"
 use "Tools/Domain/domain_isomorphism.ML"
 
 setup {*
   fold Domain_Isomorphism.add_type_constructor
-    [(@{type_name "->"}, @{term cfun_defl}, @{const_name cfun_map},
-        @{thm REP_cfun}, @{thm isodefl_cfun}, @{thm cfun_map_ID}),
-
-     (@{type_name "++"}, @{term ssum_defl}, @{const_name ssum_map},
-        @{thm REP_ssum}, @{thm isodefl_ssum}, @{thm ssum_map_ID}),
+    [(@{type_name cfun}, @{term cfun_defl}, @{const_name cfun_map}, @{thm REP_cfun},
+        @{thm isodefl_cfun}, @{thm cfun_map_ID}, @{thm deflation_cfun_map}),
 
-     (@{type_name "**"}, @{term sprod_defl}, @{const_name sprod_map},
-        @{thm REP_sprod}, @{thm isodefl_sprod}, @{thm sprod_map_ID}),
-
-     (@{type_name "*"}, @{term cprod_defl}, @{const_name cprod_map},
-        @{thm REP_cprod}, @{thm isodefl_cprod}, @{thm cprod_map_ID}),
+     (@{type_name ssum}, @{term ssum_defl}, @{const_name ssum_map}, @{thm REP_ssum},
+        @{thm isodefl_ssum}, @{thm ssum_map_ID}, @{thm deflation_ssum_map}),
 
-     (@{type_name "u"}, @{term u_defl}, @{const_name u_map},
-        @{thm REP_up}, @{thm isodefl_u}, @{thm u_map_ID}),
-
-     (@{type_name "upper_pd"}, @{term upper_defl}, @{const_name upper_map},
-        @{thm REP_upper}, @{thm isodefl_upper}, @{thm upper_map_ID}),
+     (@{type_name sprod}, @{term sprod_defl}, @{const_name sprod_map}, @{thm REP_sprod},
+        @{thm isodefl_sprod}, @{thm sprod_map_ID}, @{thm deflation_sprod_map}),
 
-     (@{type_name "lower_pd"}, @{term lower_defl}, @{const_name lower_map},
-        @{thm REP_lower}, @{thm isodefl_lower}, @{thm lower_map_ID}),
+     (@{type_name "*"}, @{term cprod_defl}, @{const_name cprod_map}, @{thm REP_cprod},
+        @{thm isodefl_cprod}, @{thm cprod_map_ID}, @{thm deflation_cprod_map}),
 
-     (@{type_name "convex_pd"}, @{term convex_defl}, @{const_name convex_map},
-        @{thm REP_convex}, @{thm isodefl_convex}, @{thm convex_map_ID})]
+     (@{type_name "u"}, @{term u_defl}, @{const_name u_map}, @{thm REP_up},
+        @{thm isodefl_u}, @{thm u_map_ID}, @{thm deflation_u_map})]
 *}
 
 end
--- a/src/HOLCF/Sprod.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Sprod.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -12,20 +12,20 @@
 
 subsection {* Definition of strict product type *}
 
-pcpodef (Sprod)  ('a, 'b) "**" (infixr "**" 20) =
+pcpodef (Sprod)  ('a, 'b) sprod (infixr "**" 20) =
         "{p::'a \<times> 'b. p = \<bottom> \<or> (fst p \<noteq> \<bottom> \<and> snd p \<noteq> \<bottom>)}"
 by simp_all
 
-instance "**" :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po
+instance sprod :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po
 by (rule typedef_finite_po [OF type_definition_Sprod])
 
-instance "**" :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
+instance sprod :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 by (rule typedef_chfin [OF type_definition_Sprod below_Sprod_def])
 
 type_notation (xsymbols)
-  "**"  ("(_ \<otimes>/ _)" [21,20] 20)
+  sprod  ("(_ \<otimes>/ _)" [21,20] 20)
 type_notation (HTML output)
-  "**"  ("(_ \<otimes>/ _)" [21,20] 20)
+  sprod  ("(_ \<otimes>/ _)" [21,20] 20)
 
 lemma spair_lemma:
   "(strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a) \<in> Sprod"
@@ -80,11 +80,11 @@
 apply fast
 done
 
-lemma sprodE [cases type: **]:
+lemma sprodE [cases type: sprod]:
   "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; \<And>x y. \<lbrakk>p = (:x, y:); x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
 by (cut_tac z=p in Exh_Sprod, auto)
 
-lemma sprod_induct [induct type: **]:
+lemma sprod_induct [induct type: sprod]:
   "\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x"
 by (cases x, simp_all)
 
@@ -221,7 +221,7 @@
 
 subsection {* Strict product preserves flatness *}
 
-instance "**" :: (flat, flat) flat
+instance sprod :: (flat, flat) flat
 proof
   fix x y :: "'a \<otimes> 'b"
   assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y"
@@ -245,6 +245,10 @@
   "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)"
 by (simp add: sprod_map_def)
 
+lemma sprod_map_spair':
+  "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)"
+by (cases "x = \<bottom> \<or> y = \<bottom>") auto
+
 lemma sprod_map_ID: "sprod_map\<cdot>ID\<cdot>ID = ID"
 unfolding sprod_map_def by (simp add: expand_cfun_eq eta_cfun)
 
@@ -308,7 +312,7 @@
 
 subsection {* Strict product is a bifinite domain *}
 
-instantiation "**" :: (bifinite, bifinite) bifinite
+instantiation sprod :: (bifinite, bifinite) bifinite
 begin
 
 definition
--- a/src/HOLCF/Ssum.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Ssum.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -12,22 +12,23 @@
 
 subsection {* Definition of strict sum type *}
 
-pcpodef (Ssum)  ('a, 'b) "++" (infixr "++" 10) = 
+pcpodef (Ssum)  ('a, 'b) ssum (infixr "++" 10) = 
   "{p :: tr \<times> ('a \<times> 'b).
     (fst p \<sqsubseteq> TT \<longleftrightarrow> snd (snd p) = \<bottom>) \<and>
     (fst p \<sqsubseteq> FF \<longleftrightarrow> fst (snd p) = \<bottom>)}"
 by simp_all
 
-instance "++" :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po
+instance ssum :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po
 by (rule typedef_finite_po [OF type_definition_Ssum])
 
-instance "++" :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
+instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 by (rule typedef_chfin [OF type_definition_Ssum below_Ssum_def])
 
 type_notation (xsymbols)
-  "++"  ("(_ \<oplus>/ _)" [21, 20] 20)
+  ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 type_notation (HTML output)
-  "++"  ("(_ \<oplus>/ _)" [21, 20] 20)
+  ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
+
 
 subsection {* Definitions of constructors *}
 
@@ -150,13 +151,13 @@
 apply (simp add: sinr_Abs_Ssum Ssum_def)
 done
 
-lemma ssumE [cases type: ++]:
+lemma ssumE [cases type: ssum]:
   "\<lbrakk>p = \<bottom> \<Longrightarrow> Q;
    \<And>x. \<lbrakk>p = sinl\<cdot>x; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q;
    \<And>y. \<lbrakk>p = sinr\<cdot>y; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
 by (cut_tac z=p in Exh_Ssum, auto)
 
-lemma ssum_induct [induct type: ++]:
+lemma ssum_induct [induct type: ssum]:
   "\<lbrakk>P \<bottom>;
    \<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x);
    \<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x"
@@ -203,7 +204,7 @@
 
 subsection {* Strict sum preserves flatness *}
 
-instance "++" :: (flat, flat) flat
+instance ssum :: (flat, flat) flat
 apply (intro_classes, clarify)
 apply (case_tac x, simp)
 apply (case_tac y, simp_all add: flat_below_iff)
@@ -226,6 +227,12 @@
 lemma ssum_map_sinr [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)"
 unfolding ssum_map_def by simp
 
+lemma ssum_map_sinl': "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)"
+by (cases "x = \<bottom>") simp_all
+
+lemma ssum_map_sinr': "g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)"
+by (cases "x = \<bottom>") simp_all
+
 lemma ssum_map_ID: "ssum_map\<cdot>ID\<cdot>ID = ID"
 unfolding ssum_map_def by (simp add: expand_cfun_eq eta_cfun)
 
@@ -290,7 +297,7 @@
 
 subsection {* Strict sum is a bifinite domain *}
 
-instantiation "++" :: (bifinite, bifinite) bifinite
+instantiation ssum :: (bifinite, bifinite) bifinite
 begin
 
 definition
--- a/src/HOLCF/Tools/Domain/domain_axioms.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/Domain/domain_axioms.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -1,22 +1,22 @@
 (*  Title:      HOLCF/Tools/Domain/domain_axioms.ML
     Author:     David von Oheimb
+    Author:     Brian Huffman
 
 Syntax generator for domain command.
 *)
 
 signature DOMAIN_AXIOMS =
 sig
+  val axiomatize_isomorphism :
+      binding * (typ * typ) ->
+      theory -> Domain_Take_Proofs.iso_info * theory
+
   val copy_of_dtyp :
       string Symtab.table -> (int -> term) -> Datatype.dtyp -> term
 
-  val calc_axioms :
-      bool -> string Symtab.table ->
-      string -> Domain_Library.eq list -> int -> Domain_Library.eq ->
-      string * (string * term) list * (string * term) list
-
   val add_axioms :
-      bool ->
-      bstring -> Domain_Library.eq list -> theory -> theory
+      (binding * (typ * typ)) list ->
+      theory -> theory
 end;
 
 
@@ -31,9 +31,9 @@
 
 (* FIXME: use theory data for this *)
 val copy_tab : string Symtab.table =
-    Symtab.make [(@{type_name "->"}, @{const_name "cfun_map"}),
-                 (@{type_name "++"}, @{const_name "ssum_map"}),
-                 (@{type_name "**"}, @{const_name "sprod_map"}),
+    Symtab.make [(@{type_name cfun}, @{const_name "cfun_map"}),
+                 (@{type_name ssum}, @{const_name "ssum_map"}),
+                 (@{type_name sprod}, @{const_name "sprod_map"}),
                  (@{type_name "*"}, @{const_name "cprod_map"}),
                  (@{type_name "u"}, @{const_name "u_map"})];
 
@@ -46,116 +46,57 @@
       SOME f => list_ccomb (%%:f, map (copy_of_dtyp tab r) ds)
     | NONE => (warning ("copy_of_dtyp: unknown type constructor " ^ c); ID);
 
-fun calc_axioms
-    (definitional : bool)
-    (map_tab : string Symtab.table)
-    (comp_dname : string)
-    (eqs : eq list)
-    (n : int)
-    (eqn as ((dname,_),cons) : eq)
-    : string * (string * term) list * (string * term) list =
-  let
-
-(* ----- axioms and definitions concerning the isomorphism ------------------ *)
+local open HOLCF_Library in
 
-    val dc_abs = %%:(dname^"_abs");
-    val dc_rep = %%:(dname^"_rep");
-    val x_name'= "x";
-    val x_name = idx_name eqs x_name' (n+1);
-    val dnam = Long_Name.base_name dname;
+fun axiomatize_isomorphism
+    (dbind : binding, (lhsT, rhsT))
+    (thy : theory)
+    : Domain_Take_Proofs.iso_info * theory =
+  let
+    val dname = Long_Name.base_name (Binding.name_of dbind);
 
-    val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
-    val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
-
-    val when_def = ("when_def",%%:(dname^"_when") == 
-        List.foldr (uncurry /\ ) (/\x_name'((when_body cons (fn (x,y) =>
-          Bound(1+length cons+x-y)))`(dc_rep`Bound 0))) (when_funs cons));
+    val abs_bind = Binding.suffix_name "_abs" dbind;
+    val rep_bind = Binding.suffix_name "_rep" dbind;
 
-    val copy_def =
-      let fun r i = proj (Bound 0) eqs i;
-      in
-        ("copy_def", %%:(dname^"_copy") == /\ "f"
-          (dc_abs oo (copy_of_dtyp map_tab r (dtyp_of_eq eqn)) oo dc_rep))
-      end;
-
-(* -- definitions concerning the constructors, discriminators and selectors - *)
+    val (abs_const, thy) =
+        Sign.declare_const ((abs_bind, rhsT ->> lhsT), NoSyn) thy;
+    val (rep_const, thy) =
+        Sign.declare_const ((rep_bind, lhsT ->> rhsT), NoSyn) thy;
 
-    fun con_def m n (_,args) = let
-      fun idxs z x arg = (if is_lazy arg then mk_up else I) (Bound(z-x));
-      fun parms vs = mk_stuple (mapn (idxs(length vs)) 1 vs);
-      fun inj y 1 _ = y
-        | inj y _ 0 = mk_sinl y
-        | inj y i j = mk_sinr (inj y (i-1) (j-1));
-    in List.foldr /\# (dc_abs`(inj (parms args) m n)) args end;
-          
-    val con_defs = mapn (fn n => fn (con, _, args) =>
-                                    (extern_name con ^"_def", %%:con == con_def (length cons) n (con,args))) 0 cons;
-          
-    val dis_defs = let
-      fun ddef (con,_,_) = (dis_name con ^"_def",%%:(dis_name con) == 
-                                              list_ccomb(%%:(dname^"_when"),map 
-                                                                              (fn (con',_,args) => (List.foldr /\#
-      (if con'=con then TT else FF) args)) cons))
-    in map ddef cons end;
+    val x = Free ("x", lhsT);
+    val y = Free ("y", rhsT);
+
+    val abs_iso_eqn =
+        Logic.all y (mk_trp (mk_eq (rep_const ` (abs_const ` y), y)));
+    val rep_iso_eqn =
+        Logic.all x (mk_trp (mk_eq (abs_const ` (rep_const ` x), x)));
 
-    val mat_defs =
-      let
-        fun mdef (con, _, _) =
-          let
-            val k = Bound 0
-            val x = Bound 1
-            fun one_con (con', _, args') =
-                if con'=con then k else List.foldr /\# mk_fail args'
-            val w = list_ccomb(%%:(dname^"_when"), map one_con cons)
-            val rhs = /\ "x" (/\ "k" (w ` x))
-          in (mat_name con ^"_def", %%:(mat_name con) == rhs) end
-      in map mdef cons end;
+    val thy = Sign.add_path dname thy;
+
+    val (abs_iso_thm, thy) =
+        yield_singleton PureThy.add_axioms
+        ((Binding.name "abs_iso", abs_iso_eqn), []) thy;
 
-    val pat_defs =
-      let
-        fun pdef (con, _, args) =
-          let
-            val ps = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
-            val xs = map (bound_arg args) args;
-            val r = Bound (length args);
-            val rhs = case args of [] => mk_return HOLogic.unit
-                                 | _ => mk_ctuple_pat ps ` mk_ctuple xs;
-            fun one_con (con', _, args') = List.foldr /\# (if con'=con then rhs else mk_fail) args';
-          in (pat_name con ^"_def", list_comb (%%:(pat_name con), ps) == 
-                                              list_ccomb(%%:(dname^"_when"), map one_con cons))
-          end
-      in map pdef cons end;
+    val (rep_iso_thm, thy) =
+        yield_singleton PureThy.add_axioms
+        ((Binding.name "rep_iso", rep_iso_eqn), []) thy;
+
+    val thy = Sign.parent_path thy;
 
-    val sel_defs = let
-      fun sdef con n arg = Option.map (fn sel => (sel^"_def",%%:sel == 
-                                                            list_ccomb(%%:(dname^"_when"),map 
-                                                                                            (fn (con', _, args) => if con'<>con then UU else
-                                                                                                               List.foldr /\# (Bound (length args - n)) args) cons))) (sel_of arg);
-    in map_filter I (maps (fn (con, _, args) => mapn (sdef con) 1 args) cons) end;
-
-
-(* ----- axiom and definitions concerning induction ------------------------- *)
+    val result =
+        {
+          absT = lhsT,
+          repT = rhsT,
+          abs_const = abs_const,
+          rep_const = rep_const,
+          abs_inverse = abs_iso_thm,
+          rep_inverse = rep_iso_thm
+        };
+  in
+    (result, thy)
+  end;
 
-    val reach_ax = ("reach", mk_trp(proj (mk_fix (%%:(comp_dname^"_copy"))) eqs n
-                                         `%x_name === %:x_name));
-    val take_def =
-        ("take_def",
-         %%:(dname^"_take") ==
-            mk_lam("n",proj
-                         (mk_iterate (Bound 0, %%:(comp_dname^"_copy"), UU)) eqs n));
-    val finite_def =
-        ("finite_def",
-         %%:(dname^"_finite") ==
-            mk_lam(x_name,
-                   mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));
-
-  in (dnam,
-      (if definitional then [] else [abs_iso_ax, rep_iso_ax, reach_ax]),
-      (if definitional then [when_def] else [when_def, copy_def]) @
-      con_defs @ dis_defs @ mat_defs @ pat_defs @ sel_defs @
-      [take_def, finite_def])
-  end; (* let (calc_axioms) *)
-
+end;
 
 (* legacy type inference *)
 
@@ -170,84 +111,46 @@
 fun add_axioms_i x = snd o PureThy.add_axioms (map (Thm.no_attributes o apfst Binding.name) x);
 fun add_axioms_infer axms thy = add_axioms_i (infer_props thy axms) thy;
 
-fun add_defs_i x = snd o (PureThy.add_defs false) (map (Thm.no_attributes o apfst Binding.name) x);
-fun add_defs_infer defs thy = add_defs_i (infer_props thy defs) thy;
-
-fun add_matchers (((dname,_),cons) : eq) thy =
-    let
-      val con_names = map first cons;
-      val mat_names = map mat_name con_names;
-      fun qualify n = Sign.full_name thy (Binding.name n);
-      val ms = map qualify con_names ~~ map qualify mat_names;
-    in Fixrec.add_matchers ms thy end;
-
-fun add_axioms definitional comp_dnam (eqs : eq list) thy' =
+fun add_axioms
+    (dom_eqns : (binding * (typ * typ)) list)
+    (thy : theory) =
   let
-    val comp_dname = Sign.full_bname thy' comp_dnam;
-    val dnames = map (fst o fst) eqs;
-    val x_name = idx_name dnames "x"; 
-    fun copy_app dname = %%:(dname^"_copy")`Bound 0;
-    val copy_def = ("copy_def" , %%:(comp_dname^"_copy") ==
-                                 /\ "f"(mk_ctuple (map copy_app dnames)));
 
-    fun one_con (con, _, args) =
-      let
-        val nonrec_args = filter_out is_rec args;
-        val    rec_args = filter is_rec args;
-        val    recs_cnt = length rec_args;
-        val allargs     = nonrec_args @ rec_args
-                          @ map (upd_vname (fn s=> s^"'")) rec_args;
-        val allvns      = map vname allargs;
-        fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
-        val vns1        = map (vname_arg "" ) args;
-        val vns2        = map (vname_arg "'") args;
-        val allargs_cnt = length nonrec_args + 2*recs_cnt;
-        val rec_idxs    = (recs_cnt-1) downto 0;
-        val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
-                                               (allargs~~((allargs_cnt-1) downto 0)));
-        fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $ 
-                                Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
-        val capps =
-          List.foldr
-            mk_conj
-            (mk_conj(
-             Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
-             Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
-            (mapn rel_app 1 rec_args);
-      in
-        List.foldr
-          mk_ex
-          (Library.foldr mk_conj
-                         (map (defined o Bound) nonlazy_idxs,capps)) allvns
-      end;
-    fun one_comp n (_,cons) =
-        mk_all (x_name(n+1),
-        mk_all (x_name(n+1)^"'",
-        mk_imp (proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
-        foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
-                        ::map one_con cons))));
-    val bisim_def =
-        ("bisim_def", %%:(comp_dname^"_bisim") ==
-                         mk_lam("R", foldr1 mk_conj (mapn one_comp 0 eqs)));
+    (* declare and axiomatize abs/rep *)
+    val (iso_infos, thy) =
+        fold_map axiomatize_isomorphism dom_eqns thy;
 
-    fun add_one (dnam, axs, dfs) =
+    fun add_one (dnam, axs) =
         Sign.add_path dnam
-          #> add_defs_infer dfs
           #> add_axioms_infer axs
           #> Sign.parent_path;
 
-    val map_tab = Domain_Isomorphism.get_map_tab thy';
+    (* define take function *)
+    val (take_info, thy) =
+        Domain_Take_Proofs.define_take_functions
+          (map fst dom_eqns ~~ iso_infos) thy;
 
-    val thy = thy'
-      |> fold add_one (mapn (calc_axioms definitional map_tab comp_dname eqs) 0 eqs);
+    (* declare lub_take axioms *)
+    local
+      fun ax_lub_take (dbind, take_const) =
+        let
+          val dnam = Long_Name.base_name (Binding.name_of dbind);
+          val lub = %%: @{const_name lub};
+          val image = %%: @{const_name image};
+          val UNIV = @{term "UNIV :: nat set"};
+          val lhs = lub $ (image $ take_const $ UNIV);
+          val ax = mk_trp (lhs === ID);
+        in
+          add_one (dnam, [("lub_take", ax)])
+        end
+      val dbinds = map fst dom_eqns;
+      val take_consts = #take_consts take_info;
+    in
+      val thy = fold ax_lub_take (dbinds ~~ take_consts) thy
+    end;
 
-    val use_copy_def = length eqs>1 andalso not definitional;
   in
-    thy
-    |> Sign.add_path comp_dnam  
-    |> add_defs_infer (bisim_def::(if use_copy_def then [copy_def] else []))
-    |> Sign.parent_path
-    |> fold add_matchers eqs
-  end; (* let (add_axioms) *)
+    thy (* TODO: also return iso_infos, take_info, lub_take_thms *)
+  end;
 
 end; (* struct *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_constructors.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -0,0 +1,1123 @@
+(*  Title:      HOLCF/Tools/domain/domain_constructors.ML
+    Author:     Brian Huffman
+
+Defines constructor functions for a given domain isomorphism
+and proves related theorems.
+*)
+
+signature DOMAIN_CONSTRUCTORS =
+sig
+  val add_domain_constructors :
+      string
+      -> (binding * (bool * binding option * typ) list * mixfix) list
+      -> Domain_Take_Proofs.iso_info
+      -> theory
+      -> { con_consts : term list,
+           con_betas : thm list,
+           exhaust : thm,
+           casedist : thm,
+           con_compacts : thm list,
+           con_rews : thm list,
+           inverts : thm list,
+           injects : thm list,
+           dist_les : thm list,
+           dist_eqs : thm list,
+           cases : thm list,
+           sel_rews : thm list,
+           dis_rews : thm list,
+           match_rews : thm list,
+           pat_rews : thm list
+         } * theory;
+end;
+
+
+structure Domain_Constructors :> DOMAIN_CONSTRUCTORS =
+struct
+
+open HOLCF_Library;
+infixr 6 ->>;
+infix -->>;
+
+(************************** miscellaneous functions ***************************)
+
+val simple_ss =
+  HOL_basic_ss addsimps simp_thms;
+
+val beta_ss =
+  HOL_basic_ss
+    addsimps simp_thms
+    addsimps [@{thm beta_cfun}]
+    addsimprocs [@{simproc cont_proc}];
+
+fun define_consts
+    (specs : (binding * term * mixfix) list)
+    (thy : theory)
+    : (term list * thm list) * theory =
+  let
+    fun mk_decl (b, t, mx) = (b, fastype_of t, mx);
+    val decls = map mk_decl specs;
+    val thy = Cont_Consts.add_consts decls thy;
+    fun mk_const (b, T, mx) = Const (Sign.full_name thy b, T);
+    val consts = map mk_const decls;
+    fun mk_def c (b, t, mx) =
+      (Binding.suffix_name "_def" b, Logic.mk_equals (c, t));
+    val defs = map2 mk_def consts specs;
+    val (def_thms, thy) =
+      PureThy.add_defs false (map Thm.no_attributes defs) thy;
+  in
+    ((consts, def_thms), thy)
+  end;
+
+fun prove
+    (thy : theory)
+    (defs : thm list)
+    (goal : term)
+    (tacs : {prems: thm list, context: Proof.context} -> tactic list)
+    : thm =
+  let
+    fun tac {prems, context} =
+      rewrite_goals_tac defs THEN
+      EVERY (tacs {prems = map (rewrite_rule defs) prems, context = context})
+  in
+    Goal.prove_global thy [] [] goal tac
+  end;
+
+fun get_vars_avoiding
+    (taken : string list)
+    (args : (bool * typ) list)
+    : (term list * term list) =
+  let
+    val Ts = map snd args;
+    val ns = Name.variant_list taken (Datatype_Prop.make_tnames Ts);
+    val vs = map Free (ns ~~ Ts);
+    val nonlazy = map snd (filter_out (fst o fst) (args ~~ vs));
+  in
+    (vs, nonlazy)
+  end;
+
+fun get_vars args = get_vars_avoiding [] args;
+
+(************** generating beta reduction rules from definitions **************)
+
+local
+  fun arglist (Const _ $ Abs (s, T, t)) =
+      let
+        val arg = Free (s, T);
+        val (args, body) = arglist (subst_bound (arg, t));
+      in (arg :: args, body) end
+    | arglist t = ([], t);
+in
+  fun beta_of_def thy def_thm =
+      let
+        val (con, lam) = Logic.dest_equals (concl_of def_thm);
+        val (args, rhs) = arglist lam;
+        val lhs = list_ccomb (con, args);
+        val goal = mk_equals (lhs, rhs);
+        val cs = ContProc.cont_thms lam;
+        val betas = map (fn c => mk_meta_eq (c RS @{thm beta_cfun})) cs;
+      in
+        prove thy (def_thm::betas) goal (K [rtac reflexive_thm 1])
+      end;
+end;
+
+(******************************************************************************)
+(************* definitions and theorems for constructor functions *************)
+(******************************************************************************)
+
+fun add_constructors
+    (spec : (binding * (bool * typ) list * mixfix) list)
+    (abs_const : term)
+    (iso_locale : thm)
+    (thy : theory)
+    =
+  let
+
+    (* get theorems about rep and abs *)
+    val abs_strict = iso_locale RS @{thm iso.abs_strict};
+
+    (* get types of type isomorphism *)
+    val (rhsT, lhsT) = dest_cfunT (fastype_of abs_const);
+
+    fun vars_of args =
+      let
+        val Ts = map snd args;
+        val ns = Datatype_Prop.make_tnames Ts;
+      in
+        map Free (ns ~~ Ts)
+      end;
+
+    (* define constructor functions *)
+    val ((con_consts, con_defs), thy) =
+      let
+        fun one_arg (lazy, T) var = if lazy then mk_up var else var;
+        fun one_con (_,args,_) = mk_stuple (map2 one_arg args (vars_of args));
+        fun mk_abs t = abs_const ` t;
+        val rhss = map mk_abs (mk_sinjects (map one_con spec));
+        fun mk_def (bind, args, mx) rhs =
+          (bind, big_lambdas (vars_of args) rhs, mx);
+      in
+        define_consts (map2 mk_def spec rhss) thy
+      end;
+
+    (* prove beta reduction rules for constructors *)
+    val con_betas = map (beta_of_def thy) con_defs;
+
+    (* replace bindings with terms in constructor spec *)
+    val spec' : (term * (bool * typ) list) list =
+      let fun one_con con (b, args, mx) = (con, args);
+      in map2 one_con con_consts spec end;
+
+    (* prove exhaustiveness of constructors *)
+    local
+      fun arg2typ n (true,  T) = (n+1, mk_upT (TVar (("'a", n), @{sort cpo})))
+        | arg2typ n (false, T) = (n+1, TVar (("'a", n), @{sort pcpo}));
+      fun args2typ n [] = (n, oneT)
+        | args2typ n [arg] = arg2typ n arg
+        | args2typ n (arg::args) =
+          let
+            val (n1, t1) = arg2typ n arg;
+            val (n2, t2) = args2typ n1 args
+          in (n2, mk_sprodT (t1, t2)) end;
+      fun cons2typ n [] = (n, oneT)
+        | cons2typ n [con] = args2typ n (snd con)
+        | cons2typ n (con::cons) =
+          let
+            val (n1, t1) = args2typ n (snd con);
+            val (n2, t2) = cons2typ n1 cons
+          in (n2, mk_ssumT (t1, t2)) end;
+      val ct = ctyp_of thy (snd (cons2typ 1 spec'));
+      val thm1 = instantiate' [SOME ct] [] @{thm exh_start};
+      val thm2 = rewrite_rule (map mk_meta_eq @{thms ex_defined_iffs}) thm1;
+      val thm3 = rewrite_rule [mk_meta_eq @{thm conj_assoc}] thm2;
+
+      val y = Free ("y", lhsT);
+      fun one_con (con, args) =
+        let
+          val (vs, nonlazy) = get_vars_avoiding ["y"] args;
+          val eqn = mk_eq (y, list_ccomb (con, vs));
+          val conj = foldr1 mk_conj (eqn :: map mk_defined nonlazy);
+        in Library.foldr mk_ex (vs, conj) end;
+      val goal = mk_trp (foldr1 mk_disj (mk_undef y :: map one_con spec'));
+      (* first 3 rules replace "y = UU \/ P" with "rep$y = UU \/ P" *)
+      val tacs = [
+          rtac (iso_locale RS @{thm iso.casedist_rule}) 1,
+          rewrite_goals_tac [mk_meta_eq (iso_locale RS @{thm iso.iso_swap})],
+          rtac thm3 1];
+    in
+      val exhaust = prove thy con_betas goal (K tacs);
+      val casedist =
+          (exhaust RS @{thm exh_casedist0})
+          |> rewrite_rule @{thms exh_casedists}
+          |> Drule.export_without_context;
+    end;
+
+    (* prove compactness rules for constructors *)
+    val con_compacts =
+      let
+        val rules = @{thms compact_sinl compact_sinr compact_spair
+                           compact_up compact_ONE};
+        val tacs =
+          [rtac (iso_locale RS @{thm iso.compact_abs}) 1,
+           REPEAT (resolve_tac rules 1 ORELSE atac 1)];
+        fun con_compact (con, args) =
+          let
+            val vs = vars_of args;
+            val con_app = list_ccomb (con, vs);
+            val concl = mk_trp (mk_compact con_app);
+            val assms = map (mk_trp o mk_compact) vs;
+            val goal = Logic.list_implies (assms, concl);
+          in
+            prove thy con_betas goal (K tacs)
+          end;
+      in
+        map con_compact spec'
+      end;
+
+    (* prove strictness rules for constructors *)
+    local
+      fun con_strict (con, args) = 
+        let
+          val rules = abs_strict :: @{thms con_strict_rules};
+          val (vs, nonlazy) = get_vars args;
+          fun one_strict v' =
+            let
+              val UU = mk_bottom (fastype_of v');
+              val vs' = map (fn v => if v = v' then UU else v) vs;
+              val goal = mk_trp (mk_undef (list_ccomb (con, vs')));
+              val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
+            in prove thy con_betas goal (K tacs) end;
+        in map one_strict nonlazy end;
+
+      fun con_defin (con, args) =
+        let
+          fun iff_disj (t, []) = HOLogic.mk_not t
+            | iff_disj (t, ts) = mk_eq (t, foldr1 HOLogic.mk_disj ts);
+          val (vs, nonlazy) = get_vars args;
+          val lhs = mk_undef (list_ccomb (con, vs));
+          val rhss = map mk_undef nonlazy;
+          val goal = mk_trp (iff_disj (lhs, rhss));
+          val rule1 = iso_locale RS @{thm iso.abs_defined_iff};
+          val rules = rule1 :: @{thms con_defined_iff_rules};
+          val tacs = [simp_tac (HOL_ss addsimps rules) 1];
+        in prove thy con_betas goal (K tacs) end;
+    in
+      val con_stricts = maps con_strict spec';
+      val con_defins = map con_defin spec';
+      val con_rews = con_stricts @ con_defins;
+    end;
+
+    (* prove injectiveness of constructors *)
+    local
+      fun pgterm rel (con, args) =
+        let
+          fun prime (Free (n, T)) = Free (n^"'", T)
+            | prime t             = t;
+          val (xs, nonlazy) = get_vars args;
+          val ys = map prime xs;
+          val lhs = rel (list_ccomb (con, xs), list_ccomb (con, ys));
+          val rhs = foldr1 mk_conj (ListPair.map rel (xs, ys));
+          val concl = mk_trp (mk_eq (lhs, rhs));
+          val zs = case args of [_] => [] | _ => nonlazy;
+          val assms = map (mk_trp o mk_defined) zs;
+          val goal = Logic.list_implies (assms, concl);
+        in prove thy con_betas goal end;
+      val cons' = filter (fn (_, args) => not (null args)) spec';
+    in
+      val inverts =
+        let
+          val abs_below = iso_locale RS @{thm iso.abs_below};
+          val rules1 = abs_below :: @{thms sinl_below sinr_below spair_below up_below};
+          val rules2 = @{thms up_defined spair_defined ONE_defined}
+          val rules = rules1 @ rules2;
+          val tacs = [asm_simp_tac (simple_ss addsimps rules) 1];
+        in map (fn c => pgterm mk_below c (K tacs)) cons' end;
+      val injects =
+        let
+          val abs_eq = iso_locale RS @{thm iso.abs_eq};
+          val rules1 = abs_eq :: @{thms sinl_eq sinr_eq spair_eq up_eq};
+          val rules2 = @{thms up_defined spair_defined ONE_defined}
+          val rules = rules1 @ rules2;
+          val tacs = [asm_simp_tac (simple_ss addsimps rules) 1];
+        in map (fn c => pgterm mk_eq c (K tacs)) cons' end;
+    end;
+
+    (* prove distinctness of constructors *)
+    local
+      fun map_dist (f : 'a -> 'a -> 'b) (xs : 'a list) : 'b list =
+        flat (map_index (fn (i, x) => map (f x) (nth_drop i xs)) xs);
+      fun prime (Free (n, T)) = Free (n^"'", T)
+        | prime t             = t;
+      fun iff_disj (t, []) = mk_not t
+        | iff_disj (t, ts) = mk_eq (t, foldr1 mk_disj ts);
+      fun iff_disj2 (t, [], us) = mk_not t
+        | iff_disj2 (t, ts, []) = mk_not t
+        | iff_disj2 (t, ts, us) =
+          mk_eq (t, mk_conj (foldr1 mk_disj ts, foldr1 mk_disj us));
+      fun dist_le (con1, args1) (con2, args2) =
+        let
+          val (vs1, zs1) = get_vars args1;
+          val (vs2, zs2) = get_vars args2 |> pairself (map prime);
+          val lhs = mk_below (list_ccomb (con1, vs1), list_ccomb (con2, vs2));
+          val rhss = map mk_undef zs1;
+          val goal = mk_trp (iff_disj (lhs, rhss));
+          val rule1 = iso_locale RS @{thm iso.abs_below};
+          val rules = rule1 :: @{thms con_below_iff_rules};
+          val tacs = [simp_tac (HOL_ss addsimps rules) 1];
+        in prove thy con_betas goal (K tacs) end;
+      fun dist_eq (con1, args1) (con2, args2) =
+        let
+          val (vs1, zs1) = get_vars args1;
+          val (vs2, zs2) = get_vars args2 |> pairself (map prime);
+          val lhs = mk_eq (list_ccomb (con1, vs1), list_ccomb (con2, vs2));
+          val rhss1 = map mk_undef zs1;
+          val rhss2 = map mk_undef zs2;
+          val goal = mk_trp (iff_disj2 (lhs, rhss1, rhss2));
+          val rule1 = iso_locale RS @{thm iso.abs_eq};
+          val rules = rule1 :: @{thms con_eq_iff_rules};
+          val tacs = [simp_tac (HOL_ss addsimps rules) 1];
+        in prove thy con_betas goal (K tacs) end;
+    in
+      val dist_les = map_dist dist_le spec';
+      val dist_eqs = map_dist dist_eq spec';
+    end;
+
+    val result =
+      {
+        con_consts = con_consts,
+        con_betas = con_betas,
+        exhaust = exhaust,
+        casedist = casedist,
+        con_compacts = con_compacts,
+        con_rews = con_rews,
+        inverts = inverts,
+        injects = injects,
+        dist_les = dist_les,
+        dist_eqs = dist_eqs
+      };
+  in
+    (result, thy)
+  end;
+
+(******************************************************************************)
+(**************** definition and theorems for case combinator *****************)
+(******************************************************************************)
+
+fun add_case_combinator
+    (spec : (term * (bool * typ) list) list)
+    (lhsT : typ)
+    (dname : string)
+    (con_betas : thm list)
+    (casedist : thm)
+    (iso_locale : thm)
+    (rep_const : term)
+    (thy : theory)
+    : ((typ -> term) * thm list) * theory =
+  let
+
+    (* TODO: move these to holcf_library.ML *)
+    fun one_when_const T = Const (@{const_name one_when}, T ->> oneT ->> T);
+    fun mk_one_when t = one_when_const (fastype_of t) ` t;
+    fun mk_sscase (t, u) =
+      let
+        val (T, V) = dest_cfunT (fastype_of t);
+        val (U, V) = dest_cfunT (fastype_of u);
+      in sscase_const (T, U, V) ` t ` u end;
+    fun strictify_const T = Const (@{const_name strictify}, T ->> T);
+    fun mk_strictify t = strictify_const (fastype_of t) ` t;
+    fun ssplit_const (T, U, V) =
+      Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V);
+    fun mk_ssplit t =
+      let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t));
+      in ssplit_const (T, U, V) ` t end;
+    fun lambda_stuple []      t = mk_one_when t
+      | lambda_stuple [x]     t = mk_strictify (big_lambda x t)
+      | lambda_stuple [x,y]   t = mk_ssplit (big_lambdas [x, y] t)
+      | lambda_stuple (x::xs) t = mk_ssplit (big_lambda x (lambda_stuple xs t));
+
+    (* eta contraction for simplifying definitions *)
+    fun cont_eta_contract (Const(@{const_name Abs_CFun},TT) $ Abs(a,T,body)) = 
+        (case cont_eta_contract body  of
+           body' as (Const(@{const_name Abs_CFun},Ta) $ f $ Bound 0) => 
+           if not (0 mem loose_bnos f) then incr_boundvars ~1 f 
+           else   Const(@{const_name Abs_CFun},TT) $ Abs(a,T,body')
+         | body' => Const(@{const_name Abs_CFun},TT) $ Abs(a,T,body'))
+      | cont_eta_contract(f$t) = cont_eta_contract f $ cont_eta_contract t
+      | cont_eta_contract t    = t;
+
+    (* prove rep/abs rules *)
+    val rep_strict = iso_locale RS @{thm iso.rep_strict};
+    val abs_inverse = iso_locale RS @{thm iso.abs_iso};
+
+    (* calculate function arguments of case combinator *)
+    val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
+    val resultT = TFree (Name.variant tns "'t", @{sort pcpo});
+    fun fTs T = map (fn (_, args) => map snd args -->> T) spec;
+    val fns = Datatype_Prop.indexify_names (map (K "f") spec);
+    val fs = map Free (fns ~~ fTs resultT);
+    fun caseT T = fTs T -->> (lhsT ->> T);
+
+    (* definition of case combinator *)
+    local
+      val case_bind = Binding.name (dname ^ "_when");
+      fun one_con f (_, args) =
+        let
+          fun argT (lazy, T) = if lazy then mk_upT T else T;
+          fun down (lazy, T) v = if lazy then from_up T ` v else v;
+          val Ts = map argT args;
+          val ns = Name.variant_list fns (Datatype_Prop.make_tnames Ts);
+          val vs = map Free (ns ~~ Ts);
+          val xs = map2 down args vs;
+        in
+          cont_eta_contract (lambda_stuple vs (list_ccomb (f, xs)))
+        end;
+      val body = foldr1 mk_sscase (map2 one_con fs spec);
+      val rhs = big_lambdas fs (mk_cfcomp (body, rep_const));
+      val ((case_consts, case_defs), thy) =
+          define_consts [(case_bind, rhs, NoSyn)] thy;
+      val case_name = Sign.full_name thy case_bind;
+    in
+      val case_def = hd case_defs;
+      fun case_const T = Const (case_name, caseT T);
+      val case_app = list_ccomb (case_const resultT, fs);
+      val thy = thy;
+    end;
+
+    (* define syntax for case combinator *)
+    (* TODO: re-implement case syntax using a parse translation *)
+    local
+      open Syntax
+      fun syntax c = Syntax.mark_const (fst (dest_Const c));
+      fun xconst c = Long_Name.base_name (fst (dest_Const c));
+      fun c_ast authentic con =
+          Constant (if authentic then syntax con else xconst con);
+      fun showint n = string_of_int (n+1);
+      fun expvar n = Variable ("e" ^ showint n);
+      fun argvar n (m, _) = Variable ("a" ^ showint n ^ "_" ^ showint m);
+      fun argvars n args = map_index (argvar n) args;
+      fun app s (l, r) = mk_appl (Constant s) [l, r];
+      val cabs = app "_cabs";
+      val capp = app @{const_syntax Rep_CFun};
+      val capps = Library.foldl capp
+      fun con1 authentic n (con,args) =
+          Library.foldl capp (c_ast authentic con, argvars n args);
+      fun case1 authentic (n, c) =
+          app "_case1" (con1 authentic n c, expvar n);
+      fun arg1 (n, (con,args)) = List.foldr cabs (expvar n) (argvars n args);
+      fun when1 n (m, c) =
+          if n = m then arg1 (n, c) else (Constant @{const_syntax UU});
+      val case_constant = Constant (syntax (case_const dummyT));
+      fun case_trans authentic =
+          ParsePrintRule
+            (app "_case_syntax"
+              (Variable "x",
+               foldr1 (app "_case2") (map_index (case1 authentic) spec)),
+             capp (capps (case_constant, map_index arg1 spec), Variable "x"));
+      fun one_abscon_trans authentic (n, c) =
+          ParsePrintRule
+            (cabs (con1 authentic n c, expvar n),
+             capps (case_constant, map_index (when1 n) spec));
+      fun abscon_trans authentic =
+          map_index (one_abscon_trans authentic) spec;
+      val trans_rules : ast Syntax.trrule list =
+          case_trans false :: case_trans true ::
+          abscon_trans false @ abscon_trans true;
+    in
+      val thy = Sign.add_trrules_i trans_rules thy;
+    end;
+
+    (* prove beta reduction rule for case combinator *)
+    val case_beta = beta_of_def thy case_def;
+
+    (* prove strictness of case combinator *)
+    val case_strict =
+      let
+        val defs = case_beta :: map mk_meta_eq [rep_strict, @{thm cfcomp2}];
+        val goal = mk_trp (mk_strict case_app);
+        val rules = @{thms sscase1 ssplit1 strictify1 one_when1};
+        val tacs = [resolve_tac rules 1];
+      in prove thy defs goal (K tacs) end;
+        
+    (* prove rewrites for case combinator *)
+    local
+      fun one_case (con, args) f =
+        let
+          val (vs, nonlazy) = get_vars args;
+          val assms = map (mk_trp o mk_defined) nonlazy;
+          val lhs = case_app ` list_ccomb (con, vs);
+          val rhs = list_ccomb (f, vs);
+          val concl = mk_trp (mk_eq (lhs, rhs));
+          val goal = Logic.list_implies (assms, concl);
+          val defs = case_beta :: con_betas;
+          val rules1 = @{thms strictify2 sscase2 sscase3 ssplit2 fup2 ID1};
+          val rules2 = @{thms con_defined_iff_rules};
+          val rules3 = @{thms cfcomp2 one_when2};
+          val rules = abs_inverse :: rules1 @ rules2 @ rules3;
+          val tacs = [asm_simp_tac (beta_ss addsimps rules) 1];
+        in prove thy defs goal (K tacs) end;
+    in
+      val case_apps = map2 one_case spec fs;
+    end
+
+  in
+    ((case_const, case_strict :: case_apps), thy)
+  end
+
+(******************************************************************************)
+(************** definitions and theorems for selector functions ***************)
+(******************************************************************************)
+
+fun add_selectors
+    (spec : (term * (bool * binding option * typ) list) list)
+    (rep_const : term)
+    (abs_inv : thm)
+    (rep_strict : thm)
+    (rep_strict_iff : thm)
+    (con_betas : thm list)
+    (thy : theory)
+    : thm list * theory =
+  let
+
+    (* define selector functions *)
+    val ((sel_consts, sel_defs), thy) =
+      let
+        fun rangeT s = snd (dest_cfunT (fastype_of s));
+        fun mk_outl s = mk_cfcomp (from_sinl (dest_ssumT (rangeT s)), s);
+        fun mk_outr s = mk_cfcomp (from_sinr (dest_ssumT (rangeT s)), s);
+        fun mk_sfst s = mk_cfcomp (sfst_const (dest_sprodT (rangeT s)), s);
+        fun mk_ssnd s = mk_cfcomp (ssnd_const (dest_sprodT (rangeT s)), s);
+        fun mk_down s = mk_cfcomp (from_up (dest_upT (rangeT s)), s);
+
+        fun sels_of_arg s (lazy, NONE,   T) = []
+          | sels_of_arg s (lazy, SOME b, T) =
+            [(b, if lazy then mk_down s else s, NoSyn)];
+        fun sels_of_args s [] = []
+          | sels_of_args s (v :: []) = sels_of_arg s v
+          | sels_of_args s (v :: vs) =
+            sels_of_arg (mk_sfst s) v @ sels_of_args (mk_ssnd s) vs;
+        fun sels_of_cons s [] = []
+          | sels_of_cons s ((con, args) :: []) = sels_of_args s args
+          | sels_of_cons s ((con, args) :: cs) =
+            sels_of_args (mk_outl s) args @ sels_of_cons (mk_outr s) cs;
+        val sel_eqns : (binding * term * mixfix) list =
+            sels_of_cons rep_const spec;
+      in
+        define_consts sel_eqns thy
+      end
+
+    (* replace bindings with terms in constructor spec *)
+    val spec2 : (term * (bool * term option * typ) list) list =
+      let
+        fun prep_arg (lazy, NONE, T) sels = ((lazy, NONE, T), sels)
+          | prep_arg (lazy, SOME _, T) sels =
+            ((lazy, SOME (hd sels), T), tl sels);
+        fun prep_con (con, args) sels =
+            apfst (pair con) (fold_map prep_arg args sels);
+      in
+        fst (fold_map prep_con spec sel_consts)
+      end;
+
+    (* prove selector strictness rules *)
+    val sel_stricts : thm list =
+      let
+        val rules = rep_strict :: @{thms sel_strict_rules};
+        val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
+        fun sel_strict sel =
+          let
+            val goal = mk_trp (mk_strict sel);
+          in
+            prove thy sel_defs goal (K tacs)
+          end
+      in
+        map sel_strict sel_consts
+      end
+
+    (* prove selector application rules *)
+    val sel_apps : thm list =
+      let
+        val defs = con_betas @ sel_defs;
+        val rules = abs_inv :: @{thms sel_app_rules};
+        val tacs = [asm_simp_tac (simple_ss addsimps rules) 1];
+        fun sel_apps_of (i, (con, args)) =
+          let
+            val Ts : typ list = map #3 args;
+            val ns : string list = Datatype_Prop.make_tnames Ts;
+            val vs : term list = map Free (ns ~~ Ts);
+            val con_app : term = list_ccomb (con, vs);
+            val vs' : (bool * term) list = map #1 args ~~ vs;
+            fun one_same (n, sel, T) =
+              let
+                val xs = map snd (filter_out fst (nth_drop n vs'));
+                val assms = map (mk_trp o mk_defined) xs;
+                val concl = mk_trp (mk_eq (sel ` con_app, nth vs n));
+                val goal = Logic.list_implies (assms, concl);
+              in
+                prove thy defs goal (K tacs)
+              end;
+            fun one_diff (n, sel, T) =
+              let
+                val goal = mk_trp (mk_eq (sel ` con_app, mk_bottom T));
+              in
+                prove thy defs goal (K tacs)
+              end;
+            fun one_con (j, (_, args')) : thm list =
+              let
+                fun prep (i, (lazy, NONE, T)) = NONE
+                  | prep (i, (lazy, SOME sel, T)) = SOME (i, sel, T);
+                val sels : (int * term * typ) list =
+                  map_filter prep (map_index I args');
+              in
+                if i = j
+                then map one_same sels
+                else map one_diff sels
+              end
+          in
+            flat (map_index one_con spec2)
+          end
+      in
+        flat (map_index sel_apps_of spec2)
+      end
+
+  (* prove selector definedness rules *)
+    val sel_defins : thm list =
+      let
+        val rules = rep_strict_iff :: @{thms sel_defined_iff_rules};
+        val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
+        fun sel_defin sel =
+          let
+            val (T, U) = dest_cfunT (fastype_of sel);
+            val x = Free ("x", T);
+            val lhs = mk_eq (sel ` x, mk_bottom U);
+            val rhs = mk_eq (x, mk_bottom T);
+            val goal = mk_trp (mk_eq (lhs, rhs));
+          in
+            prove thy sel_defs goal (K tacs)
+          end
+        fun one_arg (false, SOME sel, T) = SOME (sel_defin sel)
+          | one_arg _                    = NONE;
+      in
+        case spec2 of
+          [(con, args)] => map_filter one_arg args
+        | _             => []
+      end;
+
+  in
+    (sel_stricts @ sel_defins @ sel_apps, thy)
+  end
+
+(******************************************************************************)
+(************ definitions and theorems for discriminator functions ************)
+(******************************************************************************)
+
+fun add_discriminators
+    (bindings : binding list)
+    (spec : (term * (bool * typ) list) list)
+    (lhsT : typ)
+    (casedist : thm)
+    (case_const : typ -> term)
+    (case_rews : thm list)
+    (thy : theory) =
+  let
+
+    fun vars_of args =
+      let
+        val Ts = map snd args;
+        val ns = Datatype_Prop.make_tnames Ts;
+      in
+        map Free (ns ~~ Ts)
+      end;
+
+    (* define discriminator functions *)
+    local
+      fun dis_fun i (j, (con, args)) =
+        let
+          val (vs, nonlazy) = get_vars args;
+          val tr = if i = j then @{term TT} else @{term FF};
+        in
+          big_lambdas vs tr
+        end;
+      fun dis_eqn (i, bind) : binding * term * mixfix =
+        let
+          val dis_bind = Binding.prefix_name "is_" bind;
+          val rhs = list_ccomb (case_const trT, map_index (dis_fun i) spec);
+        in
+          (dis_bind, rhs, NoSyn)
+        end;
+    in
+      val ((dis_consts, dis_defs), thy) =
+          define_consts (map_index dis_eqn bindings) thy
+    end;
+
+    (* prove discriminator strictness rules *)
+    local
+      fun dis_strict dis =
+        let val goal = mk_trp (mk_strict dis);
+        in prove thy dis_defs goal (K [rtac (hd case_rews) 1]) end;
+    in
+      val dis_stricts = map dis_strict dis_consts;
+    end;
+
+    (* prove discriminator/constructor rules *)
+    local
+      fun dis_app (i, dis) (j, (con, args)) =
+        let
+          val (vs, nonlazy) = get_vars args;
+          val lhs = dis ` list_ccomb (con, vs);
+          val rhs = if i = j then @{term TT} else @{term FF};
+          val assms = map (mk_trp o mk_defined) nonlazy;
+          val concl = mk_trp (mk_eq (lhs, rhs));
+          val goal = Logic.list_implies (assms, concl);
+          val tacs = [asm_simp_tac (beta_ss addsimps case_rews) 1];
+        in prove thy dis_defs goal (K tacs) end;
+      fun one_dis (i, dis) =
+          map_index (dis_app (i, dis)) spec;
+    in
+      val dis_apps = flat (map_index one_dis dis_consts);
+    end;
+
+    (* prove discriminator definedness rules *)
+    local
+      fun dis_defin dis =
+        let
+          val x = Free ("x", lhsT);
+          val simps = dis_apps @ @{thms dist_eq_tr};
+          val tacs =
+            [rtac @{thm iffI} 1,
+             asm_simp_tac (HOL_basic_ss addsimps dis_stricts) 2,
+             rtac casedist 1, atac 1,
+             DETERM_UNTIL_SOLVED (CHANGED
+               (asm_full_simp_tac (simple_ss addsimps simps) 1))];
+          val goal = mk_trp (mk_eq (mk_undef (dis ` x), mk_undef x));
+        in prove thy [] goal (K tacs) end;
+    in
+      val dis_defins = map dis_defin dis_consts;
+    end;
+
+  in
+    (dis_stricts @ dis_defins @ dis_apps, thy)
+  end;
+
+(******************************************************************************)
+(*************** definitions and theorems for match combinators ***************)
+(******************************************************************************)
+
+fun add_match_combinators
+    (bindings : binding list)
+    (spec : (term * (bool * typ) list) list)
+    (lhsT : typ)
+    (casedist : thm)
+    (case_const : typ -> term)
+    (case_rews : thm list)
+    (thy : theory) =
+  let
+
+    (* get a fresh type variable for the result type *)
+    val resultT : typ =
+      let
+        val ts : string list = map (fst o dest_TFree) (snd (dest_Type lhsT));
+        val t : string = Name.variant ts "'t";
+      in TFree (t, @{sort pcpo}) end;
+
+    (* define match combinators *)
+    local
+      val x = Free ("x", lhsT);
+      fun k args = Free ("k", map snd args -->> mk_matchT resultT);
+      val fail = mk_fail resultT;
+      fun mat_fun i (j, (con, args)) =
+        let
+          val (vs, nonlazy) = get_vars_avoiding ["x","k"] args;
+        in
+          if i = j then k args else big_lambdas vs fail
+        end;
+      fun mat_eqn (i, (bind, (con, args))) : binding * term * mixfix =
+        let
+          val mat_bind = Binding.prefix_name "match_" bind;
+          val funs = map_index (mat_fun i) spec
+          val body = list_ccomb (case_const (mk_matchT resultT), funs);
+          val rhs = big_lambda x (big_lambda (k args) (body ` x));
+        in
+          (mat_bind, rhs, NoSyn)
+        end;
+    in
+      val ((match_consts, match_defs), thy) =
+          define_consts (map_index mat_eqn (bindings ~~ spec)) thy
+    end;
+
+    (* register match combinators with fixrec package *)
+    local
+      val con_names = map (fst o dest_Const o fst) spec;
+      val mat_names = map (fst o dest_Const) match_consts;
+    in
+      val thy = Fixrec.add_matchers (con_names ~~ mat_names) thy;
+    end;
+
+    (* prove strictness of match combinators *)
+    local
+      fun match_strict mat =
+        let
+          val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of mat));
+          val k = Free ("k", U);
+          val goal = mk_trp (mk_eq (mat ` mk_bottom T ` k, mk_bottom V));
+          val tacs = [asm_simp_tac (beta_ss addsimps case_rews) 1];
+        in prove thy match_defs goal (K tacs) end;
+    in
+      val match_stricts = map match_strict match_consts;
+    end;
+
+    (* prove match/constructor rules *)
+    local
+      val fail = mk_fail resultT;
+      fun match_app (i, mat) (j, (con, args)) =
+        let
+          val (vs, nonlazy) = get_vars_avoiding ["k"] args;
+          val (_, (kT, _)) = apsnd dest_cfunT (dest_cfunT (fastype_of mat));
+          val k = Free ("k", kT);
+          val lhs = mat ` list_ccomb (con, vs) ` k;
+          val rhs = if i = j then list_ccomb (k, vs) else fail;
+          val assms = map (mk_trp o mk_defined) nonlazy;
+          val concl = mk_trp (mk_eq (lhs, rhs));
+          val goal = Logic.list_implies (assms, concl);
+          val tacs = [asm_simp_tac (beta_ss addsimps case_rews) 1];
+        in prove thy match_defs goal (K tacs) end;
+      fun one_match (i, mat) =
+          map_index (match_app (i, mat)) spec;
+    in
+      val match_apps = flat (map_index one_match match_consts);
+    end;
+
+  in
+    (match_stricts @ match_apps, thy)
+  end;
+
+(******************************************************************************)
+(************** definitions and theorems for pattern combinators **************)
+(******************************************************************************)
+
+fun add_pattern_combinators
+    (bindings : binding list)
+    (spec : (term * (bool * typ) list) list)
+    (lhsT : typ)
+    (casedist : thm)
+    (case_const : typ -> term)
+    (case_rews : thm list)
+    (thy : theory) =
+  let
+
+    (* utility functions *)
+    fun mk_pair_pat (p1, p2) =
+      let
+        val T1 = fastype_of p1;
+        val T2 = fastype_of p2;
+        val (U1, V1) = apsnd dest_matchT (dest_cfunT T1);
+        val (U2, V2) = apsnd dest_matchT (dest_cfunT T2);
+        val pat_typ = [T1, T2] --->
+            (mk_prodT (U1, U2) ->> mk_matchT (mk_prodT (V1, V2)));
+        val pat_const = Const (@{const_name cpair_pat}, pat_typ);
+      in
+        pat_const $ p1 $ p2
+      end;
+    fun mk_tuple_pat [] = return_const HOLogic.unitT
+      | mk_tuple_pat ps = foldr1 mk_pair_pat ps;
+    fun branch_const (T,U,V) = 
+      Const (@{const_name branch},
+        (T ->> mk_matchT U) --> (U ->> V) ->> T ->> mk_matchT V);
+
+    (* define pattern combinators *)
+    local
+      val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
+
+      fun pat_eqn (i, (bind, (con, args))) : binding * term * mixfix =
+        let
+          val pat_bind = Binding.suffix_name "_pat" bind;
+          val Ts = map snd args;
+          val Vs =
+              (map (K "'t") args)
+              |> Datatype_Prop.indexify_names
+              |> Name.variant_list tns
+              |> map (fn t => TFree (t, @{sort pcpo}));
+          val patNs = Datatype_Prop.indexify_names (map (K "pat") args);
+          val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
+          val pats = map Free (patNs ~~ patTs);
+          val fail = mk_fail (mk_tupleT Vs);
+          val (vs, nonlazy) = get_vars_avoiding patNs args;
+          val rhs = big_lambdas vs (mk_tuple_pat pats ` mk_tuple vs);
+          fun one_fun (j, (_, args')) =
+            let
+              val (vs', nonlazy) = get_vars_avoiding patNs args';
+            in if i = j then rhs else big_lambdas vs' fail end;
+          val funs = map_index one_fun spec;
+          val body = list_ccomb (case_const (mk_matchT (mk_tupleT Vs)), funs);
+        in
+          (pat_bind, lambdas pats body, NoSyn)
+        end;
+    in
+      val ((pat_consts, pat_defs), thy) =
+          define_consts (map_index pat_eqn (bindings ~~ spec)) thy
+    end;
+
+    (* syntax translations for pattern combinators *)
+    local
+      open Syntax
+      fun syntax c = Syntax.mark_const (fst (dest_Const c));
+      fun app s (l, r) = Syntax.mk_appl (Constant s) [l, r];
+      val capp = app @{const_syntax Rep_CFun};
+      val capps = Library.foldl capp
+
+      fun app_var x = Syntax.mk_appl (Constant "_variable") [x, Variable "rhs"];
+      fun app_pat x = Syntax.mk_appl (Constant "_pat") [x];
+      fun args_list [] = Constant "_noargs"
+        | args_list xs = foldr1 (app "_args") xs;
+      fun one_case_trans (pat, (con, args)) =
+        let
+          val cname = Constant (syntax con);
+          val pname = Constant (syntax pat);
+          val ns = 1 upto length args;
+          val xs = map (fn n => Variable ("x"^(string_of_int n))) ns;
+          val ps = map (fn n => Variable ("p"^(string_of_int n))) ns;
+          val vs = map (fn n => Variable ("v"^(string_of_int n))) ns;
+        in
+          [ParseRule (app_pat (capps (cname, xs)),
+                      mk_appl pname (map app_pat xs)),
+           ParseRule (app_var (capps (cname, xs)),
+                      app_var (args_list xs)),
+           PrintRule (capps (cname, ListPair.map (app "_match") (ps,vs)),
+                      app "_match" (mk_appl pname ps, args_list vs))]
+        end;
+      val trans_rules : Syntax.ast Syntax.trrule list =
+          maps one_case_trans (pat_consts ~~ spec);
+    in
+      val thy = Sign.add_trrules_i trans_rules thy;
+    end;
+
+    (* prove strictness and reduction rules of pattern combinators *)
+    local
+      val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
+      val rn = Name.variant tns "'r";
+      val R = TFree (rn, @{sort pcpo});
+      fun pat_lhs (pat, args) =
+        let
+          val Ts = map snd args;
+          val Vs =
+              (map (K "'t") args)
+              |> Datatype_Prop.indexify_names
+              |> Name.variant_list (rn::tns)
+              |> map (fn t => TFree (t, @{sort pcpo}));
+          val patNs = Datatype_Prop.indexify_names (map (K "pat") args);
+          val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
+          val pats = map Free (patNs ~~ patTs);
+          val k = Free ("rhs", mk_tupleT Vs ->> R);
+          val branch1 = branch_const (lhsT, mk_tupleT Vs, R);
+          val fun1 = (branch1 $ list_comb (pat, pats)) ` k;
+          val branch2 = branch_const (mk_tupleT Ts, mk_tupleT Vs, R);
+          val fun2 = (branch2 $ mk_tuple_pat pats) ` k;
+          val taken = "rhs" :: patNs;
+        in (fun1, fun2, taken) end;
+      fun pat_strict (pat, (con, args)) =
+        let
+          val (fun1, fun2, taken) = pat_lhs (pat, args);
+          val defs = @{thm branch_def} :: pat_defs;
+          val goal = mk_trp (mk_strict fun1);
+          val rules = @{thm Fixrec.bind_strict} :: case_rews;
+          val tacs = [simp_tac (beta_ss addsimps rules) 1];
+        in prove thy defs goal (K tacs) end;
+      fun pat_apps (i, (pat, (con, args))) =
+        let
+          val (fun1, fun2, taken) = pat_lhs (pat, args);
+          fun pat_app (j, (con', args')) =
+            let
+              val (vs, nonlazy) = get_vars_avoiding taken args';
+              val con_app = list_ccomb (con', vs);
+              val assms = map (mk_trp o mk_defined) nonlazy;
+              val rhs = if i = j then fun2 ` mk_tuple vs else mk_fail R;
+              val concl = mk_trp (mk_eq (fun1 ` con_app, rhs));
+              val goal = Logic.list_implies (assms, concl);
+              val defs = @{thm branch_def} :: pat_defs;
+              val rules = @{thms bind_fail left_unit} @ case_rews;
+              val tacs = [asm_simp_tac (beta_ss addsimps rules) 1];
+            in prove thy defs goal (K tacs) end;
+        in map_index pat_app spec end;
+    in
+      val pat_stricts = map pat_strict (pat_consts ~~ spec);
+      val pat_apps = flat (map_index pat_apps (pat_consts ~~ spec));
+    end;
+
+  in
+    (pat_stricts @ pat_apps, thy)
+  end
+
+(******************************************************************************)
+(******************************* main function ********************************)
+(******************************************************************************)
+
+fun add_domain_constructors
+    (dname : string)
+    (spec : (binding * (bool * binding option * typ) list * mixfix) list)
+    (iso_info : Domain_Take_Proofs.iso_info)
+    (thy : theory) =
+  let
+
+    (* retrieve facts about rep/abs *)
+    val lhsT = #absT iso_info;
+    val {rep_const, abs_const, ...} = iso_info;
+    val abs_iso_thm = #abs_inverse iso_info;
+    val rep_iso_thm = #rep_inverse iso_info;
+    val iso_locale = @{thm iso.intro} OF [abs_iso_thm, rep_iso_thm];
+    val rep_strict = iso_locale RS @{thm iso.rep_strict};
+    val abs_strict = iso_locale RS @{thm iso.abs_strict};
+    val rep_defined_iff = iso_locale RS @{thm iso.rep_defined_iff};
+    val abs_defined_iff = iso_locale RS @{thm iso.abs_defined_iff};
+
+    (* qualify constants and theorems with domain name *)
+    val thy = Sign.add_path dname thy;
+
+    (* define constructor functions *)
+    val (con_result, thy) =
+      let
+        fun prep_arg (lazy, sel, T) = (lazy, T);
+        fun prep_con (b, args, mx) = (b, map prep_arg args, mx);
+        val con_spec = map prep_con spec;
+      in
+        add_constructors con_spec abs_const iso_locale thy
+      end;
+    val {con_consts, con_betas, casedist, ...} = con_result;
+
+    (* define case combinator *)
+    val ((case_const : typ -> term, cases : thm list), thy) =
+      let
+        fun prep_arg (lazy, sel, T) = (lazy, T);
+        fun prep_con c (b, args, mx) = (c, map prep_arg args);
+        val case_spec = map2 prep_con con_consts spec;
+      in
+        add_case_combinator case_spec lhsT dname
+          con_betas casedist iso_locale rep_const thy
+      end;
+
+    (* define and prove theorems for selector functions *)
+    val (sel_thms : thm list, thy : theory) =
+      let
+        val sel_spec : (term * (bool * binding option * typ) list) list =
+          map2 (fn con => fn (b, args, mx) => (con, args)) con_consts spec;
+      in
+        add_selectors sel_spec rep_const
+          abs_iso_thm rep_strict rep_defined_iff con_betas thy
+      end;
+
+    (* define and prove theorems for discriminator functions *)
+    val (dis_thms : thm list, thy : theory) =
+      let
+        val bindings = map #1 spec;
+        fun prep_arg (lazy, sel, T) = (lazy, T);
+        fun prep_con c (b, args, mx) = (c, map prep_arg args);
+        val dis_spec = map2 prep_con con_consts spec;
+      in
+        add_discriminators bindings dis_spec lhsT
+          casedist case_const cases thy
+      end
+
+    (* define and prove theorems for match combinators *)
+    val (match_thms : thm list, thy : theory) =
+      let
+        val bindings = map #1 spec;
+        fun prep_arg (lazy, sel, T) = (lazy, T);
+        fun prep_con c (b, args, mx) = (c, map prep_arg args);
+        val mat_spec = map2 prep_con con_consts spec;
+      in
+        add_match_combinators bindings mat_spec lhsT
+          casedist case_const cases thy
+      end
+
+    (* define and prove theorems for pattern combinators *)
+    val (pat_thms : thm list, thy : theory) =
+      let
+        val bindings = map #1 spec;
+        fun prep_arg (lazy, sel, T) = (lazy, T);
+        fun prep_con c (b, args, mx) = (c, map prep_arg args);
+        val pat_spec = map2 prep_con con_consts spec;
+      in
+        add_pattern_combinators bindings pat_spec lhsT
+          casedist case_const cases thy
+      end
+
+    (* restore original signature path *)
+    val thy = Sign.parent_path thy;
+
+    val result =
+      { con_consts = con_consts,
+        con_betas = con_betas,
+        exhaust = #exhaust con_result,
+        casedist = casedist,
+        con_compacts = #con_compacts con_result,
+        con_rews = #con_rews con_result,
+        inverts = #inverts con_result,
+        injects = #injects con_result,
+        dist_les = #dist_les con_result,
+        dist_eqs = #dist_eqs con_result,
+        cases = cases,
+        sel_rews = sel_thms,
+        dis_rews = dis_thms,
+        match_rews = match_thms,
+        pat_rews = pat_thms };
+  in
+    (result, thy)
+  end;
+
+end;
--- a/src/HOLCF/Tools/Domain/domain_extender.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/Domain/domain_extender.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -79,7 +79,9 @@
           | rm_sorts (Type(s,ts)) = Type(s,remove_sorts ts)
           | rm_sorts (TVar(s,_))  = TVar(s,[])
         and remove_sorts l = map rm_sorts l;
-        val indirect_ok = ["*","Cfun.->","Ssum.++","Sprod.**","Up.u"]
+        val indirect_ok =
+            [@{type_name "*"}, @{type_name cfun}, @{type_name ssum},
+             @{type_name sprod}, @{type_name u}];
         fun analyse indirect (TFree(v,s))  =
             (case AList.lookup (op =) tvars v of 
                NONE => error ("Free type variable " ^ quote v ^ " on rhs.")
@@ -127,52 +129,68 @@
     (comp_dnam : string)
     (eqs''' : ((string * string option) list * binding * mixfix *
                (binding * (bool * binding option * 'a) list * mixfix) list) list)
-    (thy''' : theory) =
+    (thy : theory) =
   let
-    fun readS (SOME s) = Syntax.read_sort_global thy''' s
-      | readS NONE = Sign.defaultS thy''';
-    fun readTFree (a, s) = TFree (a, readS s);
+    val dtnvs : (binding * typ list * mixfix) list =
+      let
+        fun readS (SOME s) = Syntax.read_sort_global thy s
+          | readS NONE = Sign.defaultS thy;
+        fun readTFree (a, s) = TFree (a, readS s);
+      in
+        map (fn (vs,dname:binding,mx,_) =>
+                (dname, map readTFree vs, mx)) eqs'''
+      end;
 
-    val dtnvs = map (fn (vs,dname:binding,mx,_) => 
-                        (dname, map readTFree vs, mx)) eqs''';
-    val cons''' = map (fn (_,_,_,cons) => cons) eqs''';
-    fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
-    fun thy_arity (dname,tvars,mx) =
-        (Sign.full_name thy''' dname, map (snd o dest_TFree) tvars, pcpoS);
-    val thy'' =
-      thy'''
-      |> Sign.add_types (map thy_type dtnvs)
-      |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
-    val cons'' =
-      map (map (upd_second (map (upd_third (prep_typ thy''))))) cons''';
-    val dtnvs' =
-      map (fn (dname,vs,mx) => (Sign.full_name thy''' dname,vs)) dtnvs;
+    (* declare new types *)
+    val thy =
+      let
+        fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
+        fun thy_arity (dname,tvars,mx) =
+            (Sign.full_name thy dname, map (snd o dest_TFree) tvars, pcpoS);
+      in
+        thy
+          |> Sign.add_types (map thy_type dtnvs)
+          |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs
+      end;
+
+    val dbinds : binding list =
+        map (fn (_,dbind,_,_) => dbind) eqs''';
+    val cons''' :
+        (binding * (bool * binding option * 'a) list * mixfix) list list =
+        map (fn (_,_,_,cons) => cons) eqs''';
+    val cons'' :
+        (binding * (bool * binding option * typ) list * mixfix) list list =
+        map (map (upd_second (map (upd_third (prep_typ thy))))) cons''';
+    val dtnvs' : (string * typ list) list =
+      map (fn (dname,vs,mx) => (Sign.full_name thy dname,vs)) dtnvs;
     val eqs' : ((string * typ list) *
         (binding * (bool * binding option * typ) list * mixfix) list) list =
-      check_and_sort_domain false dtnvs' cons'' thy'';
-    val thy' = thy'' |> Domain_Syntax.add_syntax false comp_dnam eqs';
-    val dts  = map (Type o fst) eqs';
-    val new_dts = map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
-    fun strip ss = drop (find_index (fn s => s = "'") ss + 1) ss;
-    fun typid (Type  (id,_)) =
-        let val c = hd (Symbol.explode (Long_Name.base_name id))
-        in if Symbol.is_letter c then c else "t" end
-      | typid (TFree (id,_)   ) = hd (strip (tl (Symbol.explode id)))
-      | typid (TVar ((id,_),_)) = hd (tl (Symbol.explode id));
-    fun one_con (con,args,mx) =
+        check_and_sort_domain false dtnvs' cons'' thy;
+(*    val thy = Domain_Syntax.add_syntax eqs' thy; *)
+    val dts : typ list = map (Type o fst) eqs';
+    val new_dts : (string * string list) list =
+        map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
+    fun one_con (con,args,mx) : cons =
         (Binding.name_of con,  (* FIXME preverse binding (!?) *)
-         mx,
          ListPair.map (fn ((lazy,sel,tp),vn) =>
-           mk_arg ((lazy, Datatype_Aux.dtyp_of_typ new_dts tp),
-                   Option.map Binding.name_of sel,vn))
-                      (args,(mk_var_names(map (typid o third) args)))
-        ) : cons;
+           mk_arg ((lazy, Datatype_Aux.dtyp_of_typ new_dts tp), vn))
+                      (args, Datatype_Prop.make_tnames (map third args)));
     val eqs : eq list =
         map (fn (dtnvs,cons') => (dtnvs, map one_con cons')) eqs';
-    val thy = thy' |> Domain_Axioms.add_axioms false comp_dnam eqs;
+
+    fun mk_arg_typ (lazy, dest_opt, T) = if lazy then mk_uT T else T;
+    fun mk_con_typ (bind, args, mx) =
+        if null args then oneT else foldr1 mk_sprodT (map mk_arg_typ args);
+    fun mk_eq_typ (_, cons) = foldr1 mk_ssumT (map mk_con_typ cons);
+    val repTs : typ list = map mk_eq_typ eqs';
+    val dom_eqns : (binding * (typ * typ)) list = dbinds ~~ (dts ~~ repTs);
+    val thy = Domain_Axioms.add_axioms dom_eqns thy;
+
     val ((rewss, take_rews), theorems_thy) =
         thy
-          |> fold_map (fn eq => Domain_Theorems.theorems (eq, eqs)) eqs
+          |> fold_map (fn (eq, (x,cs)) =>
+                Domain_Theorems.theorems (eq, eqs) (Type x, cs))
+             (eqs ~~ eqs')
           ||>> Domain_Theorems.comp_theorems (comp_dnam, eqs);
   in
     theorems_thy
@@ -188,67 +206,67 @@
     (comp_dnam : string)
     (eqs''' : ((string * string option) list * binding * mixfix *
                (binding * (bool * binding option * 'a) list * mixfix) list) list)
-    (thy''' : theory) =
+    (thy : theory) =
   let
-    fun readS (SOME s) = Syntax.read_sort_global thy''' s
-      | readS NONE = Sign.defaultS thy''';
-    fun readTFree (a, s) = TFree (a, readS s);
+    val dtnvs : (binding * typ list * mixfix) list =
+      let
+        fun readS (SOME s) = Syntax.read_sort_global thy s
+          | readS NONE = Sign.defaultS thy;
+        fun readTFree (a, s) = TFree (a, readS s);
+      in
+        map (fn (vs,dname:binding,mx,_) =>
+                (dname, map readTFree vs, mx)) eqs'''
+      end;
 
-    val dtnvs = map (fn (vs,dname:binding,mx,_) => 
-                        (dname, map readTFree vs, mx)) eqs''';
-    val cons''' = map (fn (_,_,_,cons) => cons) eqs''';
     fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
     fun thy_arity (dname,tvars,mx) =
-      (Sign.full_name thy''' dname, map (snd o dest_TFree) tvars, @{sort rep});
+      (Sign.full_name thy dname, map (snd o dest_TFree) tvars, @{sort rep});
 
     (* this theory is used just for parsing and error checking *)
-    val tmp_thy = thy'''
+    val tmp_thy = thy
       |> Theory.copy
       |> Sign.add_types (map thy_type dtnvs)
       |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
 
-    val cons'' : (binding * (bool * binding option * typ) list * mixfix) list list =
-      map (map (upd_second (map (upd_third (prep_typ tmp_thy))))) cons''';
+    val cons''' :
+        (binding * (bool * binding option * 'a) list * mixfix) list list =
+        map (fn (_,_,_,cons) => cons) eqs''';
+    val cons'' :
+        (binding * (bool * binding option * typ) list * mixfix) list list =
+        map (map (upd_second (map (upd_third (prep_typ tmp_thy))))) cons''';
     val dtnvs' : (string * typ list) list =
-      map (fn (dname,vs,mx) => (Sign.full_name thy''' dname,vs)) dtnvs;
+        map (fn (dname,vs,mx) => (Sign.full_name thy dname,vs)) dtnvs;
     val eqs' : ((string * typ list) *
         (binding * (bool * binding option * typ) list * mixfix) list) list =
-      check_and_sort_domain true dtnvs' cons'' tmp_thy;
+        check_and_sort_domain true dtnvs' cons'' tmp_thy;
 
     fun mk_arg_typ (lazy, dest_opt, T) = if lazy then mk_uT T else T;
     fun mk_con_typ (bind, args, mx) =
         if null args then oneT else foldr1 mk_sprodT (map mk_arg_typ args);
     fun mk_eq_typ (_, cons) = foldr1 mk_ssumT (map mk_con_typ cons);
     
-    val thy'' = thy''' |>
+    val (iso_infos, thy) = thy |>
       Domain_Isomorphism.domain_isomorphism
         (map (fn ((vs, dname, mx, _), eq) =>
                  (map fst vs, dname, mx, mk_eq_typ eq, NONE))
              (eqs''' ~~ eqs'))
 
-    val thy' = thy'' |> Domain_Syntax.add_syntax true comp_dnam eqs';
-    val dts  = map (Type o fst) eqs';
-    val new_dts = map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
-    fun strip ss = drop (find_index (fn s => s = "'") ss + 1) ss;
-    fun typid (Type  (id,_)) =
-        let val c = hd (Symbol.explode (Long_Name.base_name id))
-        in if Symbol.is_letter c then c else "t" end
-      | typid (TFree (id,_)   ) = hd (strip (tl (Symbol.explode id)))
-      | typid (TVar ((id,_),_)) = hd (tl (Symbol.explode id));
-    fun one_con (con,args,mx) =
+    val dts : typ list = map (Type o fst) eqs';
+    val new_dts : (string * string list) list =
+        map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
+    fun one_con (con,args,mx) : cons =
         (Binding.name_of con,   (* FIXME preverse binding (!?) *)
-         mx,
          ListPair.map (fn ((lazy,sel,tp),vn) =>
-           mk_arg ((lazy, Datatype_Aux.dtyp_of_typ new_dts tp),
-                   Option.map Binding.name_of sel,vn))
-                      (args,(mk_var_names(map (typid o third) args)))
-        ) : cons;
+           mk_arg ((lazy, Datatype_Aux.dtyp_of_typ new_dts tp), vn))
+                      (args, Datatype_Prop.make_tnames (map third args))
+        );
     val eqs : eq list =
         map (fn (dtnvs,cons') => (dtnvs, map one_con cons')) eqs';
-    val thy = thy' |> Domain_Axioms.add_axioms true comp_dnam eqs;
     val ((rewss, take_rews), theorems_thy) =
         thy
-          |> fold_map (fn eq => Domain_Theorems.theorems (eq, eqs)) eqs
+          |> fold_map (fn (eq, (x,cs)) =>
+               Domain_Theorems.theorems (eq, eqs) (Type x, cs))
+             (eqs ~~ eqs')
           ||>> Domain_Theorems.comp_theorems (comp_dnam, eqs);
   in
     theorems_thy
--- a/src/HOLCF/Tools/Domain/domain_isomorphism.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/Domain/domain_isomorphism.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -6,19 +6,17 @@
 
 signature DOMAIN_ISOMORPHISM =
 sig
-  val domain_isomorphism:
+  val domain_isomorphism :
     (string list * binding * mixfix * typ * (binding * binding) option) list
-      -> theory -> theory
-  val domain_isomorphism_cmd:
+      -> theory -> Domain_Take_Proofs.iso_info list * theory
+  val domain_isomorphism_cmd :
     (string list * binding * mixfix * string * (binding * binding) option) list
       -> theory -> theory
-  val add_type_constructor:
-    (string * term * string * thm  * thm * thm) -> theory -> theory
-  val get_map_tab:
-    theory -> string Symtab.table
+  val add_type_constructor :
+    (string * term * string * thm  * thm * thm * thm) -> theory -> theory
 end;
 
-structure Domain_Isomorphism :> DOMAIN_ISOMORPHISM =
+structure Domain_Isomorphism : DOMAIN_ISOMORPHISM =
 struct
 
 val beta_ss =
@@ -35,30 +33,16 @@
 
 structure DeflData = Theory_Data
 (
+  (* terms like "foo_defl" *)
   type T = term Symtab.table;
   val empty = Symtab.empty;
   val extend = I;
   fun merge data = Symtab.merge (K true) data;
 );
 
-structure MapData = Theory_Data
-(
-  type T = string Symtab.table;
-  val empty = Symtab.empty;
-  val extend = I;
-  fun merge data = Symtab.merge (K true) data;
-);
-
 structure RepData = Theory_Data
 (
-  type T = thm list;
-  val empty = [];
-  val extend = I;
-  val merge = Thm.merge_thms;
-);
-
-structure IsodeflData = Theory_Data
-(
+  (* theorems like "REP('a foo) = foo_defl$REP('a)" *)
   type T = thm list;
   val empty = [];
   val extend = I;
@@ -67,6 +51,16 @@
 
 structure MapIdData = Theory_Data
 (
+  (* theorems like "foo_map$ID = ID" *)
+  type T = thm list;
+  val empty = [];
+  val extend = I;
+  val merge = Thm.merge_thms;
+);
+
+structure IsodeflData = Theory_Data
+(
+  (* theorems like "isodefl d t ==> isodefl (foo_map$d) (foo_defl$t)" *)
   type T = thm list;
   val empty = [];
   val extend = I;
@@ -74,108 +68,32 @@
 );
 
 fun add_type_constructor
-  (tname, defl_const, map_name, REP_thm, isodefl_thm, map_ID_thm) =
+  (tname, defl_const, map_name, REP_thm,
+   isodefl_thm, map_ID_thm, defl_map_thm) =
     DeflData.map (Symtab.insert (K true) (tname, defl_const))
-    #> MapData.map (Symtab.insert (K true) (tname, map_name))
+    #> Domain_Take_Proofs.add_map_function (tname, map_name, defl_map_thm)
     #> RepData.map (Thm.add_thm REP_thm)
     #> IsodeflData.map (Thm.add_thm isodefl_thm)
     #> MapIdData.map (Thm.add_thm map_ID_thm);
 
-val get_map_tab = MapData.get;
+
+(* val get_map_tab = MapData.get; *)
 
 
 (******************************************************************************)
-(******************************* building types *******************************)
+(************************** building types and terms **************************)
 (******************************************************************************)
 
-(* ->> is taken from holcf_logic.ML *)
-fun cfunT (T, U) = Type(@{type_name "->"}, [T, U]);
-
-infixr 6 ->>; val (op ->>) = cfunT;
+open HOLCF_Library;
 
-fun dest_cfunT (Type(@{type_name "->"}, [T, U])) = (T, U)
-  | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
-
-fun tupleT [] = HOLogic.unitT
-  | tupleT [T] = T
-  | tupleT (T :: Ts) = HOLogic.mk_prodT (T, tupleT Ts);
+infixr 6 ->>;
+infix -->>;
 
 val deflT = @{typ "udom alg_defl"};
 
 fun mapT (T as Type (_, Ts)) =
-  Library.foldr cfunT (map (fn T => T ->> T) Ts, T ->> T);     
-
-(******************************************************************************)
-(******************************* building terms *******************************)
-(******************************************************************************)
-
-(* builds the expression (v1,v2,..,vn) *)
-fun mk_tuple [] = HOLogic.unit
-|   mk_tuple (t::[]) = t
-|   mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
-
-(* builds the expression (%(v1,v2,..,vn). rhs) *)
-fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
-  | lambda_tuple (v::[]) rhs = Term.lambda v rhs
-  | lambda_tuple (v::vs) rhs =
-      HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
-
-(* continuous application and abstraction *)
-
-fun capply_const (S, T) =
-  Const(@{const_name Rep_CFun}, (S ->> T) --> (S --> T));
-
-fun cabs_const (S, T) =
-  Const(@{const_name Abs_CFun}, (S --> T) --> (S ->> T));
-
-fun mk_cabs t =
-  let val T = Term.fastype_of t
-  in cabs_const (Term.domain_type T, Term.range_type T) $ t end
-
-(* builds the expression (LAM v. rhs) *)
-fun big_lambda v rhs =
-  cabs_const (Term.fastype_of v, Term.fastype_of rhs) $ Term.lambda v rhs;
-
-(* builds the expression (LAM v1 v2 .. vn. rhs) *)
-fun big_lambdas [] rhs = rhs
-  | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
-
-fun mk_capply (t, u) =
-  let val (S, T) =
-    case Term.fastype_of t of
-        Type(@{type_name "->"}, [S, T]) => (S, T)
-      | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
-  in capply_const (S, T) $ t $ u end;
-
-(* miscellaneous term constructions *)
-
-val mk_trp = HOLogic.mk_Trueprop;
-
-val mk_fst = HOLogic.mk_fst;
-val mk_snd = HOLogic.mk_snd;
-
-fun mk_cont t =
-  let val T = Term.fastype_of t
-  in Const(@{const_name cont}, T --> HOLogic.boolT) $ t end;
-
-fun mk_fix t =
-  let val (T, _) = dest_cfunT (Term.fastype_of t)
-  in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end;
-
-fun ID_const T = Const (@{const_name ID}, cfunT (T, T));
-
-fun cfcomp_const (T, U, V) =
-  Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V));
-
-fun mk_cfcomp (f, g) =
-  let
-    val (U, V) = dest_cfunT (Term.fastype_of f);
-    val (T, U') = dest_cfunT (Term.fastype_of g);
-  in
-    if U = U'
-    then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
-    else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
-  end;
+    (map (fn T => T ->> T) Ts) -->> (T ->> T)
+  | mapT T = T ->> T;
 
 fun mk_Rep_of T =
   Const (@{const_name Rep_of}, Term.itselfT T --> deflT) $ Logic.mk_type T;
@@ -185,12 +103,39 @@
 fun isodefl_const T =
   Const (@{const_name isodefl}, (T ->> T) --> deflT --> HOLogic.boolT);
 
+fun mk_deflation t =
+  Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t;
+
+fun mk_lub t =
+  let
+    val T = Term.range_type (Term.fastype_of t);
+    val lub_const = Const (@{const_name lub}, (T --> boolT) --> T);
+    val UNIV_const = @{term "UNIV :: nat set"};
+    val image_type = (natT --> T) --> (natT --> boolT) --> T --> boolT;
+    val image_const = Const (@{const_name image}, image_type);
+  in
+    lub_const $ (image_const $ t $ UNIV_const)
+  end;
+
 (* splits a cterm into the right and lefthand sides of equality *)
 fun dest_eqs t = HOLogic.dest_eq (HOLogic.dest_Trueprop t);
 
 fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u));
 
 (******************************************************************************)
+(****************************** isomorphism info ******************************)
+(******************************************************************************)
+
+fun deflation_abs_rep (info : Domain_Take_Proofs.iso_info) : thm =
+  let
+    val abs_iso = #abs_inverse info;
+    val rep_iso = #rep_inverse info;
+    val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso];
+  in
+    Drule.export_without_context thm
+  end
+
+(******************************************************************************)
 (*************** fixed-point definitions and unfolding theorems ***************)
 (******************************************************************************)
 
@@ -204,7 +149,8 @@
     val fixpoint = mk_fix (mk_cabs functional);
 
     (* project components of fixpoint *)
-    fun mk_projs (x::[]) t = [(x, t)]
+    fun mk_projs []      t = []
+      | mk_projs (x::[]) t = [(x, t)]
       | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t);
     val projs = mk_projs lhss fixpoint;
 
@@ -272,31 +218,41 @@
       | defl_of (TVar _) = error ("defl_of_typ: TVar")
       | defl_of (T as Type (c, Ts)) =
         case Symtab.lookup tab c of
-          SOME t => Library.foldl mk_capply (t, map defl_of Ts)
+          SOME t => list_ccomb (t, map defl_of Ts)
         | NONE => if is_closed_typ T
                   then mk_Rep_of T
                   else error ("defl_of_typ: type variable under unsupported type constructor " ^ c);
   in defl_of T end;
 
-fun map_of_typ
-    (tab : string Symtab.table)
-    (T : typ) : term =
-  let
-    fun is_closed_typ (Type (_, Ts)) = forall is_closed_typ Ts
-      | is_closed_typ _ = false;
-    fun map_of (T as TFree (a, _)) = Free (Library.unprefix "'" a, T ->> T)
-      | map_of (T as TVar _) = error ("map_of_typ: TVar")
-      | map_of (T as Type (c, Ts)) =
-        case Symtab.lookup tab c of
-          SOME t => Library.foldl mk_capply (Const (t, mapT T), map map_of Ts)
-        | NONE => if is_closed_typ T
-                  then ID_const T
-                  else error ("map_of_typ: type variable under unsupported type constructor " ^ c);
-  in map_of T end;
-
 
 (******************************************************************************)
-(* prepare datatype specifications *)
+(********************* declaring definitions and theorems *********************)
+(******************************************************************************)
+
+fun define_const
+    (bind : binding, rhs : term)
+    (thy : theory)
+    : (term * thm) * theory =
+  let
+    val typ = Term.fastype_of rhs;
+    val (const, thy) = Sign.declare_const ((bind, typ), NoSyn) thy;
+    val eqn = Logic.mk_equals (const, rhs);
+    val def = Thm.no_attributes (Binding.suffix_name "_def" bind, eqn);
+    val (def_thm, thy) = yield_singleton (PureThy.add_defs false) def thy;
+  in
+    ((const, def_thm), thy)
+  end;
+
+fun add_qualified_thm name (path, thm) thy =
+    thy
+    |> Sign.add_path path
+    |> yield_singleton PureThy.add_thms
+        (Thm.no_attributes (Binding.name name, thm))
+    ||> Sign.parent_path;
+
+(******************************************************************************)
+(******************************* main function ********************************)
+(******************************************************************************)
 
 fun read_typ thy str sorts =
   let
@@ -320,7 +276,7 @@
     (prep_typ: theory -> 'a -> (string * sort) list -> typ * (string * sort) list)
     (doms_raw: (string list * binding * mixfix * 'a * (binding * binding) option) list)
     (thy: theory)
-    : theory =
+    : Domain_Take_Proofs.iso_info list * theory =
   let
     val _ = Theory.requires thy "Representable" "domain isomorphisms";
 
@@ -345,7 +301,7 @@
     val dom_eqns = map mk_dom_eqn doms;
 
     (* check for valid type parameters *)
-    val (tyvars, _, _, _, _)::_ = doms;
+    val (tyvars, _, _, _, _) = hd doms;
     val new_doms = map (fn (tvs, tname, mx, _, _) =>
       let val full_tname = Sign.full_name tmp_thy tname
       in
@@ -362,7 +318,7 @@
     (* declare deflation combinator constants *)
     fun declare_defl_const (vs, tbind, mx, rhs, morphs) thy =
       let
-        val defl_type = Library.foldr cfunT (map (K deflT) vs, deflT);
+        val defl_type = map (K deflT) vs -->> deflT;
         val defl_bind = Binding.suffix_name "_defl" tbind;
       in
         Sign.declare_const ((defl_bind, defl_type), NoSyn) thy
@@ -390,7 +346,7 @@
       let
         fun tfree a = TFree (a, the (AList.lookup (op =) sorts a))
         val reps = map (mk_Rep_of o tfree) vs;
-        val defl = Library.foldl mk_capply (defl_const, reps);
+        val defl = list_ccomb (defl_const, reps);
         val ((_, _, _, {REP, ...}), thy) =
           Repdef.add_repdef false NONE (tbind, vs, mx) defl NONE thy;
       in
@@ -421,21 +377,12 @@
     (* define rep/abs functions *)
     fun mk_rep_abs ((tbind, morphs), (lhsT, rhsT)) thy =
       let
-        val rep_type = cfunT (lhsT, rhsT);
-        val abs_type = cfunT (rhsT, lhsT);
         val rep_bind = Binding.suffix_name "_rep" tbind;
         val abs_bind = Binding.suffix_name "_abs" tbind;
-        val (rep_bind, abs_bind) = the_default (rep_bind, abs_bind) morphs;
-        val (rep_const, thy) = thy |>
-          Sign.declare_const ((rep_bind, rep_type), NoSyn);
-        val (abs_const, thy) = thy |>
-          Sign.declare_const ((abs_bind, abs_type), NoSyn);
-        val rep_eqn = Logic.mk_equals (rep_const, coerce_const rep_type);
-        val abs_eqn = Logic.mk_equals (abs_const, coerce_const abs_type);
-        val ([rep_def, abs_def], thy) = thy |>
-          (PureThy.add_defs false o map Thm.no_attributes)
-            [(Binding.suffix_name "_rep_def" tbind, rep_eqn),
-             (Binding.suffix_name "_abs_def" tbind, abs_eqn)];
+        val ((rep_const, rep_def), thy) =
+            define_const (rep_bind, coerce_const (lhsT ->> rhsT)) thy;
+        val ((abs_const, abs_def), thy) =
+            define_const (abs_bind, coerce_const (rhsT ->> lhsT)) thy;
       in
         (((rep_const, abs_const), (rep_def, abs_def)), thy)
       end;
@@ -463,10 +410,27 @@
       in
         (((rep_iso_thm, abs_iso_thm), isodefl_thm), thy)
       end;
-    val ((iso_thms, isodefl_abs_rep_thms), thy) = thy
+    val ((iso_thms, isodefl_abs_rep_thms), thy) =
+      thy
       |> fold_map mk_iso_thms (dom_binds ~~ REP_eq_thms ~~ rep_abs_defs)
       |>> ListPair.unzip;
 
+    (* collect info about rep/abs *)
+    val iso_infos : Domain_Take_Proofs.iso_info list =
+      let
+        fun mk_info (((lhsT, rhsT), (repC, absC)), (rep_iso, abs_iso)) =
+          {
+            repT = rhsT,
+            absT = lhsT,
+            rep_const = repC,
+            abs_const = absC,
+            rep_inverse = rep_iso,
+            abs_inverse = abs_iso
+          };
+      in
+        map mk_info (dom_eqns ~~ rep_abs_consts ~~ iso_thms)
+      end
+
     (* declare map functions *)
     fun declare_map_const (tbind, (lhsT, rhsT)) thy =
       let
@@ -479,19 +443,24 @@
       fold_map declare_map_const (dom_binds ~~ dom_eqns);
 
     (* defining equations for map functions *)
-    val map_tab1 = MapData.get thy;
-    val map_tab2 =
-      Symtab.make (map (fst o dest_Type o fst) dom_eqns
-                   ~~ map (fst o dest_Const) map_consts);
-    val map_tab' = Symtab.merge (K true) (map_tab1, map_tab2);
-    val thy = MapData.put map_tab' thy;
-    fun mk_map_spec ((rep_const, abs_const), (lhsT, rhsT)) =
-      let
-        val lhs = map_of_typ map_tab' lhsT;
-        val body = map_of_typ map_tab' rhsT;
-        val rhs = mk_cfcomp (abs_const, mk_cfcomp (body, rep_const));
-      in mk_eqs (lhs, rhs) end;
-    val map_specs = map mk_map_spec (rep_abs_consts ~~ dom_eqns);
+    local
+      fun unprime a = Library.unprefix "'" a;
+      fun mapvar T = Free (unprime (fst (dest_TFree T)), T ->> T);
+      fun map_lhs (map_const, lhsT) =
+          (lhsT, list_ccomb (map_const, map mapvar (snd (dest_Type lhsT))));
+      val tab1 = map map_lhs (map_consts ~~ map fst dom_eqns);
+      val Ts = (snd o dest_Type o fst o hd) dom_eqns;
+      val tab = (Ts ~~ map mapvar Ts) @ tab1;
+      fun mk_map_spec (((rep_const, abs_const), map_const), (lhsT, rhsT)) =
+        let
+          val lhs = Domain_Take_Proofs.map_of_typ thy tab lhsT;
+          val body = Domain_Take_Proofs.map_of_typ thy tab rhsT;
+          val rhs = mk_cfcomp (abs_const, mk_cfcomp (body, rep_const));
+        in mk_eqs (lhs, rhs) end;
+    in
+      val map_specs =
+          map mk_map_spec (rep_abs_consts ~~ map_consts ~~ dom_eqns);
+    end;
 
     (* register recursive definition of map functions *)
     val map_binds = map (Binding.suffix_name "_map") dom_binds;
@@ -502,13 +471,14 @@
     val isodefl_thm =
       let
         fun unprime a = Library.unprefix "'" a;
-        fun mk_d (TFree (a, _)) = Free ("d" ^ unprime a, deflT);
-        fun mk_f (T as TFree (a, _)) = Free ("f" ^ unprime a, T ->> T);
+        fun mk_d T = Free ("d" ^ unprime (fst (dest_TFree T)), deflT);
+        fun mk_f T = Free ("f" ^ unprime (fst (dest_TFree T)), T ->> T);
         fun mk_assm T = mk_trp (isodefl_const T $ mk_f T $ mk_d T);
-        fun mk_goal ((map_const, defl_const), (T as Type (c, Ts), rhsT)) =
+        fun mk_goal ((map_const, defl_const), (T, rhsT)) =
           let
-            val map_term = Library.foldl mk_capply (map_const, map mk_f Ts);
-            val defl_term = Library.foldl mk_capply (defl_const, map mk_d Ts);
+            val (_, Ts) = dest_Type T;
+            val map_term = list_ccomb (map_const, map mk_f Ts);
+            val defl_term = list_ccomb (defl_const, map mk_d Ts);
           in isodefl_const T $ map_term $ defl_term end;
         val assms = (map mk_assm o snd o dest_Type o fst o hd) dom_eqns;
         val goals = map mk_goal (map_consts ~~ defl_consts ~~ dom_eqns);
@@ -554,8 +524,8 @@
         (((map_const, (lhsT, _)), REP_thm), isodefl_thm) =
       let
         val Ts = snd (dest_Type lhsT);
-        val lhs = Library.foldl mk_capply (map_const, map ID_const Ts);
-        val goal = mk_eqs (lhs, ID_const lhsT);
+        val lhs = list_ccomb (map_const, map mk_ID Ts);
+        val goal = mk_eqs (lhs, mk_ID lhsT);
         val tac = EVERY
           [rtac @{thm isodefl_REP_imp_ID} 1,
            stac REP_thm 1,
@@ -573,121 +543,122 @@
         (map_ID_binds ~~ map_ID_thms);
     val thy = MapIdData.map (fold Thm.add_thm map_ID_thms) thy;
 
-    (* define copy combinators *)
-    val new_dts =
-      map (apsnd (map (fst o dest_TFree)) o dest_Type o fst) dom_eqns;
-    val copy_arg_type = tupleT (map (fn (T, _) => T ->> T) dom_eqns);
-    val copy_arg = Free ("f", copy_arg_type);
-    val copy_args =
-      let fun mk_copy_args [] t = []
-            | mk_copy_args (_::[]) t = [t]
-            | mk_copy_args (_::xs) t =
-                mk_fst t :: mk_copy_args xs (mk_snd t);
-      in mk_copy_args doms copy_arg end;
-    fun copy_of_dtyp (T, dt) =
-        if Datatype_Aux.is_rec_type dt
-        then copy_of_dtyp' (T, dt)
-        else ID_const T
-    and copy_of_dtyp' (T, Datatype_Aux.DtRec i) = nth copy_args i
-      | copy_of_dtyp' (T, Datatype_Aux.DtTFree a) = ID_const T
-      | copy_of_dtyp' (T as Type (_, Ts), Datatype_Aux.DtType (c, ds)) =
-        case Symtab.lookup map_tab' c of
-          SOME f =>
-          Library.foldl mk_capply
-            (Const (f, mapT T), map copy_of_dtyp (Ts ~~ ds))
-        | NONE =>
-          (warning ("copy_of_dtyp: unknown type constructor " ^ c); ID_const T);
-    fun define_copy ((tbind, (rep_const, abs_const)), (lhsT, rhsT)) thy =
+    (* prove deflation theorems for map functions *)
+    val deflation_abs_rep_thms = map deflation_abs_rep iso_infos;
+    val deflation_map_thm =
       let
-        val copy_type = copy_arg_type ->> (lhsT ->> lhsT);
-        val copy_bind = Binding.suffix_name "_copy" tbind;
-        val (copy_const, thy) = thy |>
-          Sign.declare_const ((copy_bind, copy_type), NoSyn);
-        val dtyp = Datatype_Aux.dtyp_of_typ new_dts rhsT;
-        val body = copy_of_dtyp (rhsT, dtyp);
-        val comp = mk_cfcomp (abs_const, mk_cfcomp (body, rep_const));
-        val rhs = big_lambda copy_arg comp;
-        val eqn = Logic.mk_equals (copy_const, rhs);
-        val ([copy_def], thy) =
-          thy
-          |> Sign.add_path (Binding.name_of tbind)
-          |> (PureThy.add_defs false o map Thm.no_attributes)
-              [(Binding.name "copy_def", eqn)]
-          ||> Sign.parent_path;
-      in ((copy_const, copy_def), thy) end;
-    val ((copy_consts, copy_defs), thy) = thy
-      |> fold_map define_copy (dom_binds ~~ rep_abs_consts ~~ dom_eqns)
-      |>> ListPair.unzip;
+        fun unprime a = Library.unprefix "'" a;
+        fun mk_f T = Free (unprime (fst (dest_TFree T)), T ->> T);
+        fun mk_assm T = mk_trp (mk_deflation (mk_f T));
+        fun mk_goal (map_const, (lhsT, rhsT)) =
+          let
+            val (_, Ts) = dest_Type lhsT;
+            val map_term = list_ccomb (map_const, map mk_f Ts);
+          in mk_deflation map_term end;
+        val assms = (map mk_assm o snd o dest_Type o fst o hd) dom_eqns;
+        val goals = map mk_goal (map_consts ~~ dom_eqns);
+        val goal = mk_trp (foldr1 HOLogic.mk_conj goals);
+        val start_thms =
+          @{thm split_def} :: map_apply_thms;
+        val adm_rules =
+          @{thms adm_conj adm_subst [OF _ adm_deflation]
+                 cont2cont_fst cont2cont_snd cont_id};
+        val bottom_rules =
+          @{thms fst_strict snd_strict deflation_UU simp_thms};
+        val deflation_rules =
+          @{thms conjI deflation_ID}
+          @ deflation_abs_rep_thms
+          @ Domain_Take_Proofs.get_deflation_thms thy;
+      in
+        Goal.prove_global thy [] assms goal (fn {prems, ...} =>
+         EVERY
+          [simp_tac (HOL_basic_ss addsimps start_thms) 1,
+           rtac @{thm fix_ind} 1,
+           REPEAT (resolve_tac adm_rules 1),
+           simp_tac (HOL_basic_ss addsimps bottom_rules) 1,
+           simp_tac beta_ss 1,
+           simp_tac (HOL_basic_ss addsimps @{thms fst_conv snd_conv}) 1,
+           REPEAT (etac @{thm conjE} 1),
+           REPEAT (resolve_tac (deflation_rules @ prems) 1 ORELSE atac 1)])
+      end;
+    val deflation_map_binds = dom_binds |>
+        map (Binding.prefix_name "deflation_" o Binding.suffix_name "_map");
+    val (deflation_map_thms, thy) = thy |>
+      (PureThy.add_thms o map (Thm.no_attributes o apsnd Drule.export_without_context))
+        (conjuncts deflation_map_binds deflation_map_thm);
 
-    (* define combined copy combinator *)
-    val ((c_const, c_def_thms), thy) =
-      if length doms = 1
-      then ((hd copy_consts, []), thy)
-      else
-        let
-          val c_type = copy_arg_type ->> copy_arg_type;
-          val c_name = space_implode "_" (map Binding.name_of dom_binds);
-          val c_bind = Binding.name (c_name ^ "_copy");
-          val c_body =
-              mk_tuple (map (mk_capply o rpair copy_arg) copy_consts);
-          val c_rhs = big_lambda copy_arg c_body;
-          val (c_const, thy) =
-            Sign.declare_const ((c_bind, c_type), NoSyn) thy;
-          val c_eqn = Logic.mk_equals (c_const, c_rhs);
-          val (c_def_thms, thy) =
-            thy
-            |> Sign.add_path c_name
-            |> (PureThy.add_defs false o map Thm.no_attributes)
-                [(Binding.name "copy_def", c_eqn)]
-            ||> Sign.parent_path;
-        in ((c_const, c_def_thms), thy) end;
+    (* register map functions in theory data *)
+    local
+      fun register_map ((dname, map_name), defl_thm) =
+          Domain_Take_Proofs.add_map_function (dname, map_name, defl_thm);
+      val dnames = map (fst o dest_Type o fst) dom_eqns;
+      val map_names = map (fst o dest_Const) map_consts;
+    in
+      val thy =
+          fold register_map (dnames ~~ map_names ~~ deflation_map_thms) thy;
+    end;
+
+    (* definitions and proofs related to take functions *)
+    val (take_info, thy) =
+        Domain_Take_Proofs.define_take_functions
+          (dom_binds ~~ iso_infos) thy;
+    val { take_consts, take_defs, chain_take_thms, take_0_thms,
+          take_Suc_thms, deflation_take_thms,
+          finite_consts, finite_defs } = take_info;
 
-    (* fixed-point lemma for combined copy combinator *)
-    val fix_copy_lemma =
+    (* least-upper-bound lemma for take functions *)
+    val lub_take_lemma =
       let
-        fun mk_map_ID (map_const, (Type (c, Ts), rhsT)) =
-          Library.foldl mk_capply (map_const, map ID_const Ts);
+        val lhs = mk_tuple (map mk_lub take_consts);
+        fun mk_map_ID (map_const, (lhsT, rhsT)) =
+          list_ccomb (map_const, map mk_ID (snd (dest_Type lhsT)));
         val rhs = mk_tuple (map mk_map_ID (map_consts ~~ dom_eqns));
-        val goal = mk_eqs (mk_fix c_const, rhs);
-        val rules =
-          [@{thm pair_collapse}, @{thm split_def}]
-          @ map_apply_thms
-          @ c_def_thms @ copy_defs
-          @ MapIdData.get thy;
-        val tac = simp_tac (beta_ss addsimps rules) 1;
+        val goal = mk_trp (mk_eq (lhs, rhs));
+        val start_rules =
+            @{thms thelub_Pair [symmetric] ch2ch_Pair} @ chain_take_thms
+            @ @{thms pair_collapse split_def}
+            @ map_apply_thms @ MapIdData.get thy;
+        val rules0 =
+            @{thms iterate_0 Pair_strict} @ take_0_thms;
+        val rules1 =
+            @{thms iterate_Suc Pair_fst_snd_eq fst_conv snd_conv}
+            @ take_Suc_thms;
+        val tac =
+            EVERY
+            [simp_tac (HOL_basic_ss addsimps start_rules) 1,
+             simp_tac (HOL_basic_ss addsimps @{thms fix_def2}) 1,
+             rtac @{thm lub_eq} 1,
+             rtac @{thm nat.induct} 1,
+             simp_tac (HOL_basic_ss addsimps rules0) 1,
+             asm_full_simp_tac (beta_ss addsimps rules1) 1];
       in
         Goal.prove_global thy [] [] goal (K tac)
       end;
 
-    (* prove reach lemmas *)
-    val reach_thm_projs =
-      let fun mk_projs (x::[]) t = [(x, t)]
-            | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t);
-      in mk_projs dom_binds (mk_fix c_const) end;
-    fun prove_reach_thm (((bind, t), map_ID_thm), (lhsT, rhsT)) thy =
+    (* prove lub of take equals ID *)
+    fun prove_lub_take (((bind, take_const), map_ID_thm), (lhsT, rhsT)) thy =
       let
-        val x = Free ("x", lhsT);
-        val goal = mk_eqs (mk_capply (t, x), x);
-        val rules =
-          fix_copy_lemma :: map_ID_thm :: @{thms fst_conv snd_conv ID1};
-        val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
-        val reach_thm = Goal.prove_global thy [] [] goal (K tac);
+        val i = Free ("i", natT);
+        val goal = mk_eqs (mk_lub (lambda i (take_const $ i)), mk_ID lhsT);
+        val tac =
+            EVERY
+            [rtac @{thm trans} 1, rtac map_ID_thm 2,
+             cut_facts_tac [lub_take_lemma] 1,
+             REPEAT (etac @{thm Pair_inject} 1), atac 1];
+        val lub_take_thm = Goal.prove_global thy [] [] goal (K tac);
       in
-        thy
-        |> Sign.add_path (Binding.name_of bind)
-        |> yield_singleton (PureThy.add_thms o map Thm.no_attributes)
-            (Binding.name "reach", reach_thm)
-        ||> Sign.parent_path
+        add_qualified_thm "lub_take" (Binding.name_of bind, lub_take_thm) thy
       end;
-    val (reach_thms, thy) = thy |>
-      fold_map prove_reach_thm (reach_thm_projs ~~ map_ID_thms ~~ dom_eqns);
+    val (lub_take_thms, thy) =
+        fold_map prove_lub_take
+          (dom_binds ~~ take_consts ~~ map_ID_thms ~~ dom_eqns) thy;
 
   in
-    thy
+    (iso_infos, thy)
   end;
 
 val domain_isomorphism = gen_domain_isomorphism cert_typ;
-val domain_isomorphism_cmd = gen_domain_isomorphism read_typ;
+val domain_isomorphism_cmd = snd oo gen_domain_isomorphism read_typ;
 
 (******************************************************************************)
 (******************************** outer syntax ********************************)
--- a/src/HOLCF/Tools/Domain/domain_library.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/Domain/domain_library.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -5,36 +5,6 @@
 *)
 
 
-(* ----- general support ---------------------------------------------------- *)
-
-fun mapn f n []      = []
-  | mapn f n (x::xs) = (f n x) :: mapn f (n+1) xs;
-
-fun foldr'' f (l,f2) =
-    let fun itr []  = raise Fail "foldr''" 
-          | itr [a] = f2 a
-          | itr (a::l) = f(a, itr l)
-    in  itr l  end;
-
-fun map_cumulr f start xs =
-    List.foldr (fn (x,(ys,res))=>case f(x,res) of (y,res2) =>
-                                                  (y::ys,res2)) ([],start) xs;
-
-fun first  (x,_,_) = x; fun second (_,x,_) = x; fun third  (_,_,x) = x;
-fun upd_first  f (x,y,z) = (f x,   y,   z);
-fun upd_second f (x,y,z) = (  x, f y,   z);
-fun upd_third  f (x,y,z) = (  x,   y, f z);
-
-fun atomize ctxt thm =
-    let
-      val r_inst = read_instantiate ctxt;
-      fun at thm =
-          case concl_of thm of
-            _$(Const("op &",_)$_$_)       => at(thm RS conjunct1)@at(thm RS conjunct2)
-          | _$(Const("All" ,_)$Abs(s,_,_))=> at(thm RS (r_inst [(("x", 0), "?" ^ s)] spec))
-          | _                             => [thm];
-    in map zero_var_indexes (at thm) end;
-
 (* infix syntax *)
 
 infixr 5 -->;
@@ -44,8 +14,6 @@
 infix 0 ==;
 infix 1 ===;
 infix 1 ~=;
-infix 1 <<;
-infix 1 ~<<;
 
 infix 9 `  ;
 infix 9 `% ;
@@ -56,19 +24,25 @@
 
 signature DOMAIN_LIBRARY =
 sig
+  val first  : 'a * 'b * 'c -> 'a
+  val second : 'a * 'b * 'c -> 'b
+  val third  : 'a * 'b * 'c -> 'c
+  val upd_second : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
+  val upd_third  : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
+  val mapn : (int -> 'a -> 'b) -> int -> 'a list -> 'b list
+  val atomize : Proof.context -> thm -> thm list
+
   val Imposs : string -> 'a;
   val cpo_type : theory -> typ -> bool;
   val pcpo_type : theory -> typ -> bool;
   val string_of_typ : theory -> typ -> string;
 
   (* Creating HOLCF types *)
-  val mk_cfunT : typ * typ -> typ;
   val ->> : typ * typ -> typ;
   val mk_ssumT : typ * typ -> typ;
   val mk_sprodT : typ * typ -> typ;
   val mk_uT : typ -> typ;
   val oneT : typ;
-  val trT : typ;
   val mk_maybeT : typ -> typ;
   val mk_ctupleT : typ list -> typ;
   val mk_TFree : string -> typ;
@@ -81,26 +55,17 @@
   val `% : term * string -> term;
   val /\ : string -> term -> term;
   val UU : term;
-  val TT : term;
-  val FF : term;
   val ID : term;
   val oo : term * term -> term;
-  val mk_up : term -> term;
-  val mk_sinl : term -> term;
-  val mk_sinr : term -> term;
-  val mk_stuple : term list -> term;
   val mk_ctuple : term list -> term;
   val mk_fix : term -> term;
   val mk_iterate : term * term * term -> term;
   val mk_fail : term;
   val mk_return : term -> term;
   val list_ccomb : term * term list -> term;
-  (*
-   val con_app : string -> ('a * 'b * string) list -> term;
-   *)
   val con_app2 : string -> ('a -> term) -> 'a list -> term;
+  val prj : ('a -> 'b -> 'a) -> ('a -> 'b -> 'a) -> 'a -> 'b list -> int -> 'a
   val proj : term -> 'a list -> int -> term;
-  val prj : ('a -> 'b -> 'a) -> ('a -> 'b -> 'a) -> 'a -> 'b list -> int -> 'a;
   val mk_ctuple_pat : term list -> term;
   val mk_branch : term -> term;
 
@@ -111,15 +76,11 @@
   val mk_lam : string * term -> term;
   val mk_all : string * term -> term;
   val mk_ex : string * term -> term;
-  val mk_constrain : typ * term -> term;
   val mk_constrainall : string * typ * term -> term;
   val === : term * term -> term;
-  val << : term * term -> term;
-  val ~<< : term * term -> term;
   val strict : term -> term;
   val defined : term -> term;
   val mk_adm : term -> term;
-  val mk_compact : term -> term;
   val lift : ('a -> term) -> 'a list * term -> term;
   val lift_defined : ('a -> term) -> 'a list * term -> term;
 
@@ -132,13 +93,12 @@
 
       (* Domain specifications *)
       eqtype arg;
-  type cons = string * mixfix * arg list;
+  type cons = string * arg list;
   type eq = (string * typ list) * cons list;
-  val mk_arg : (bool * Datatype.dtyp) * string option * string -> arg;
+  val mk_arg : (bool * Datatype.dtyp) * string -> arg;
   val is_lazy : arg -> bool;
   val rec_of : arg -> int;
   val dtyp_of : arg -> Datatype.dtyp;
-  val sel_of : arg -> string option;
   val vname : arg -> string;
   val upd_vname : (string -> string) -> arg -> arg;
   val is_rec : arg -> bool;
@@ -147,8 +107,6 @@
   val nonlazy_rec : arg list -> string list;
   val %# : arg -> term;
   val /\# : arg * term -> term;
-  val when_body : cons list -> (int * int -> term) -> term;
-  val when_funs : 'a list -> string list;
   val bound_arg : ''a list -> ''a -> term; (* ''a = arg or string *)
   val idx_name : 'a list -> string -> int -> string;
   val app_rec_arg : (int -> term) -> arg -> term;
@@ -162,12 +120,38 @@
   val dis_name : string -> string;
   val mat_name : string -> string;
   val pat_name : string -> string;
-  val mk_var_names : string list -> string list;
 end;
 
 structure Domain_Library :> DOMAIN_LIBRARY =
 struct
 
+fun first  (x,_,_) = x;
+fun second (_,x,_) = x;
+fun third  (_,_,x) = x;
+
+fun upd_first  f (x,y,z) = (f x,   y,   z);
+fun upd_second f (x,y,z) = (  x, f y,   z);
+fun upd_third  f (x,y,z) = (  x,   y, f z);
+
+fun mapn f n []      = []
+  | mapn f n (x::xs) = (f n x) :: mapn f (n+1) xs;
+
+fun foldr'' f (l,f2) =
+    let fun itr []  = raise Fail "foldr''" 
+          | itr [a] = f2 a
+          | itr (a::l) = f(a, itr l)
+    in  itr l  end;
+
+fun atomize ctxt thm =
+    let
+      val r_inst = read_instantiate ctxt;
+      fun at thm =
+          case concl_of thm of
+            _$(Const("op &",_)$_$_)       => at(thm RS conjunct1)@at(thm RS conjunct2)
+          | _$(Const("All" ,_)$Abs(s,_,_))=> at(thm RS (r_inst [(("x", 0), "?" ^ s)] spec))
+          | _                             => [thm];
+    in map zero_var_indexes (at thm) end;
+
 exception Impossible of string;
 fun Imposs msg = raise Impossible ("Domain:"^msg);
 
@@ -191,22 +175,6 @@
 fun pat_name  con = (extern_name con) ^ "_pat";
 fun pat_name_ con = (strip_esc   con) ^ "_pat";
 
-(* make distinct names out of the type list, 
-                                       forbidding "o","n..","x..","f..","P.." as names *)
-(* a number string is added if necessary *)
-fun mk_var_names ids : string list =
-    let
-      fun nonreserved s = if s mem ["n","x","f","P"] then s^"'" else s;
-      fun index_vnames(vn::vns,occupied) =
-          (case AList.lookup (op =) occupied vn of
-             NONE => if vn mem vns
-                     then (vn^"1") :: index_vnames(vns,(vn,1)  ::occupied)
-                     else  vn      :: index_vnames(vns,          occupied)
-           | SOME(i) => (vn^(string_of_int (i+1)))
-                        :: index_vnames(vns,(vn,i+1)::occupied))
-        | index_vnames([],occupied) = [];
-    in index_vnames(map nonreserved ids, [("O",0),("o",0)]) end;
-
 fun cpo_type sg t = Sign.of_sort sg (Sign.certify_typ sg t, @{sort cpo});
 fun pcpo_type sg t = Sign.of_sort sg (Sign.certify_typ sg t, @{sort pcpo});
 fun string_of_typ sg = Syntax.string_of_typ_global sg o Sign.certify_typ sg;
@@ -215,12 +183,10 @@
 
 type arg =
      (bool * Datatype.dtyp) *   (*  (lazy, recursive element) *)
-     string option *               (*   selector name    *)
      string;                       (*   argument name    *)
 
 type cons =
      string *         (* operator name of constr *)
-     mixfix *         (* mixfix syntax of constructor *)
      arg list;        (* argument list      *)
 
 type eq =
@@ -230,15 +196,14 @@
 
 val mk_arg = I;
 
-fun rec_of ((_,dtyp),_,_) =
+fun rec_of ((_,dtyp),_) =
     case dtyp of Datatype_Aux.DtRec i => i | _ => ~1;
 (* FIXME: what about indirect recursion? *)
 
-fun is_lazy arg = fst (first arg);
-fun dtyp_of arg = snd (first arg);
-val sel_of    =       second;
-val     vname =       third;
-val upd_vname =   upd_third;
+fun is_lazy arg = fst (fst arg);
+fun dtyp_of arg = snd (fst arg);
+val     vname =       snd;
+val upd_vname =   apsnd;
 fun is_rec         arg = rec_of arg >=0;
 fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
 fun nonlazy     args   = map vname (filter_out is_lazy args);
@@ -248,8 +213,8 @@
 (* ----- combinators for making dtyps ----- *)
 
 fun mk_uD T = Datatype_Aux.DtType(@{type_name "u"}, [T]);
-fun mk_sprodD (T, U) = Datatype_Aux.DtType(@{type_name "**"}, [T, U]);
-fun mk_ssumD (T, U) = Datatype_Aux.DtType(@{type_name "++"}, [T, U]);
+fun mk_sprodD (T, U) = Datatype_Aux.DtType(@{type_name sprod}, [T, U]);
+fun mk_ssumD (T, U) = Datatype_Aux.DtType(@{type_name ssum}, [T, U]);
 fun mk_liftD T = Datatype_Aux.DtType(@{type_name "lift"}, [T]);
 val unitD = Datatype_Aux.DtType(@{type_name "unit"}, []);
 val boolD = Datatype_Aux.DtType(@{type_name "bool"}, []);
@@ -258,19 +223,18 @@
 fun big_sprodD ds = case ds of [] => oneD | _ => foldr1 mk_sprodD ds;
 fun big_ssumD ds = case ds of [] => unitD | _ => foldr1 mk_ssumD ds;
 
-fun dtyp_of_arg ((lazy, D), _, _) = if lazy then mk_uD D else D;
-fun dtyp_of_cons (_, _, args) = big_sprodD (map dtyp_of_arg args);
+fun dtyp_of_arg ((lazy, D), _) = if lazy then mk_uD D else D;
+fun dtyp_of_cons (_, args) = big_sprodD (map dtyp_of_arg args);
 fun dtyp_of_eq (_, cons) = big_ssumD (map dtyp_of_cons cons);
 
 
 (* ----- support for type and mixfix expressions ----- *)
 
 fun mk_uT T = Type(@{type_name "u"}, [T]);
-fun mk_cfunT (T, U) = Type(@{type_name "->"}, [T, U]);
-fun mk_sprodT (T, U) = Type(@{type_name "**"}, [T, U]);
-fun mk_ssumT (T, U) = Type(@{type_name "++"}, [T, U]);
+fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U]);
+fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U]);
+fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U]);
 val oneT = @{typ one};
-val trT = @{typ tr};
 
 val op ->> = mk_cfunT;
 
@@ -290,7 +254,6 @@
 fun mk_lam  (x,T) = Abs(x,dummyT,T);
 fun mk_all  (x,P) = HOLogic.mk_all (x,dummyT,P);
 fun mk_ex   (x,P) = mk_exists (x,dummyT,P);
-val mk_constrain = uncurry TypeInfer.constrain;
 fun mk_constrainall (x,typ,P) = %%:"All" $ (TypeInfer.constrain (typ --> boolT) (mk_lam(x,P)));
 end
 
@@ -301,29 +264,18 @@
 infix 0 ==;     fun S ==  T = %%:"==" $ S $ T;
 infix 1 ===;    fun S === T = %%:"op =" $ S $ T;
 infix 1 ~=;     fun S ~=  T = HOLogic.mk_not (S === T);
-infix 1 <<;     fun S <<  T = %%: @{const_name Porder.below} $ S $ T;
-infix 1 ~<<;    fun S ~<< T = HOLogic.mk_not (S << T);
 
 infix 9 `  ; fun f ` x = %%: @{const_name Rep_CFun} $ f $ x;
 infix 9 `% ; fun f`% s = f` %: s;
 infix 9 `%%; fun f`%%s = f` %%:s;
 
 fun mk_adm t = %%: @{const_name adm} $ t;
-fun mk_compact t = %%: @{const_name compact} $ t;
 val ID = %%: @{const_name ID};
 fun mk_strictify t = %%: @{const_name strictify}`t;
-(*val csplitN    = "Cprod.csplit";*)
-(*val sfstN      = "Sprod.sfst";*)
-(*val ssndN      = "Sprod.ssnd";*)
 fun mk_ssplit t = %%: @{const_name ssplit}`t;
-fun mk_sinl t = %%: @{const_name sinl}`t;
-fun mk_sinr t = %%: @{const_name sinr}`t;
 fun mk_sscase (x, y) = %%: @{const_name sscase}`x`y;
-fun mk_up t = %%: @{const_name up}`t;
 fun mk_fup (t,u) = %%: @{const_name fup} ` t ` u;
 val ONE = @{term ONE};
-val TT = @{term TT};
-val FF = @{term FF};
 fun mk_iterate (n,f,z) = %%: @{const_name iterate} $ n ` f ` z;
 fun mk_fix t = %%: @{const_name fix}`t;
 fun mk_return t = %%: @{const_name Fixrec.return}`t;
@@ -354,8 +306,6 @@
 fun spair (t,u) = %%: @{const_name spair}`t`u;
 fun mk_ctuple [] = HOLogic.unit (* used in match_defs *)
   | mk_ctuple ts = foldr1 cpair ts;
-fun mk_stuple [] = ONE
-  | mk_stuple ts = foldr1 spair ts;
 fun mk_ctupleT [] = HOLogic.unitT   (* used in match_defs *)
   | mk_ctupleT Ts = foldr1 HOLogic.mk_prodT Ts;
 fun mk_maybeT T = Type ("Fixrec.maybe",[T]);
@@ -374,23 +324,5 @@
   | cont_eta_contract t    = t;
 
 fun idx_name dnames s n = s^(if length dnames = 1 then "" else string_of_int n);
-fun when_funs cons = if length cons = 1 then ["f"] 
-                     else mapn (fn n => K("f"^(string_of_int n))) 1 cons;
-fun when_body cons funarg =
-    let
-      fun one_fun n (_,_,[]  ) = /\ "dummy" (funarg(1,n))
-        | one_fun n (_,_,args) = let
-            val l2 = length args;
-            fun idxs m arg = (if is_lazy arg then (fn t => mk_fup (ID, t))
-                              else I) (Bound(l2-m));
-          in cont_eta_contract
-               (foldr'' 
-                  (fn (a,t) => mk_ssplit (/\# (a,t)))
-                  (args,
-                fn a=> /\#(a,(list_ccomb(funarg(l2,n),mapn idxs 1 args))))
-               ) end;
-    in (if length cons = 1 andalso length(third(hd cons)) <= 1
-        then mk_strictify else I)
-         (foldr1 mk_sscase (mapn one_fun 1 cons)) end;
 
 end; (* struct *)
--- a/src/HOLCF/Tools/Domain/domain_syntax.ML	Wed Mar 03 15:40:39 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,210 +0,0 @@
-(*  Title:      HOLCF/Tools/Domain/domain_syntax.ML
-    Author:     David von Oheimb
-
-Syntax generator for domain command.
-*)
-
-signature DOMAIN_SYNTAX =
-sig
-  val calc_syntax:
-      theory ->
-      bool ->
-      typ ->
-      (string * typ list) *
-      (binding * (bool * binding option * typ) list * mixfix) list ->
-      (binding * typ * mixfix) list * ast Syntax.trrule list
-
-  val add_syntax:
-      bool ->
-      string ->
-      ((string * typ list) *
-       (binding * (bool * binding option * typ) list * mixfix) list) list ->
-      theory -> theory
-end;
-
-
-structure Domain_Syntax :> DOMAIN_SYNTAX =
-struct
-
-open Domain_Library;
-infixr 5 -->; infixr 6 ->>;
-
-fun calc_syntax thy
-    (definitional : bool)
-    (dtypeprod : typ)
-    ((dname : string, typevars : typ list), 
-     (cons': (binding * (bool * binding option * typ) list * mixfix) list))
-    : (binding * typ * mixfix) list * ast Syntax.trrule list =
-  let
-(* ----- constants concerning the isomorphism ------------------------------- *)
-    local
-      fun opt_lazy (lazy,_,t) = if lazy then mk_uT t else t
-      fun prod     (_,args,_) = case args of [] => oneT
-                                           | _ => foldr1 mk_sprodT (map opt_lazy args);
-      fun freetvar s = let val tvar = mk_TFree s in
-                         if tvar mem typevars then freetvar ("t"^s) else tvar end;
-      fun when_type (_,args,_) = List.foldr (op ->>) (freetvar "t") (map third args);
-    in
-    val dtype  = Type(dname,typevars);
-    val dtype2 = foldr1 mk_ssumT (map prod cons');
-    val dnam = Long_Name.base_name dname;
-    fun dbind s = Binding.name (dnam ^ s);
-    val const_rep  = (dbind "_rep" ,              dtype  ->> dtype2, NoSyn);
-    val const_abs  = (dbind "_abs" ,              dtype2 ->> dtype , NoSyn);
-    val const_when = (dbind "_when", List.foldr (op ->>) (dtype ->> freetvar "t") (map when_type cons'), NoSyn);
-    val const_copy = (dbind "_copy", dtypeprod ->> dtype  ->> dtype , NoSyn);
-    end;
-
-(* ----- constants concerning constructors, discriminators, and selectors --- *)
-
-    local
-      val escape = let
-        fun esc (c::cs) = if c mem ["'","_","(",")","/"] then "'"::c::esc cs
-                          else      c::esc cs
-          | esc []      = []
-      in implode o esc o Symbol.explode end;
-
-      fun dis_name_ con =
-          Binding.name ("is_" ^ strip_esc (Binding.name_of con));
-      fun mat_name_ con =
-          Binding.name ("match_" ^ strip_esc (Binding.name_of con));
-      fun pat_name_ con =
-          Binding.name (strip_esc (Binding.name_of con) ^ "_pat");
-      fun con (name,args,mx) =
-          (name, List.foldr (op ->>) dtype (map third args), mx);
-      fun dis (con,args,mx) =
-          (dis_name_ con, dtype->>trT,
-           Mixfix(escape ("is_" ^ Binding.name_of con), [], Syntax.max_pri));
-      (* strictly speaking, these constants have one argument,
-       but the mixfix (without arguments) is introduced only
-           to generate parse rules for non-alphanumeric names*)
-      fun freetvar s n =
-          let val tvar = mk_TFree (s ^ string_of_int n)
-          in if tvar mem typevars then freetvar ("t"^s) n else tvar end;
-
-      fun mk_matT (a,bs,c) =
-          a ->> List.foldr (op ->>) (mk_maybeT c) bs ->> mk_maybeT c;
-      fun mat (con,args,mx) =
-          (mat_name_ con,
-           mk_matT(dtype, map third args, freetvar "t" 1),
-           Mixfix(escape ("match_" ^ Binding.name_of con), [], Syntax.max_pri));
-      fun sel1 (_,sel,typ) =
-          Option.map (fn s => (s,dtype ->> typ,NoSyn)) sel;
-      fun sel (con,args,mx) = map_filter sel1 args;
-      fun mk_patT (a,b)     = a ->> mk_maybeT b;
-      fun pat_arg_typ n arg = mk_patT (third arg, freetvar "t" n);
-      fun pat (con,args,mx) =
-          (pat_name_ con,
-           (mapn pat_arg_typ 1 args)
-             --->
-             mk_patT (dtype, mk_ctupleT (map (freetvar "t") (1 upto length args))),
-           Mixfix(escape (Binding.name_of con ^ "_pat"), [], Syntax.max_pri));
-    in
-    val consts_con = map con cons';
-    val consts_dis = map dis cons';
-    val consts_mat = map mat cons';
-    val consts_pat = map pat cons';
-    val consts_sel = maps sel cons';
-    end;
-
-(* ----- constants concerning induction ------------------------------------- *)
-
-    val const_take   = (dbind "_take"  , HOLogic.natT-->dtype->>dtype, NoSyn);
-    val const_finite = (dbind "_finite", dtype-->HOLogic.boolT       , NoSyn);
-
-(* ----- case translation --------------------------------------------------- *)
-
-    fun syntax b = Syntax.mark_const (Sign.full_bname thy b);
-
-    local open Syntax in
-    local
-      fun c_ast authentic con = Constant ((authentic ? syntax) (Binding.name_of con));
-      fun expvar n = Variable ("e" ^ string_of_int n);
-      fun argvar n m _ = Variable ("a" ^ string_of_int n ^ "_" ^ string_of_int m);
-      fun argvars n args = mapn (argvar n) 1 args;
-      fun app s (l, r) = mk_appl (Constant s) [l, r];
-      val cabs = app "_cabs";
-      val capp = app @{const_syntax Rep_CFun};
-      fun con1 authentic n (con,args,mx) =
-        Library.foldl capp (c_ast authentic con, argvars n args);
-      fun case1 authentic n (con,args,mx) =
-        app "_case1" (con1 authentic n (con,args,mx), expvar n);
-      fun arg1 n (con,args,_) = List.foldr cabs (expvar n) (argvars n args);
-      fun when1 n m = if n = m then arg1 n else K (Constant @{const_syntax UU});
-          
-      fun app_var x = mk_appl (Constant "_variable") [x, Variable "rhs"];
-      fun app_pat x = mk_appl (Constant "_pat") [x];
-      fun args_list [] = Constant "_noargs"
-        | args_list xs = foldr1 (app "_args") xs;
-    in
-    fun case_trans authentic =
-        ParsePrintRule
-          (app "_case_syntax" (Variable "x", foldr1 (app "_case2") (mapn (case1 authentic) 1 cons')),
-           capp (Library.foldl capp
-            (Constant (syntax (dnam ^ "_when")), mapn arg1 1 cons'), Variable "x"));
-        
-    fun one_abscon_trans authentic n (con,mx,args) =
-        ParsePrintRule
-          (cabs (con1 authentic n (con,mx,args), expvar n),
-           Library.foldl capp (Constant (syntax (dnam ^ "_when")), mapn (when1 n) 1 cons'));
-    fun abscon_trans authentic = mapn (one_abscon_trans authentic) 1 cons';
-        
-    fun one_case_trans authentic (con,args,mx) =
-      let
-        val cname = c_ast authentic con;
-        val pname = Constant (syntax (strip_esc (Binding.name_of con) ^ "_pat"));
-        val ns = 1 upto length args;
-        val xs = map (fn n => Variable ("x"^(string_of_int n))) ns;
-        val ps = map (fn n => Variable ("p"^(string_of_int n))) ns;
-        val vs = map (fn n => Variable ("v"^(string_of_int n))) ns;
-      in
-        [ParseRule (app_pat (Library.foldl capp (cname, xs)),
-                    mk_appl pname (map app_pat xs)),
-         ParseRule (app_var (Library.foldl capp (cname, xs)),
-                    app_var (args_list xs)),
-         PrintRule (Library.foldl capp (cname, ListPair.map (app "_match") (ps,vs)),
-                    app "_match" (mk_appl pname ps, args_list vs))]
-        end;
-    val Case_trans = maps (one_case_trans false) cons' @ maps (one_case_trans true) cons';
-    end;
-    end;
-    val optional_consts =
-        if definitional then [] else [const_rep, const_abs, const_copy];
-
-  in (optional_consts @ [const_when] @ 
-      consts_con @ consts_dis @ consts_mat @ consts_pat @ consts_sel @
-      [const_take, const_finite],
-      (case_trans false :: case_trans true :: (abscon_trans false @ abscon_trans true @ Case_trans)))
-  end; (* let *)
-
-(* ----- putting all the syntax stuff together ------------------------------ *)
-
-fun add_syntax
-    (definitional : bool)
-    (comp_dnam : string)
-    (eqs' : ((string * typ list) *
-             (binding * (bool * binding option * typ) list * mixfix) list) list)
-    (thy'' : theory) =
-  let
-    val dtypes  = map (Type o fst) eqs';
-    val boolT   = HOLogic.boolT;
-    val funprod =
-        foldr1 HOLogic.mk_prodT (map (fn tp => tp ->> tp          ) dtypes);
-    val relprod =
-        foldr1 HOLogic.mk_prodT (map (fn tp => tp --> tp --> boolT) dtypes);
-    val const_copy =
-        (Binding.name (comp_dnam^"_copy"), funprod ->> funprod, NoSyn);
-    val const_bisim =
-        (Binding.name (comp_dnam^"_bisim"), relprod --> boolT, NoSyn);
-    val ctt : ((binding * typ * mixfix) list * ast Syntax.trrule list) list =
-        map (calc_syntax thy'' definitional funprod) eqs';
-  in thy''
-       |> Cont_Consts.add_consts
-           (maps fst ctt @ 
-            (if length eqs'>1 andalso not definitional
-             then [const_copy] else []) @
-            [const_bisim])
-       |> Sign.add_trrules_i (maps snd ctt)
-  end; (* let *)
-
-end; (* struct *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_take_proofs.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -0,0 +1,421 @@
+(*  Title:      HOLCF/Tools/domain/domain_take_proofs.ML
+    Author:     Brian Huffman
+
+Defines take functions for the given domain equation
+and proves related theorems.
+*)
+
+signature DOMAIN_TAKE_PROOFS =
+sig
+  type iso_info =
+    {
+      absT : typ,
+      repT : typ,
+      abs_const : term,
+      rep_const : term,
+      abs_inverse : thm,
+      rep_inverse : thm
+    }
+
+  val define_take_functions :
+    (binding * iso_info) list -> theory ->
+    { take_consts : term list,
+      take_defs : thm list,
+      chain_take_thms : thm list,
+      take_0_thms : thm list,
+      take_Suc_thms : thm list,
+      deflation_take_thms : thm list,
+      finite_consts : term list,
+      finite_defs : thm list
+    } * theory
+
+  val map_of_typ :
+    theory -> (typ * term) list -> typ -> term
+
+  val add_map_function :
+    (string * string * thm) -> theory -> theory
+
+  val get_map_tab : theory -> string Symtab.table
+  val get_deflation_thms : theory -> thm list
+end;
+
+structure Domain_Take_Proofs : DOMAIN_TAKE_PROOFS =
+struct
+
+type iso_info =
+  {
+    absT : typ,
+    repT : typ,
+    abs_const : term,
+    rep_const : term,
+    abs_inverse : thm,
+    rep_inverse : thm
+  };
+
+val beta_ss =
+  HOL_basic_ss
+    addsimps simp_thms
+    addsimps [@{thm beta_cfun}]
+    addsimprocs [@{simproc cont_proc}];
+
+val beta_tac = simp_tac beta_ss;
+
+(******************************************************************************)
+(******************************** theory data *********************************)
+(******************************************************************************)
+
+structure MapData = Theory_Data
+(
+  (* constant names like "foo_map" *)
+  type T = string Symtab.table;
+  val empty = Symtab.empty;
+  val extend = I;
+  fun merge data = Symtab.merge (K true) data;
+);
+
+structure DeflMapData = Theory_Data
+(
+  (* theorems like "deflation a ==> deflation (foo_map$a)" *)
+  type T = thm list;
+  val empty = [];
+  val extend = I;
+  val merge = Thm.merge_thms;
+);
+
+fun add_map_function (tname, map_name, deflation_map_thm) =
+    MapData.map (Symtab.insert (K true) (tname, map_name))
+    #> DeflMapData.map (Thm.add_thm deflation_map_thm);
+
+val get_map_tab = MapData.get;
+val get_deflation_thms = DeflMapData.get;
+
+(******************************************************************************)
+(************************** building types and terms **************************)
+(******************************************************************************)
+
+open HOLCF_Library;
+
+infixr 6 ->>;
+infix -->>;
+infix 9 `;
+
+val deflT = @{typ "udom alg_defl"};
+
+fun mapT (T as Type (_, Ts)) =
+    (map (fn T => T ->> T) Ts) -->> (T ->> T)
+  | mapT T = T ->> T;
+
+fun mk_Rep_of T =
+  Const (@{const_name Rep_of}, Term.itselfT T --> deflT) $ Logic.mk_type T;
+
+fun coerce_const T = Const (@{const_name coerce}, T);
+
+fun isodefl_const T =
+  Const (@{const_name isodefl}, (T ->> T) --> deflT --> HOLogic.boolT);
+
+fun mk_deflation t =
+  Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t;
+
+fun mk_lub t =
+  let
+    val T = Term.range_type (Term.fastype_of t);
+    val lub_const = Const (@{const_name lub}, (T --> boolT) --> T);
+    val UNIV_const = @{term "UNIV :: nat set"};
+    val image_type = (natT --> T) --> (natT --> boolT) --> T --> boolT;
+    val image_const = Const (@{const_name image}, image_type);
+  in
+    lub_const $ (image_const $ t $ UNIV_const)
+  end;
+
+(* splits a cterm into the right and lefthand sides of equality *)
+fun dest_eqs t = HOLogic.dest_eq (HOLogic.dest_Trueprop t);
+
+fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u));
+
+(******************************************************************************)
+(****************************** isomorphism info ******************************)
+(******************************************************************************)
+
+fun deflation_abs_rep (info : iso_info) : thm =
+  let
+    val abs_iso = #abs_inverse info;
+    val rep_iso = #rep_inverse info;
+    val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso];
+  in
+    Drule.export_without_context thm
+  end
+
+(******************************************************************************)
+(********************* building map functions over types **********************)
+(******************************************************************************)
+
+fun map_of_typ (thy : theory) (sub : (typ * term) list) (T : typ) : term =
+  let
+    val map_tab = get_map_tab thy;
+    fun auto T = T ->> T;
+    fun map_of T =
+        case AList.lookup (op =) sub T of
+          SOME m => (m, true) | NONE => map_of' T
+    and map_of' (T as (Type (c, Ts))) =
+        (case Symtab.lookup map_tab c of
+          SOME map_name =>
+          let
+            val map_type = map auto Ts -->> auto T;
+            val (ms, bs) = map_split map_of Ts;
+          in
+            if exists I bs
+            then (list_ccomb (Const (map_name, map_type), ms), true)
+            else (mk_ID T, false)
+          end
+        | NONE => (mk_ID T, false))
+      | map_of' T = (mk_ID T, false);
+  in
+    fst (map_of T)
+  end;
+
+
+(******************************************************************************)
+(********************* declaring definitions and theorems *********************)
+(******************************************************************************)
+
+fun define_const
+    (bind : binding, rhs : term)
+    (thy : theory)
+    : (term * thm) * theory =
+  let
+    val typ = Term.fastype_of rhs;
+    val (const, thy) = Sign.declare_const ((bind, typ), NoSyn) thy;
+    val eqn = Logic.mk_equals (const, rhs);
+    val def = Thm.no_attributes (Binding.suffix_name "_def" bind, eqn);
+    val (def_thm, thy) = yield_singleton (PureThy.add_defs false) def thy;
+  in
+    ((const, def_thm), thy)
+  end;
+
+fun add_qualified_thm name (path, thm) thy =
+    thy
+    |> Sign.add_path path
+    |> yield_singleton PureThy.add_thms
+        (Thm.no_attributes (Binding.name name, thm))
+    ||> Sign.parent_path;
+
+(******************************************************************************)
+(************************** defining take functions ***************************)
+(******************************************************************************)
+
+fun define_take_functions
+    (spec : (binding * iso_info) list)
+    (thy : theory) =
+  let
+
+    (* retrieve components of spec *)
+    val dom_binds = map fst spec;
+    val iso_infos = map snd spec;
+    val dom_eqns = map (fn x => (#absT x, #repT x)) iso_infos;
+    val rep_abs_consts = map (fn x => (#rep_const x, #abs_const x)) iso_infos;
+    val dnames = map Binding.name_of dom_binds;
+
+    (* get table of map functions *)
+    val map_tab = MapData.get thy;
+
+    fun mk_projs []      t = []
+      | mk_projs (x::[]) t = [(x, t)]
+      | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t);
+
+    fun mk_cfcomp2 ((rep_const, abs_const), f) =
+        mk_cfcomp (abs_const, mk_cfcomp (f, rep_const));
+
+    (* define take functional *)
+    val newTs : typ list = map fst dom_eqns;
+    val copy_arg_type = mk_tupleT (map (fn T => T ->> T) newTs);
+    val copy_arg = Free ("f", copy_arg_type);
+    val copy_args = map snd (mk_projs dom_binds copy_arg);
+    fun one_copy_rhs (rep_abs, (lhsT, rhsT)) =
+      let
+        val body = map_of_typ thy (newTs ~~ copy_args) rhsT;
+      in
+        mk_cfcomp2 (rep_abs, body)
+      end;
+    val take_functional =
+        big_lambda copy_arg
+          (mk_tuple (map one_copy_rhs (rep_abs_consts ~~ dom_eqns)));
+    val take_rhss =
+      let
+        val i = Free ("i", HOLogic.natT);
+        val rhs = mk_iterate (i, take_functional)
+      in
+        map (Term.lambda i o snd) (mk_projs dom_binds rhs)
+      end;
+
+    (* define take constants *)
+    fun define_take_const ((tbind, take_rhs), (lhsT, rhsT)) thy =
+      let
+        val take_type = HOLogic.natT --> lhsT ->> lhsT;
+        val take_bind = Binding.suffix_name "_take" tbind;
+        val (take_const, thy) =
+          Sign.declare_const ((take_bind, take_type), NoSyn) thy;
+        val take_eqn = Logic.mk_equals (take_const, take_rhs);
+        val (take_def_thm, thy) =
+          thy
+          |> Sign.add_path (Binding.name_of tbind)
+          |> yield_singleton
+              (PureThy.add_defs false o map Thm.no_attributes)
+              (Binding.name "take_def", take_eqn)
+          ||> Sign.parent_path;
+      in ((take_const, take_def_thm), thy) end;
+    val ((take_consts, take_defs), thy) = thy
+      |> fold_map define_take_const (dom_binds ~~ take_rhss ~~ dom_eqns)
+      |>> ListPair.unzip;
+
+    (* prove chain_take lemmas *)
+    fun prove_chain_take (take_const, dname) thy =
+      let
+        val goal = mk_trp (mk_chain take_const);
+        val rules = take_defs @ @{thms chain_iterate ch2ch_fst ch2ch_snd};
+        val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
+        val chain_take_thm = Goal.prove_global thy [] [] goal (K tac);
+      in
+        add_qualified_thm "chain_take" (dname, chain_take_thm) thy
+      end;
+    val (chain_take_thms, thy) =
+      fold_map prove_chain_take (take_consts ~~ dnames) thy;
+
+    (* prove take_0 lemmas *)
+    fun prove_take_0 ((take_const, dname), (lhsT, rhsT)) thy =
+      let
+        val lhs = take_const $ @{term "0::nat"};
+        val goal = mk_eqs (lhs, mk_bottom (lhsT ->> lhsT));
+        val rules = take_defs @ @{thms iterate_0 fst_strict snd_strict};
+        val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
+        val take_0_thm = Goal.prove_global thy [] [] goal (K tac);
+      in
+        add_qualified_thm "take_0" (dname, take_0_thm) thy
+      end;
+    val (take_0_thms, thy) =
+      fold_map prove_take_0 (take_consts ~~ dnames ~~ dom_eqns) thy;
+
+    (* prove take_Suc lemmas *)
+    val i = Free ("i", natT);
+    val take_is = map (fn t => t $ i) take_consts;
+    fun prove_take_Suc
+          (((take_const, rep_abs), dname), (lhsT, rhsT)) thy =
+      let
+        val lhs = take_const $ (@{term Suc} $ i);
+        val body = map_of_typ thy (newTs ~~ take_is) rhsT;
+        val rhs = mk_cfcomp2 (rep_abs, body);
+        val goal = mk_eqs (lhs, rhs);
+        val simps = @{thms iterate_Suc fst_conv snd_conv}
+        val rules = take_defs @ simps;
+        val tac = simp_tac (beta_ss addsimps rules) 1;
+        val take_Suc_thm = Goal.prove_global thy [] [] goal (K tac);
+      in
+        add_qualified_thm "take_Suc" (dname, take_Suc_thm) thy
+      end;
+    val (take_Suc_thms, thy) =
+      fold_map prove_take_Suc
+        (take_consts ~~ rep_abs_consts ~~ dnames ~~ dom_eqns) thy;
+
+    (* prove deflation theorems for take functions *)
+    val deflation_abs_rep_thms = map deflation_abs_rep iso_infos;
+    val deflation_take_thm =
+      let
+        val i = Free ("i", natT);
+        fun mk_goal take_const = mk_deflation (take_const $ i);
+        val goal = mk_trp (foldr1 mk_conj (map mk_goal take_consts));
+        val adm_rules =
+          @{thms adm_conj adm_subst [OF _ adm_deflation]
+                 cont2cont_fst cont2cont_snd cont_id};
+        val bottom_rules =
+          take_0_thms @ @{thms deflation_UU simp_thms};
+        val deflation_rules =
+          @{thms conjI deflation_ID}
+          @ deflation_abs_rep_thms
+          @ DeflMapData.get thy;
+      in
+        Goal.prove_global thy [] [] goal (fn _ =>
+         EVERY
+          [rtac @{thm nat.induct} 1,
+           simp_tac (HOL_basic_ss addsimps bottom_rules) 1,
+           asm_simp_tac (HOL_basic_ss addsimps take_Suc_thms) 1,
+           REPEAT (etac @{thm conjE} 1
+                   ORELSE resolve_tac deflation_rules 1
+                   ORELSE atac 1)])
+      end;
+    fun conjuncts [] thm = []
+      | conjuncts (n::[]) thm = [(n, thm)]
+      | conjuncts (n::ns) thm = let
+          val thmL = thm RS @{thm conjunct1};
+          val thmR = thm RS @{thm conjunct2};
+        in (n, thmL):: conjuncts ns thmR end;
+    val (deflation_take_thms, thy) =
+      fold_map (add_qualified_thm "deflation_take")
+        (map (apsnd Drule.export_without_context)
+          (conjuncts dnames deflation_take_thm)) thy;
+
+    (* prove strictness of take functions *)
+    fun prove_take_strict (take_const, dname) thy =
+      let
+        val goal = mk_trp (mk_strict (take_const $ Free ("i", natT)));
+        val tac = rtac @{thm deflation_strict} 1
+                  THEN resolve_tac deflation_take_thms 1;
+        val take_strict_thm = Goal.prove_global thy [] [] goal (K tac);
+      in
+        add_qualified_thm "take_strict" (dname, take_strict_thm) thy
+      end;
+    val (take_strict_thms, thy) =
+      fold_map prove_take_strict (take_consts ~~ dnames) thy;
+
+    (* prove take/take rules *)
+    fun prove_take_take ((chain_take, deflation_take), dname) thy =
+      let
+        val take_take_thm =
+            @{thm deflation_chain_min} OF [chain_take, deflation_take];
+      in
+        add_qualified_thm "take_take" (dname, take_take_thm) thy
+      end;
+    val (take_take_thms, thy) =
+      fold_map prove_take_take
+        (chain_take_thms ~~ deflation_take_thms ~~ dnames) thy;
+
+    (* define finiteness predicates *)
+    fun define_finite_const ((tbind, take_const), (lhsT, rhsT)) thy =
+      let
+        val finite_type = lhsT --> boolT;
+        val finite_bind = Binding.suffix_name "_finite" tbind;
+        val (finite_const, thy) =
+          Sign.declare_const ((finite_bind, finite_type), NoSyn) thy;
+        val x = Free ("x", lhsT);
+        val i = Free ("i", natT);
+        val finite_rhs =
+          lambda x (HOLogic.exists_const natT $
+            (lambda i (mk_eq (mk_capply (take_const $ i, x), x))));
+        val finite_eqn = Logic.mk_equals (finite_const, finite_rhs);
+        val (finite_def_thm, thy) =
+          thy
+          |> Sign.add_path (Binding.name_of tbind)
+          |> yield_singleton
+              (PureThy.add_defs false o map Thm.no_attributes)
+              (Binding.name "finite_def", finite_eqn)
+          ||> Sign.parent_path;
+      in ((finite_const, finite_def_thm), thy) end;
+    val ((finite_consts, finite_defs), thy) = thy
+      |> fold_map define_finite_const (dom_binds ~~ take_consts ~~ dom_eqns)
+      |>> ListPair.unzip;
+
+    val result =
+      {
+        take_consts = take_consts,
+        take_defs = take_defs,
+        chain_take_thms = chain_take_thms,
+        take_0_thms = take_0_thms,
+        take_Suc_thms = take_Suc_thms,
+        deflation_take_thms = deflation_take_thms,
+        finite_consts = finite_consts,
+        finite_defs = finite_defs
+      };
+
+  in
+    (result, thy)
+  end;
+
+end;
--- a/src/HOLCF/Tools/Domain/domain_theorems.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/Domain/domain_theorems.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -9,7 +9,11 @@
 
 signature DOMAIN_THEOREMS =
 sig
-  val theorems: Domain_Library.eq * Domain_Library.eq list -> theory -> thm list * theory;
+  val theorems:
+    Domain_Library.eq * Domain_Library.eq list
+    -> typ * (binding * (bool * binding option * typ) list * mixfix) list
+    -> theory -> thm list * theory;
+
   val comp_theorems: bstring * Domain_Library.eq list -> theory -> thm list * theory;
   val quiet_mode: bool Unsynchronized.ref;
   val trace_domain: bool Unsynchronized.ref;
@@ -28,20 +32,11 @@
 val adm_all = @{thm adm_all};
 val adm_conj = @{thm adm_conj};
 val adm_subst = @{thm adm_subst};
-val antisym_less_inverse = @{thm below_antisym_inverse};
-val beta_cfun = @{thm beta_cfun};
-val cfun_arg_cong = @{thm cfun_arg_cong};
 val ch2ch_fst = @{thm ch2ch_fst};
 val ch2ch_snd = @{thm ch2ch_snd};
 val ch2ch_Rep_CFunL = @{thm ch2ch_Rep_CFunL};
 val ch2ch_Rep_CFunR = @{thm ch2ch_Rep_CFunR};
 val chain_iterate = @{thm chain_iterate};
-val compact_ONE = @{thm compact_ONE};
-val compact_sinl = @{thm compact_sinl};
-val compact_sinr = @{thm compact_sinr};
-val compact_spair = @{thm compact_spair};
-val compact_up = @{thm compact_up};
-val contlub_cfun_arg = @{thm contlub_cfun_arg};
 val contlub_cfun_fun = @{thm contlub_cfun_fun};
 val contlub_fst = @{thm contlub_fst};
 val contlub_snd = @{thm contlub_snd};
@@ -52,35 +47,10 @@
 val cont2cont_snd = @{thm cont2cont_snd};
 val cont2cont_Rep_CFun = @{thm cont2cont_Rep_CFun};
 val fix_def2 = @{thm fix_def2};
-val injection_eq = @{thm injection_eq};
-val injection_less = @{thm injection_below};
 val lub_equal = @{thm lub_equal};
-val monofun_cfun_arg = @{thm monofun_cfun_arg};
 val retraction_strict = @{thm retraction_strict};
-val spair_eq = @{thm spair_eq};
-val spair_less = @{thm spair_below};
-val sscase1 = @{thm sscase1};
-val ssplit1 = @{thm ssplit1};
-val strictify1 = @{thm strictify1};
 val wfix_ind = @{thm wfix_ind};
-
-val iso_intro       = @{thm iso.intro};
-val iso_abs_iso     = @{thm iso.abs_iso};
-val iso_rep_iso     = @{thm iso.rep_iso};
-val iso_abs_strict  = @{thm iso.abs_strict};
-val iso_rep_strict  = @{thm iso.rep_strict};
-val iso_abs_defin'  = @{thm iso.abs_defin'};
-val iso_rep_defin'  = @{thm iso.rep_defin'};
-val iso_abs_defined = @{thm iso.abs_defined};
-val iso_rep_defined = @{thm iso.rep_defined};
-val iso_compact_abs = @{thm iso.compact_abs};
-val iso_compact_rep = @{thm iso.compact_rep};
-val iso_iso_swap    = @{thm iso.iso_swap};
-
-val exh_start = @{thm exh_start};
-val ex_defined_iffs = @{thms ex_defined_iffs};
-val exh_casedist0 = @{thm exh_casedist0};
-val exh_casedists = @{thms exh_casedists};
+val iso_intro = @{thm iso.intro};
 
 open Domain_Library;
 infixr 0 ===>;
@@ -118,26 +88,25 @@
       else cut_facts_tac prems 1 :: tacsf context;
   in pg'' thy defs t tacs end;
 
+(* FIXME!!!!!!!!! *)
+(* We should NEVER re-parse variable names as strings! *)
+(* The names can conflict with existing constants or other syntax! *)
 fun case_UU_tac ctxt rews i v =
   InductTacs.case_tac ctxt (v^"=UU") i THEN
   asm_simp_tac (HOLCF_ss addsimps rews) i;
 
-val chain_tac =
-  REPEAT_DETERM o resolve_tac 
-    [chain_iterate, ch2ch_Rep_CFunR, ch2ch_Rep_CFunL, ch2ch_fst, ch2ch_snd];
-
 (* ----- general proofs ----------------------------------------------------- *)
 
 val all2E = @{lemma "!x y . P x y ==> (P x y ==> R) ==> R" by simp}
 
-val dist_eqI = @{lemma "!!x::'a::po. ~ x << y ==> x ~= y" by (blast dest!: below_antisym_inverse)}
-
-fun theorems (((dname, _), cons) : eq, eqs : eq list) thy =
+fun theorems
+    (((dname, _), cons) : eq, eqs : eq list)
+    (dom_eqn : typ * (binding * (bool * binding option * typ) list * mixfix) list)
+    (thy : theory) =
 let
 
 val _ = message ("Proving isomorphism properties of domain "^dname^" ...");
-val pg = pg' thy;
-val map_tab = Domain_Isomorphism.get_map_tab thy;
+val map_tab = Domain_Take_Proofs.get_map_tab thy;
 
 
 (* ----- getting the axioms and definitions --------------------------------- *)
@@ -147,515 +116,94 @@
 in
   val ax_abs_iso  = ga "abs_iso"  dname;
   val ax_rep_iso  = ga "rep_iso"  dname;
-  val ax_when_def = ga "when_def" dname;
-  fun get_def mk_name (con, _, _) = ga (mk_name con^"_def") dname;
-  val axs_con_def = map (get_def extern_name) cons;
-  val axs_dis_def = map (get_def dis_name) cons;
-  val axs_mat_def = map (get_def mat_name) cons;
-  val axs_pat_def = map (get_def pat_name) cons;
-  val axs_sel_def =
-    let
-      fun def_of_sel sel = ga (sel^"_def") dname;
-      fun def_of_arg arg = Option.map def_of_sel (sel_of arg);
-      fun defs_of_con (_, _, args) = map_filter def_of_arg args;
-    in
-      maps defs_of_con cons
-    end;
-  val ax_copy_def = ga "copy_def" dname;
+  val ax_take_0      = ga "take_0" dname;
+  val ax_take_Suc    = ga "take_Suc" dname;
+  val ax_take_strict = ga "take_strict" dname;
 end; (* local *)
 
+(* ----- define constructors ------------------------------------------------ *)
+
+val lhsT = fst dom_eqn;
+
+val rhsT =
+  let
+    fun mk_arg_typ (lazy, sel, T) = if lazy then mk_uT T else T;
+    fun mk_con_typ (bind, args, mx) =
+        if null args then oneT else foldr1 mk_sprodT (map mk_arg_typ args);
+    fun mk_eq_typ (_, cons) = foldr1 mk_ssumT (map mk_con_typ cons);
+  in
+    mk_eq_typ dom_eqn
+  end;
+
+val rep_const = Const(dname^"_rep", lhsT ->> rhsT);
+
+val abs_const = Const(dname^"_abs", rhsT ->> lhsT);
+
+val iso_info : Domain_Take_Proofs.iso_info =
+  {
+    absT = lhsT,
+    repT = rhsT,
+    abs_const = abs_const,
+    rep_const = rep_const,
+    abs_inverse = ax_abs_iso,
+    rep_inverse = ax_rep_iso
+  };
+
+val (result, thy) =
+  Domain_Constructors.add_domain_constructors
+    (Long_Name.base_name dname) (snd dom_eqn) iso_info thy;
+
+val con_appls = #con_betas result;
+val {exhaust, casedist, ...} = result;
+val {con_compacts, con_rews, inverts, injects, dist_les, dist_eqs, ...} = result;
+val {sel_rews, ...} = result;
+val when_rews = #cases result;
+val when_strict = hd when_rews;
+val dis_rews = #dis_rews result;
+val mat_rews = #match_rews result;
+val pat_rews = #pat_rews result;
+
 (* ----- theorems concerning the isomorphism -------------------------------- *)
 
-val dc_abs  = %%:(dname^"_abs");
-val dc_rep  = %%:(dname^"_rep");
-val dc_copy = %%:(dname^"_copy");
-val x_name = "x";
+val pg = pg' thy;
 
-val iso_locale = iso_intro OF [ax_abs_iso, ax_rep_iso];
 val abs_strict = ax_rep_iso RS (allI RS retraction_strict);
 val rep_strict = ax_abs_iso RS (allI RS retraction_strict);
-val abs_defin' = iso_locale RS iso_abs_defin';
-val rep_defin' = iso_locale RS iso_rep_defin';
 val iso_rews = map Drule.export_without_context [ax_abs_iso, ax_rep_iso, abs_strict, rep_strict];
 
-(* ----- generating beta reduction rules from definitions-------------------- *)
-
-val _ = trace " Proving beta reduction rules...";
-
-local
-  fun arglist (Const _ $ Abs (s, _, t)) =
-    let
-      val (vars,body) = arglist t;
-    in (s :: vars, body) end
-    | arglist t = ([], t);
-  fun bind_fun vars t = Library.foldr mk_All (vars, t);
-  fun bound_vars 0 = []
-    | bound_vars i = Bound (i-1) :: bound_vars (i - 1);
-in
-  fun appl_of_def def =
-    let
-      val (_ $ con $ lam) = concl_of def;
-      val (vars, rhs) = arglist lam;
-      val lhs = list_ccomb (con, bound_vars (length vars));
-      val appl = bind_fun vars (lhs == rhs);
-      val cs = ContProc.cont_thms lam;
-      val betas = map (fn c => mk_meta_eq (c RS beta_cfun)) cs;
-    in pg (def::betas) appl (K [rtac reflexive_thm 1]) end;
-end;
-
-val _ = trace "Proving when_appl...";
-val when_appl = appl_of_def ax_when_def;
-val _ = trace "Proving con_appls...";
-val con_appls = map appl_of_def axs_con_def;
-
-local
-  fun arg2typ n arg =
-    let val t = TVar (("'a", n), pcpoS)
-    in (n + 1, if is_lazy arg then mk_uT t else t) end;
-
-  fun args2typ n [] = (n, oneT)
-    | args2typ n [arg] = arg2typ n arg
-    | args2typ n (arg::args) =
-    let
-      val (n1, t1) = arg2typ n arg;
-      val (n2, t2) = args2typ n1 args
-    in (n2, mk_sprodT (t1, t2)) end;
-
-  fun cons2typ n [] = (n,oneT)
-    | cons2typ n [con] = args2typ n (third con)
-    | cons2typ n (con::cons) =
-    let
-      val (n1, t1) = args2typ n (third con);
-      val (n2, t2) = cons2typ n1 cons
-    in (n2, mk_ssumT (t1, t2)) end;
-in
-  fun cons2ctyp cons = ctyp_of thy (snd (cons2typ 1 cons));
-end;
-
-local 
-  val iso_swap = iso_locale RS iso_iso_swap;
-  fun one_con (con, _, args) =
-    let
-      val vns = map vname args;
-      val eqn = %:x_name === con_app2 con %: vns;
-      val conj = foldr1 mk_conj (eqn :: map (defined o %:) (nonlazy args));
-    in Library.foldr mk_ex (vns, conj) end;
-
-  val conj_assoc = @{thm conj_assoc};
-  val exh = foldr1 mk_disj ((%:x_name === UU) :: map one_con cons);
-  val thm1 = instantiate' [SOME (cons2ctyp cons)] [] exh_start;
-  val thm2 = rewrite_rule (map mk_meta_eq ex_defined_iffs) thm1;
-  val thm3 = rewrite_rule [mk_meta_eq @{thm conj_assoc}] thm2;
-
-  (* first 3 rules replace "x = UU \/ P" with "rep$x = UU \/ P" *)
-  val tacs = [
-    rtac disjE 1,
-    etac (rep_defin' RS disjI1) 2,
-    etac disjI2 2,
-    rewrite_goals_tac [mk_meta_eq iso_swap],
-    rtac thm3 1];
-in
-  val _ = trace " Proving exhaust...";
-  val exhaust = pg con_appls (mk_trp exh) (K tacs);
-  val _ = trace " Proving casedist...";
-  val casedist =
-    Drule.export_without_context (rewrite_rule exh_casedists (exhaust RS exh_casedist0));
-end;
-
-local 
-  fun bind_fun t = Library.foldr mk_All (when_funs cons, t);
-  fun bound_fun i _ = Bound (length cons - i);
-  val when_app = list_ccomb (%%:(dname^"_when"), mapn bound_fun 1 cons);
-in
-  val _ = trace " Proving when_strict...";
-  val when_strict =
-    let
-      val axs = [when_appl, mk_meta_eq rep_strict];
-      val goal = bind_fun (mk_trp (strict when_app));
-      val tacs = [resolve_tac [sscase1, ssplit1, strictify1] 1];
-    in pg axs goal (K tacs) end;
-
-  val _ = trace " Proving when_apps...";
-  val when_apps =
-    let
-      fun one_when n (con, _, args) =
-        let
-          val axs = when_appl :: con_appls;
-          val goal = bind_fun (lift_defined %: (nonlazy args, 
-                mk_trp (when_app`(con_app con args) ===
-                       list_ccomb (bound_fun n 0, map %# args))));
-          val tacs = [asm_simp_tac (HOLCF_ss addsimps [ax_abs_iso]) 1];
-        in pg axs goal (K tacs) end;
-    in mapn one_when 1 cons end;
-end;
-val when_rews = when_strict :: when_apps;
-
-(* ----- theorems concerning the constructors, discriminators and selectors - *)
-
-local
-  fun dis_strict (con, _, _) =
-    let
-      val goal = mk_trp (strict (%%:(dis_name con)));
-    in pg axs_dis_def goal (K [rtac when_strict 1]) end;
-
-  fun dis_app c (con, _, args) =
-    let
-      val lhs = %%:(dis_name c) ` con_app con args;
-      val rhs = if con = c then TT else FF;
-      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_dis_def goal (K tacs) end;
-
-  val _ = trace " Proving dis_apps...";
-  val dis_apps = maps (fn (c,_,_) => map (dis_app c) cons) cons;
-
-  fun dis_defin (con, _, args) =
-    let
-      val goal = defined (%:x_name) ==> defined (%%:(dis_name con) `% x_name);
-      val tacs =
-        [rtac casedist 1,
-         contr_tac 1,
-         DETERM_UNTIL_SOLVED (CHANGED
-          (asm_simp_tac (HOLCF_ss addsimps dis_apps) 1))];
-    in pg [] goal (K tacs) end;
-
-  val _ = trace " Proving dis_stricts...";
-  val dis_stricts = map dis_strict cons;
-  val _ = trace " Proving dis_defins...";
-  val dis_defins = map dis_defin cons;
-in
-  val dis_rews = dis_stricts @ dis_defins @ dis_apps;
-end;
-
-local
-  fun mat_strict (con, _, _) =
-    let
-      val goal = mk_trp (%%:(mat_name con) ` UU ` %:"rhs" === UU);
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps [when_strict]) 1];
-    in pg axs_mat_def goal (K tacs) end;
-
-  val _ = trace " Proving mat_stricts...";
-  val mat_stricts = map mat_strict cons;
-
-  fun one_mat c (con, _, args) =
-    let
-      val lhs = %%:(mat_name c) ` con_app con args ` %:"rhs";
-      val rhs =
-        if con = c
-        then list_ccomb (%:"rhs", map %# args)
-        else mk_fail;
-      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_mat_def goal (K tacs) end;
-
-  val _ = trace " Proving mat_apps...";
-  val mat_apps =
-    maps (fn (c,_,_) => map (one_mat c) cons) cons;
-in
-  val mat_rews = mat_stricts @ mat_apps;
-end;
-
-local
-  fun ps args = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
-
-  fun pat_lhs (con,_,args) = mk_branch (list_comb (%%:(pat_name con), ps args));
-
-  fun pat_rhs (con,_,[]) = mk_return ((%:"rhs") ` HOLogic.unit)
-    | pat_rhs (con,_,args) =
-        (mk_branch (mk_ctuple_pat (ps args)))
-          `(%:"rhs")`(mk_ctuple (map %# args));
-
-  fun pat_strict c =
-    let
-      val axs = @{thm branch_def} :: axs_pat_def;
-      val goal = mk_trp (strict (pat_lhs c ` (%:"rhs")));
-      val tacs = [simp_tac (HOLCF_ss addsimps [when_strict]) 1];
-    in pg axs goal (K tacs) end;
-
-  fun pat_app c (con, _, args) =
-    let
-      val axs = @{thm branch_def} :: axs_pat_def;
-      val lhs = (pat_lhs c)`(%:"rhs")`(con_app con args);
-      val rhs = if con = first c then pat_rhs c else mk_fail;
-      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs goal (K tacs) end;
-
-  val _ = trace " Proving pat_stricts...";
-  val pat_stricts = map pat_strict cons;
-  val _ = trace " Proving pat_apps...";
-  val pat_apps = maps (fn c => map (pat_app c) cons) cons;
-in
-  val pat_rews = pat_stricts @ pat_apps;
-end;
-
-local
-  fun con_strict (con, _, args) = 
-    let
-      val rules = abs_strict :: @{thms con_strict_rules};
-      fun one_strict vn =
-        let
-          fun f arg = if vname arg = vn then UU else %# arg;
-          val goal = mk_trp (con_app2 con f args === UU);
-          val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
-        in pg con_appls goal (K tacs) end;
-    in map one_strict (nonlazy args) end;
-
-  fun con_defin (con, _, args) =
-    let
-      fun iff_disj (t, []) = HOLogic.mk_not t
-        | iff_disj (t, ts) = t === foldr1 HOLogic.mk_disj ts;
-      val lhs = con_app con args === UU;
-      val rhss = map (fn x => %:x === UU) (nonlazy args);
-      val goal = mk_trp (iff_disj (lhs, rhss));
-      val rule1 = iso_locale RS @{thm iso.abs_defined_iff};
-      val rules = rule1 :: @{thms con_defined_iff_rules};
-      val tacs = [simp_tac (HOL_ss addsimps rules) 1];
-    in pg con_appls goal (K tacs) end;
-in
-  val _ = trace " Proving con_stricts...";
-  val con_stricts = maps con_strict cons;
-  val _ = trace " Proving con_defins...";
-  val con_defins = map con_defin cons;
-  val con_rews = con_stricts @ con_defins;
-end;
-
-local
-  val rules =
-    [compact_sinl, compact_sinr, compact_spair, compact_up, compact_ONE];
-  fun con_compact (con, _, args) =
-    let
-      val concl = mk_trp (mk_compact (con_app con args));
-      val goal = lift (fn x => mk_compact (%#x)) (args, concl);
-      val tacs = [
-        rtac (iso_locale RS iso_compact_abs) 1,
-        REPEAT (resolve_tac rules 1 ORELSE atac 1)];
-    in pg con_appls goal (K tacs) end;
-in
-  val _ = trace " Proving con_compacts...";
-  val con_compacts = map con_compact cons;
-end;
-
-local
-  fun one_sel sel =
-    pg axs_sel_def (mk_trp (strict (%%:sel)))
-      (K [simp_tac (HOLCF_ss addsimps when_rews) 1]);
-
-  fun sel_strict (_, _, args) =
-    map_filter (Option.map one_sel o sel_of) args;
-in
-  val _ = trace " Proving sel_stricts...";
-  val sel_stricts = maps sel_strict cons;
-end;
-
-local
-  fun sel_app_same c n sel (con, args) =
-    let
-      val nlas = nonlazy args;
-      val vns = map vname args;
-      val vnn = List.nth (vns, n);
-      val nlas' = filter (fn v => v <> vnn) nlas;
-      val lhs = (%%:sel)`(con_app con args);
-      val goal = lift_defined %: (nlas', mk_trp (lhs === %:vnn));
-      fun tacs1 ctxt =
-        if vnn mem nlas
-        then [case_UU_tac ctxt (when_rews @ con_stricts) 1 vnn]
-        else [];
-      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_sel_def goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
-
-  fun sel_app_diff c n sel (con, args) =
-    let
-      val nlas = nonlazy args;
-      val goal = mk_trp (%%:sel ` con_app con args === UU);
-      fun tacs1 ctxt = map (case_UU_tac ctxt (when_rews @ con_stricts) 1) nlas;
-      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
-    in pg axs_sel_def goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
-
-  fun sel_app c n sel (con, _, args) =
-    if con = c
-    then sel_app_same c n sel (con, args)
-    else sel_app_diff c n sel (con, args);
-
-  fun one_sel c n sel = map (sel_app c n sel) cons;
-  fun one_sel' c n arg = Option.map (one_sel c n) (sel_of arg);
-  fun one_con (c, _, args) =
-    flat (map_filter I (mapn (one_sel' c) 0 args));
-in
-  val _ = trace " Proving sel_apps...";
-  val sel_apps = maps one_con cons;
-end;
-
-local
-  fun sel_defin sel =
-    let
-      val goal = defined (%:x_name) ==> defined (%%:sel`%x_name);
-      val tacs = [
-        rtac casedist 1,
-        contr_tac 1,
-        DETERM_UNTIL_SOLVED (CHANGED
-          (asm_simp_tac (HOLCF_ss addsimps sel_apps) 1))];
-    in pg [] goal (K tacs) end;
-in
-  val _ = trace " Proving sel_defins...";
-  val sel_defins =
-    if length cons = 1
-    then map_filter (fn arg => Option.map sel_defin (sel_of arg))
-                 (filter_out is_lazy (third (hd cons)))
-    else [];
-end;
-
-val sel_rews = sel_stricts @ sel_defins @ sel_apps;
-
-val _ = trace " Proving dist_les...";
-val dist_les =
-  let
-    fun dist (con1, args1) (con2, args2) =
-      let
-        fun iff_disj (t, []) = HOLogic.mk_not t
-          | iff_disj (t, ts) = t === foldr1 HOLogic.mk_disj ts;
-        val lhs = con_app con1 args1 << con_app con2 args2;
-        val rhss = map (fn x => %:x === UU) (nonlazy args1);
-        val goal = mk_trp (iff_disj (lhs, rhss));
-        val rule1 = iso_locale RS @{thm iso.abs_below};
-        val rules = rule1 :: @{thms con_below_iff_rules};
-        val tacs = [simp_tac (HOL_ss addsimps rules) 1];
-      in pg con_appls goal (K tacs) end;
-
-    fun distinct (con1, _, args1) (con2, _, args2) =
-        let
-          val arg1 = (con1, args1);
-          val arg2 =
-            (con2, ListPair.map (fn (arg,vn) => upd_vname (K vn) arg)
-              (args2, Name.variant_list (map vname args1) (map vname args2)));
-        in [dist arg1 arg2, dist arg2 arg1] end;
-    fun distincts []      = []
-      | distincts (c::cs) = maps (distinct c) cs @ distincts cs;
-  in distincts cons end;
-
-val _ = trace " Proving dist_eqs...";
-val dist_eqs =
-  let
-    fun dist (con1, args1) (con2, args2) =
-      let
-        fun iff_disj (t, [], us) = HOLogic.mk_not t
-          | iff_disj (t, ts, []) = HOLogic.mk_not t
-          | iff_disj (t, ts, us) =
-            let
-              val disj1 = foldr1 HOLogic.mk_disj ts;
-              val disj2 = foldr1 HOLogic.mk_disj us;
-            in t === HOLogic.mk_conj (disj1, disj2) end;
-        val lhs = con_app con1 args1 === con_app con2 args2;
-        val rhss1 = map (fn x => %:x === UU) (nonlazy args1);
-        val rhss2 = map (fn x => %:x === UU) (nonlazy args2);
-        val goal = mk_trp (iff_disj (lhs, rhss1, rhss2));
-        val rule1 = iso_locale RS @{thm iso.abs_eq};
-        val rules = rule1 :: @{thms con_eq_iff_rules};
-        val tacs = [simp_tac (HOL_ss addsimps rules) 1];
-      in pg con_appls goal (K tacs) end;
-
-    fun distinct (con1, _, args1) (con2, _, args2) =
-        let
-          val arg1 = (con1, args1);
-          val arg2 =
-            (con2, ListPair.map (fn (arg,vn) => upd_vname (K vn) arg)
-              (args2, Name.variant_list (map vname args1) (map vname args2)));
-        in [dist arg1 arg2, dist arg2 arg1] end;
-    fun distincts []      = []
-      | distincts (c::cs) = maps (distinct c) cs @ distincts cs;
-  in distincts cons end;
-
-local 
-  fun pgterm rel con args =
-    let
-      fun append s = upd_vname (fn v => v^s);
-      val (largs, rargs) = (args, map (append "'") args);
-      val concl =
-        foldr1 mk_conj (ListPair.map rel (map %# largs, map %# rargs));
-      val prem = rel (con_app con largs, con_app con rargs);
-      val sargs = case largs of [_] => [] | _ => nonlazy args;
-      val prop = lift_defined %: (sargs, mk_trp (prem === concl));
-    in pg con_appls prop end;
-  val cons' = filter (fn (_, _, args) => args<>[]) cons;
-in
-  val _ = trace " Proving inverts...";
-  val inverts =
-    let
-      val abs_less = ax_abs_iso RS (allI RS injection_less);
-      val tacs =
-        [asm_full_simp_tac (HOLCF_ss addsimps [abs_less, spair_less]) 1];
-    in map (fn (con, _, args) => pgterm (op <<) con args (K tacs)) cons' end;
-
-  val _ = trace " Proving injects...";
-  val injects =
-    let
-      val abs_eq = ax_abs_iso RS (allI RS injection_eq);
-      val tacs = [asm_full_simp_tac (HOLCF_ss addsimps [abs_eq, spair_eq]) 1];
-    in map (fn (con, _, args) => pgterm (op ===) con args (K tacs)) cons' end;
-end;
-
 (* ----- theorems concerning one induction step ----------------------------- *)
 
-val copy_strict =
-  let
-    val _ = trace " Proving copy_strict...";
-    val goal = mk_trp (strict (dc_copy `% "f"));
-    val rules = [abs_strict, rep_strict] @ @{thms domain_map_stricts};
-    val tacs = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
-  in
-    SOME (pg [ax_copy_def] goal (K tacs))
-    handle
-      THM (s, _, _) => (trace s; NONE)
-    | ERROR s => (trace s; NONE)
-  end;
+local
+  fun dc_take dn = %%:(dn^"_take");
+  val dnames = map (fst o fst) eqs;
+  val deflation_thms = Domain_Take_Proofs.get_deflation_thms thy;
+  fun get_deflation_take dn = PureThy.get_thm thy (dn ^ ".deflation_take");
+  val axs_deflation_take = map get_deflation_take dnames;
 
-local
-  fun copy_app (con, _, args) =
+  fun one_take_app (con, args) =
     let
-      val lhs = dc_copy`%"f"`(con_app con args);
+      fun mk_take n = dc_take (List.nth (dnames, n)) $ %:"n";
       fun one_rhs arg =
           if Datatype_Aux.is_rec_type (dtyp_of arg)
           then Domain_Axioms.copy_of_dtyp map_tab
-                 (proj (%:"f") eqs) (dtyp_of arg) ` (%# arg)
+                 mk_take (dtyp_of arg) ` (%# arg)
           else (%# arg);
+      val lhs = (dc_take dname $ (%%:"Suc" $ %:"n"))`(con_app con args);
       val rhs = con_app2 con one_rhs args;
-      fun is_rec arg = Datatype_Aux.is_rec_type (dtyp_of arg);
-      fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
-      fun nonlazy_rec args = map vname (filter is_nonlazy_rec args);
-      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
-      val args' = filter_out (fn a => is_rec a orelse is_lazy a) args;
-      val stricts = abs_strict :: rep_strict :: @{thms domain_map_stricts};
-      fun tacs1 ctxt = map (case_UU_tac ctxt stricts 1 o vname) args';
-      val rules = [ax_abs_iso] @ @{thms domain_map_simps};
-      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
-    in pg (ax_copy_def::con_appls) goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
+      val goal = mk_trp (lhs === rhs);
+      val rules = [ax_take_Suc, ax_abs_iso, @{thm cfcomp2}];
+      val rules2 =
+          @{thms take_con_rules ID1 deflation_strict}
+          @ deflation_thms @ axs_deflation_take;
+      val tacs =
+          [simp_tac (HOL_basic_ss addsimps rules) 1,
+           asm_simp_tac (HOL_basic_ss addsimps rules2) 1];
+    in pg con_appls goal (K tacs) end;
+  val take_apps = map (Drule.export_without_context o one_take_app) cons;
 in
-  val _ = trace " Proving copy_apps...";
-  val copy_apps = map copy_app cons;
+  val take_rews = ax_take_0 :: ax_take_strict :: take_apps;
 end;
 
-local
-  fun one_strict (con, _, args) = 
-    let
-      val goal = mk_trp (dc_copy`UU`(con_app con args) === UU);
-      val rews = the_list copy_strict @ copy_apps @ con_rews;
-      fun tacs ctxt = map (case_UU_tac ctxt rews 1) (nonlazy args) @
-        [asm_simp_tac (HOLCF_ss addsimps rews) 1];
-    in
-      SOME (pg [] goal tacs)
-      handle
-        THM (s, _, _) => (trace s; NONE)
-      | ERROR s => (trace s; NONE)
-    end;
-
-  fun has_nonlazy_rec (_, _, args) = exists is_nonlazy_rec args;
-in
-  val _ = trace " Proving copy_stricts...";
-  val copy_stricts = map_filter one_strict (filter has_nonlazy_rec cons);
-end;
-
-val copy_rews = the_list copy_strict @ copy_apps @ copy_stricts;
-
 in
   thy
     |> Sign.add_path (Long_Name.base_name dname)
@@ -674,24 +222,98 @@
         ((Binding.name "dist_eqs"  , dist_eqs    ), [Simplifier.simp_add]),
         ((Binding.name "inverts"   , inverts     ), [Simplifier.simp_add]),
         ((Binding.name "injects"   , injects     ), [Simplifier.simp_add]),
-        ((Binding.name "copy_rews" , copy_rews   ), [Simplifier.simp_add]),
+        ((Binding.name "take_rews" , take_rews   ), [Simplifier.simp_add]),
         ((Binding.name "match_rews", mat_rews    ),
          [Simplifier.simp_add, Fixrec.fixrec_simp_add])]
     |> Sign.parent_path
     |> pair (iso_rews @ when_rews @ con_rews @ sel_rews @ dis_rews @
-        pat_rews @ dist_les @ dist_eqs @ copy_rews)
+        pat_rews @ dist_les @ dist_eqs)
 end; (* let *)
 
 fun comp_theorems (comp_dnam, eqs: eq list) thy =
 let
-val global_ctxt = ProofContext.init thy;
-val map_tab = Domain_Isomorphism.get_map_tab thy;
+val map_tab = Domain_Take_Proofs.get_map_tab thy;
 
 val dnames = map (fst o fst) eqs;
 val conss  = map  snd        eqs;
 val comp_dname = Sign.full_bname thy comp_dnam;
 
 val _ = message ("Proving induction properties of domain "^comp_dname^" ...");
+
+(* ----- define bisimulation predicate -------------------------------------- *)
+
+local
+  open HOLCF_Library
+  val dtypes  = map (Type o fst) eqs;
+  val relprod = mk_tupleT (map (fn tp => tp --> tp --> boolT) dtypes);
+  val bisim_bind = Binding.name (comp_dnam ^ "_bisim");
+  val bisim_type = relprod --> boolT;
+in
+  val (bisim_const, thy) =
+      Sign.declare_const ((bisim_bind, bisim_type), NoSyn) thy;
+end;
+
+local
+
+  fun legacy_infer_term thy t =
+      singleton (Syntax.check_terms (ProofContext.init thy)) (Sign.intern_term thy t);
+  fun legacy_infer_prop thy t = legacy_infer_term thy (TypeInfer.constrain propT t);
+  fun infer_props thy = map (apsnd (legacy_infer_prop thy));
+  fun add_defs_i x = PureThy.add_defs false (map Thm.no_attributes x);
+  fun add_defs_infer defs thy = add_defs_i (infer_props thy defs) thy;
+
+  val comp_dname = Sign.full_bname thy comp_dnam;
+  val dnames = map (fst o fst) eqs;
+  val x_name = idx_name dnames "x"; 
+
+  fun one_con (con, args) =
+    let
+      val nonrec_args = filter_out is_rec args;
+      val    rec_args = filter is_rec args;
+      val    recs_cnt = length rec_args;
+      val allargs     = nonrec_args @ rec_args
+                        @ map (upd_vname (fn s=> s^"'")) rec_args;
+      val allvns      = map vname allargs;
+      fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
+      val vns1        = map (vname_arg "" ) args;
+      val vns2        = map (vname_arg "'") args;
+      val allargs_cnt = length nonrec_args + 2*recs_cnt;
+      val rec_idxs    = (recs_cnt-1) downto 0;
+      val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
+                                             (allargs~~((allargs_cnt-1) downto 0)));
+      fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $ 
+                              Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
+      val capps =
+          List.foldr
+            mk_conj
+            (mk_conj(
+             Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
+             Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
+            (mapn rel_app 1 rec_args);
+    in
+      List.foldr
+        mk_ex
+        (Library.foldr mk_conj
+                       (map (defined o Bound) nonlazy_idxs,capps)) allvns
+    end;
+  fun one_comp n (_,cons) =
+      mk_all (x_name(n+1),
+      mk_all (x_name(n+1)^"'",
+      mk_imp (proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
+      foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
+                      ::map one_con cons))));
+  val bisim_eqn =
+      %%:(comp_dname^"_bisim") ==
+         mk_lam("R", foldr1 mk_conj (mapn one_comp 0 eqs));
+
+in
+  val ([ax_bisim_def], thy) =
+      thy
+        |> Sign.add_path comp_dnam
+        |> add_defs_infer [(Binding.name "bisim_def", bisim_eqn)]
+        ||> Sign.parent_path;
+end; (* local *)
+
 val pg = pg' thy;
 
 (* ----- getting the composite axiom and definitions ------------------------ *)
@@ -699,11 +321,10 @@
 local
   fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
 in
-  val axs_reach      = map (ga "reach"     ) dnames;
   val axs_take_def   = map (ga "take_def"  ) dnames;
+  val axs_chain_take = map (ga "chain_take") dnames;
+  val axs_lub_take   = map (ga "lub_take"  ) dnames;
   val axs_finite_def = map (ga "finite_def") dnames;
-  val ax_copy2_def   =      ga "copy_def"  comp_dnam;
-  val ax_bisim_def   =      ga "bisim_def" comp_dnam;
 end;
 
 local
@@ -712,7 +333,6 @@
 in
   val cases = map (gt  "casedist" ) dnames;
   val con_rews  = maps (gts "con_rews" ) dnames;
-  val copy_rews = maps (gts "copy_rews") dnames;
 end;
 
 fun dc_take dn = %%:(dn^"_take");
@@ -722,64 +342,20 @@
 
 (* ----- theorems concerning finite approximation and finite induction ------ *)
 
-local
-  val iterate_Cprod_ss = global_simpset_of @{theory Fix};
-  val copy_con_rews  = copy_rews @ con_rews;
-  val copy_take_defs =
-    (if n_eqs = 1 then [] else [ax_copy2_def]) @ axs_take_def;
-  val _ = trace " Proving take_stricts...";
-  fun one_take_strict ((dn, args), _) =
-    let
-      val goal = mk_trp (strict (dc_take dn $ %:"n"));
-      val rules = [
-        @{thm monofun_fst [THEN monofunE]},
-        @{thm monofun_snd [THEN monofunE]}];
-      val tacs = [
-        rtac @{thm UU_I} 1,
-        rtac @{thm below_eq_trans} 1,
-        resolve_tac axs_reach 2,
-        rtac @{thm monofun_cfun_fun} 1,
-        REPEAT (resolve_tac rules 1),
-        rtac @{thm iterate_below_fix} 1];
-    in pg axs_take_def goal (K tacs) end;
-  val take_stricts = map one_take_strict eqs;
-  fun take_0 n dn =
-    let
-      val goal = mk_trp ((dc_take dn $ @{term "0::nat"}) `% x_name n === UU);
-    in pg axs_take_def goal (K [simp_tac iterate_Cprod_ss 1]) end;
-  val take_0s = mapn take_0 1 dnames;
-  val _ = trace " Proving take_apps...";
-  fun one_take_app dn (con, _, args) =
-    let
-      fun mk_take n = dc_take (List.nth (dnames, n)) $ %:"n";
-      fun one_rhs arg =
-          if Datatype_Aux.is_rec_type (dtyp_of arg)
-          then Domain_Axioms.copy_of_dtyp map_tab
-                 mk_take (dtyp_of arg) ` (%# arg)
-          else (%# arg);
-      val lhs = (dc_take dn $ (%%:"Suc" $ %:"n"))`(con_app con args);
-      val rhs = con_app2 con one_rhs args;
-      fun is_rec arg = Datatype_Aux.is_rec_type (dtyp_of arg);
-      fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
-      fun nonlazy_rec args = map vname (filter is_nonlazy_rec args);
-      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
-      val tacs = [asm_simp_tac (HOLCF_ss addsimps copy_con_rews) 1];
-    in pg copy_take_defs goal (K tacs) end;
-  fun one_take_apps ((dn, _), cons) = map (one_take_app dn) cons;
-  val take_apps = maps one_take_apps eqs;
-in
-  val take_rews = map Drule.export_without_context
-    (take_stricts @ take_0s @ take_apps);
-end; (* local *)
+val take_rews =
+    maps (fn dn => PureThy.get_thms thy (dn ^ ".take_rews")) dnames;
 
 local
-  fun one_con p (con, _, args) =
+  fun one_con p (con, args) =
     let
+      val P_names = map P_name (1 upto (length dnames));
+      val vns = Name.variant_list P_names (map vname args);
+      val nonlazy_vns = map snd (filter_out (is_lazy o fst) (args ~~ vns));
       fun ind_hyp arg = %:(P_name (1 + rec_of arg)) $ bound_arg args arg;
       val t1 = mk_trp (%:p $ con_app2 con (bound_arg args) args);
       val t2 = lift ind_hyp (filter is_rec args, t1);
-      val t3 = lift_defined (bound_arg (map vname args)) (nonlazy args, t2);
-    in Library.foldr mk_All (map vname args, t3) end;
+      val t3 = lift_defined (bound_arg vns) (nonlazy_vns, t2);
+    in Library.foldr mk_All (vns, t3) end;
 
   fun one_eq ((p, cons), concl) =
     mk_trp (%:p $ UU) ===> Logic.list_implies (map (one_con p) cons, concl);
@@ -787,14 +363,14 @@
   fun ind_term concf = Library.foldr one_eq
     (mapn (fn n => fn x => (P_name n, x)) 1 conss,
      mk_trp (foldr1 mk_conj (mapn concf 1 dnames)));
-  val take_ss = HOL_ss addsimps take_rews;
+  val take_ss = HOL_ss addsimps (@{thm Rep_CFun_strict1} :: take_rews);
   fun quant_tac ctxt i = EVERY
     (mapn (fn n => fn _ => res_inst_tac ctxt [(("x", 0), x_name n)] spec i) 1 dnames);
 
   fun ind_prems_tac prems = EVERY
     (maps (fn cons =>
       (resolve_tac prems 1 ::
-        maps (fn (_,_,args) => 
+        maps (fn (_,args) => 
           resolve_tac prems 1 ::
           map (K(atac 1)) (nonlazy args) @
           map (K(atac 1)) (filter is_rec args))
@@ -809,7 +385,7 @@
           ((rec_of arg =  n andalso nfn(lazy_rec orelse is_lazy arg)) orelse 
             rec_of arg <> n andalso rec_to quant nfn rfn (rec_of arg::ns) 
               (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
-          ) o third) cons;
+          ) o snd) cons;
     fun all_rec_to ns  = rec_to forall not all_rec_to  ns;
     fun warn (n,cons) =
       if all_rec_to [] false (n,cons)
@@ -838,16 +414,17 @@
             simp_tac (take_ss addsimps prems) 1,
             TRY (safe_tac HOL_cs)];
           fun arg_tac arg =
+                        (* FIXME! case_UU_tac *)
             case_UU_tac context (prems @ con_rews) 1
               (List.nth (dnames, rec_of arg) ^ "_take n$" ^ vname arg);
-          fun con_tacs (con, _, args) = 
+          fun con_tacs (con, args) = 
             asm_simp_tac take_ss 1 ::
             map arg_tac (filter is_nonlazy_rec args) @
             [resolve_tac prems 1] @
             map (K (atac 1)) (nonlazy args) @
             map (K (etac spec 1)) (filter is_rec args);
           fun cases_tacs (cons, cases) =
-            res_inst_tac context [(("x", 0), "x")] cases 1 ::
+            res_inst_tac context [(("y", 0), "x")] cases 1 ::
             asm_simp_tac (take_ss addsimps prems) 1 ::
             maps con_tacs cons;
         in
@@ -860,31 +437,20 @@
   val _ = trace " Proving take_lemmas...";
   val take_lemmas =
     let
-      fun take_lemma n (dn, ax_reach) =
-        let
-          val lhs = dc_take dn $ Bound 0 `%(x_name n);
-          val rhs = dc_take dn $ Bound 0 `%(x_name n^"'");
-          val concl = mk_trp (%:(x_name n) === %:(x_name n^"'"));
-          val goal = mk_All ("n", mk_trp (lhs === rhs)) ===> concl;
-          val rules = [contlub_fst RS contlubE RS ssubst,
-                       contlub_snd RS contlubE RS ssubst];
-          fun tacf {prems, context} = [
-            res_inst_tac context [(("t", 0), x_name n    )] (ax_reach RS subst) 1,
-            res_inst_tac context [(("t", 0), x_name n^"'")] (ax_reach RS subst) 1,
-            stac fix_def2 1,
-            REPEAT (CHANGED
-              (resolve_tac rules 1 THEN chain_tac 1)),
-            stac contlub_cfun_fun 1,
-            stac contlub_cfun_fun 2,
-            rtac lub_equal 3,
-            chain_tac 1,
-            rtac allI 1,
-            resolve_tac prems 1];
-        in pg'' thy axs_take_def goal tacf end;
-    in mapn take_lemma 1 (dnames ~~ axs_reach) end;
+      fun take_lemma (ax_chain_take, ax_lub_take) =
+        @{thm lub_ID_take_lemma} OF [ax_chain_take, ax_lub_take];
+    in map take_lemma (axs_chain_take ~~ axs_lub_take) end;
+
+  val axs_reach =
+    let
+      fun reach (ax_chain_take, ax_lub_take) =
+        @{thm lub_ID_reach} OF [ax_chain_take, ax_lub_take];
+    in map reach (axs_chain_take ~~ axs_lub_take) end;
 
 (* ----- theorems concerning finiteness and induction ----------------------- *)
 
+  val global_ctxt = ProofContext.init thy;
+
   val _ = trace " Proving finites, ind...";
   val (finites, ind) =
   (
@@ -927,13 +493,13 @@
               etac disjE 1,
               asm_simp_tac (HOL_ss addsimps con_rews) 1,
               asm_simp_tac take_ss 1];
-            fun con_tacs ctxt (con, _, args) =
+            fun con_tacs ctxt (con, args) =
               asm_simp_tac take_ss 1 ::
               maps (arg_tacs ctxt) (nonlazy_rec args);
             fun foo_tacs ctxt n (cons, cases) =
               simp_tac take_ss 1 ::
               rtac allI 1 ::
-              res_inst_tac ctxt [(("x", 0), x_name n)] cases 1 ::
+              res_inst_tac ctxt [(("y", 0), x_name n)] cases 1 ::
               asm_simp_tac take_ss 1 ::
               maps (con_tacs ctxt) cons;
             fun tacs ctxt =
@@ -948,6 +514,7 @@
           let
             val goal = mk_trp (%%:(dn^"_finite") $ %:"x");
             fun tacs ctxt = [
+                        (* FIXME! case_UU_tac *)
               case_UU_tac ctxt take_rews 1 "x",
               eresolve_tac finite_lemmas1a 1,
               step_tac HOL_cs 1,
@@ -990,22 +557,28 @@
         val cont_rules =
             [cont_id, cont_const, cont2cont_Rep_CFun,
              cont2cont_fst, cont2cont_snd];
+        val subgoal =
+          let fun p n dn = %:(P_name n) $ (dc_take dn $ Bound 0 `%(x_name n));
+          in mk_trp (mk_all ("n", foldr1 mk_conj (mapn p 1 dnames))) end;
+        val subgoal' = legacy_infer_term thy subgoal;
         fun tacf {prems, context} =
-          map (fn ax_reach => rtac (ax_reach RS subst) 1) axs_reach @ [
-          quant_tac context 1,
-          rtac (adm_impl_admw RS wfix_ind) 1,
-          REPEAT_DETERM (rtac adm_all 1),
-          REPEAT_DETERM (
-            TRY (rtac adm_conj 1) THEN 
-            rtac adm_subst 1 THEN 
-            REPEAT (resolve_tac cont_rules 1) THEN
-            resolve_tac prems 1),
-          strip_tac 1,
-          rtac (rewrite_rule axs_take_def finite_ind) 1,
-          ind_prems_tac prems];
+          let
+            val subtac =
+                EVERY [rtac allI 1, rtac finite_ind 1, ind_prems_tac prems];
+            val subthm = Goal.prove context [] [] subgoal' (K subtac);
+          in
+            map (fn ax_reach => rtac (ax_reach RS subst) 1) axs_reach @ [
+            cut_facts_tac (subthm :: take (length dnames) prems) 1,
+            REPEAT (rtac @{thm conjI} 1 ORELSE
+                    EVERY [etac @{thm admD [OF _ ch2ch_Rep_CFunL]} 1,
+                           resolve_tac axs_chain_take 1,
+                           asm_simp_tac HOL_basic_ss 1])
+            ]
+          end;
         val ind = (pg'' thy [] goal tacf
           handle ERROR _ =>
-            (warning "Cannot prove infinite induction rule"; TrueI));
+            (warning "Cannot prove infinite induction rule"; TrueI)
+                  );
       in (finites, ind) end
   )
       handle THM _ =>
@@ -1013,7 +586,6 @@
            | ERROR _ =>
              (warning "Cannot prove induction rule"; ([], TrueI));
 
-
 end; (* local *)
 
 (* ----- theorem concerning coinduction ------------------------------------- *)
@@ -1021,7 +593,7 @@
 local
   val xs = mapn (fn n => K (x_name n)) 1 dnames;
   fun bnd_arg n i = Bound(2*(n_eqs - n)-i-1);
-  val take_ss = HOL_ss addsimps take_rews;
+  val take_ss = HOL_ss addsimps (@{thm Rep_CFun_strict1} :: take_rews);
   val sproj = prj (fn s => K("fst("^s^")")) (fn s => K("snd("^s^")"));
   val _ = trace " Proving coind_lemma...";
   val coind_lemma =
@@ -1075,8 +647,8 @@
 
 in thy |> Sign.add_path comp_dnam
        |> snd o PureThy.add_thmss [
-           ((Binding.name "take_rews"  , take_rews   ), [Simplifier.simp_add]),
            ((Binding.name "take_lemmas", take_lemmas ), []),
+           ((Binding.name "reach"      , axs_reach   ), []),
            ((Binding.name "finites"    , finites     ), []),
            ((Binding.name "finite_ind" , [finite_ind]), []),
            ((Binding.name "ind"        , [ind]       ), []),
--- a/src/HOLCF/Tools/cont_consts.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/cont_consts.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -56,7 +56,7 @@
       trans_rules (syntax c2) (syntax c1) n mx)
   end;
 
-fun cfun_arity (Type (n, [_, T])) = if n = @{type_name "->"} then 1 + cfun_arity T else 0
+fun cfun_arity (Type (n, [_, T])) = if n = @{type_name cfun} then 1 + cfun_arity T else 0
   | cfun_arity _ = 0;
 
 fun is_contconst (_, _, NoSyn) = false
--- a/src/HOLCF/Tools/fixrec.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/fixrec.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -22,10 +22,15 @@
 structure Fixrec :> FIXREC =
 struct
 
+open HOLCF_Library;
+
+infixr 6 ->>;
+infix -->>;
+infix 9 `;
+
 val def_cont_fix_eq = @{thm def_cont_fix_eq};
 val def_cont_fix_ind = @{thm def_cont_fix_ind};
 
-
 fun fixrec_err s = error ("fixrec definition error:\n" ^ s);
 fun fixrec_eq_err thy s eq =
   fixrec_err (s ^ "\nin\n" ^ quote (Syntax.string_of_term_global thy eq));
@@ -34,42 +39,23 @@
 (***************************** building types ****************************)
 (*************************************************************************)
 
-(* ->> is taken from holcf_logic.ML *)
-fun cfunT (T, U) = Type(@{type_name "->"}, [T, U]);
-
-infixr 6 ->>; val (op ->>) = cfunT;
-
-fun dest_cfunT (Type(@{type_name "->"}, [T, U])) = (T, U)
-  | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
-
-fun maybeT T = Type(@{type_name "maybe"}, [T]);
-
-fun dest_maybeT (Type(@{type_name "maybe"}, [T])) = T
-  | dest_maybeT T = raise TYPE ("dest_maybeT", [T], []);
-
-fun tupleT [] = HOLogic.unitT
-  | tupleT [T] = T
-  | tupleT (T :: Ts) = HOLogic.mk_prodT (T, tupleT Ts);
-
 local
 
-fun binder_cfun (Type(@{type_name "->"},[T, U])) = T :: binder_cfun U
+fun binder_cfun (Type(@{type_name cfun},[T, U])) = T :: binder_cfun U
   | binder_cfun (Type(@{type_name "fun"},[T, U])) = T :: binder_cfun U
   | binder_cfun _   =  [];
 
-fun body_cfun (Type(@{type_name "->"},[T, U])) = body_cfun U
+fun body_cfun (Type(@{type_name cfun},[T, U])) = body_cfun U
   | body_cfun (Type(@{type_name "fun"},[T, U])) = body_cfun U
   | body_cfun T   =  T;
 
 fun strip_cfun T : typ list * typ =
   (binder_cfun T, body_cfun T);
 
-fun cfunsT (Ts, U) = List.foldr cfunT U Ts;
-
 in
 
-fun matchT (T, U) =
-  body_cfun T ->> cfunsT (binder_cfun T, U) ->> U;
+fun matcherT (T, U) =
+  body_cfun T ->> (binder_cfun T -->> U) ->> U;
 
 end
 
@@ -86,43 +72,8 @@
 fun chead_of (Const(@{const_name Rep_CFun},_)$f$t) = chead_of f
   | chead_of u = u;
 
-fun capply_const (S, T) =
-  Const(@{const_name Rep_CFun}, (S ->> T) --> (S --> T));
-
-fun cabs_const (S, T) =
-  Const(@{const_name Abs_CFun}, (S --> T) --> (S ->> T));
-
-fun mk_cabs t =
-  let val T = Term.fastype_of t
-  in cabs_const (Term.domain_type T, Term.range_type T) $ t end
-
-fun mk_capply (t, u) =
-  let val (S, T) =
-    case Term.fastype_of t of
-        Type(@{type_name "->"}, [S, T]) => (S, T)
-      | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
-  in capply_const (S, T) $ t $ u end;
-
 infix 0 ==;  val (op ==) = Logic.mk_equals;
 infix 1 ===; val (op ===) = HOLogic.mk_eq;
-infix 9 `  ; val (op `) = mk_capply;
-
-(* builds the expression (LAM v. rhs) *)
-fun big_lambda v rhs =
-  cabs_const (Term.fastype_of v, Term.fastype_of rhs) $ Term.lambda v rhs;
-
-(* builds the expression (LAM v1 v2 .. vn. rhs) *)
-fun big_lambdas [] rhs = rhs
-  | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
-
-fun mk_return t =
-  let val T = Term.fastype_of t
-  in Const(@{const_name Fixrec.return}, T ->> maybeT T) ` t end;
-
-fun mk_bind (t, u) =
-  let val (T, mU) = dest_cfunT (Term.fastype_of u);
-      val bindT = maybeT T ->> (T ->> mU) ->> mU;
-  in Const(@{const_name Fixrec.bind}, bindT) ` t ` u end;
 
 fun mk_mplus (t, u) =
   let val mT = Term.fastype_of t
@@ -130,31 +81,9 @@
 
 fun mk_run t =
   let val mT = Term.fastype_of t
-      val T = dest_maybeT mT
+      val T = dest_matchT mT
   in Const(@{const_name Fixrec.run}, mT ->> T) ` t end;
 
-fun mk_fix t =
-  let val (T, _) = dest_cfunT (Term.fastype_of t)
-  in Const(@{const_name fix}, (T ->> T) ->> T) ` t end;
-
-fun mk_cont t =
-  let val T = Term.fastype_of t
-  in Const(@{const_name cont}, T --> HOLogic.boolT) $ t end;
-
-val mk_fst = HOLogic.mk_fst
-val mk_snd = HOLogic.mk_snd
-
-(* builds the expression (v1,v2,..,vn) *)
-fun mk_tuple [] = HOLogic.unit
-|   mk_tuple (t::[]) = t
-|   mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
-
-(* builds the expression (%(v1,v2,..,vn). rhs) *)
-fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
-  | lambda_tuple (v::[]) rhs = Term.lambda v rhs
-  | lambda_tuple (v::vs) rhs =
-      HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
-
 
 (*************************************************************************)
 (************* fixed-point definitions and unfolding theorems ************)
@@ -288,11 +217,11 @@
   | Const(c,T) =>
       let
         val n = Name.variant taken "v";
-        fun result_type (Type(@{type_name "->"},[_,T])) (x::xs) = result_type T xs
+        fun result_type (Type(@{type_name cfun},[_,T])) (x::xs) = result_type T xs
           | result_type (Type (@{type_name "fun"},[_,T])) (x::xs) = result_type T xs
           | result_type T _ = T;
         val v = Free(n, result_type T vs);
-        val m = Const(match_name c, matchT (T, fastype_of rhs));
+        val m = Const(match_name c, matcherT (T, fastype_of rhs));
         val k = big_lambdas vs rhs;
       in
         (m`v`k, v, n::taken)
@@ -340,7 +269,7 @@
     val msum = foldr1 mk_mplus (map (unLAM arity) ms);
     val (Ts, U) = LAM_Ts arity (hd ms)
   in
-    reLAM (rev Ts, dest_maybeT U) (mk_run msum)
+    reLAM (rev Ts, dest_matchT U) (mk_run msum)
   end;
 
 (* this is the pattern-matching compiler function *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/holcf_library.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -0,0 +1,250 @@
+(*  Title:      HOLCF/Tools/holcf_library.ML
+    Author:     Brian Huffman
+
+Functions for constructing HOLCF types and terms.
+*)
+
+structure HOLCF_Library =
+struct
+
+infixr 6 ->>;
+infix -->>;
+
+(*** Operations from Isabelle/HOL ***)
+
+val boolT = HOLogic.boolT;
+val natT = HOLogic.natT;
+
+val mk_equals = Logic.mk_equals;
+val mk_eq = HOLogic.mk_eq;
+val mk_trp = HOLogic.mk_Trueprop;
+val mk_fst = HOLogic.mk_fst;
+val mk_snd = HOLogic.mk_snd;
+val mk_not = HOLogic.mk_not;
+val mk_conj = HOLogic.mk_conj;
+val mk_disj = HOLogic.mk_disj;
+
+fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t;
+
+
+(*** Basic HOLCF concepts ***)
+
+fun mk_bottom T = Const (@{const_name UU}, T);
+
+fun below_const T = Const (@{const_name below}, [T, T] ---> boolT);
+fun mk_below (t, u) = below_const (fastype_of t) $ t $ u;
+
+fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t));
+
+fun mk_defined t = mk_not (mk_undef t);
+
+fun mk_compact t =
+  Const (@{const_name compact}, fastype_of t --> boolT) $ t;
+
+fun mk_cont t =
+  Const (@{const_name cont}, fastype_of t --> boolT) $ t;
+
+fun mk_chain t =
+  Const (@{const_name chain}, Term.fastype_of t --> boolT) $ t;
+
+
+(*** Continuous function space ***)
+
+(* ->> is taken from holcf_logic.ML *)
+fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U]);
+
+val (op ->>) = mk_cfunT;
+val (op -->>) = Library.foldr mk_cfunT;
+
+fun dest_cfunT (Type(@{type_name cfun}, [T, U])) = (T, U)
+  | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
+
+fun capply_const (S, T) =
+  Const(@{const_name Rep_CFun}, (S ->> T) --> (S --> T));
+
+fun cabs_const (S, T) =
+  Const(@{const_name Abs_CFun}, (S --> T) --> (S ->> T));
+
+fun mk_cabs t =
+  let val T = fastype_of t
+  in cabs_const (Term.domain_type T, Term.range_type T) $ t end
+
+(* builds the expression (% v1 v2 .. vn. rhs) *)
+fun lambdas [] rhs = rhs
+  | lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs);
+
+(* builds the expression (LAM v. rhs) *)
+fun big_lambda v rhs =
+  cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs;
+
+(* builds the expression (LAM v1 v2 .. vn. rhs) *)
+fun big_lambdas [] rhs = rhs
+  | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
+
+fun mk_capply (t, u) =
+  let val (S, T) =
+    case fastype_of t of
+        Type(@{type_name cfun}, [S, T]) => (S, T)
+      | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
+  in capply_const (S, T) $ t $ u end;
+
+infix 9 ` ; val (op `) = mk_capply;
+
+val list_ccomb : term * term list -> term = Library.foldl mk_capply;
+
+fun mk_ID T = Const (@{const_name ID}, T ->> T);
+
+fun cfcomp_const (T, U, V) =
+  Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V));
+
+fun mk_cfcomp (f, g) =
+  let
+    val (U, V) = dest_cfunT (fastype_of f);
+    val (T, U') = dest_cfunT (fastype_of g);
+  in
+    if U = U'
+    then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
+    else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
+  end;
+
+fun mk_strict t =
+  let val (T, U) = dest_cfunT (fastype_of t);
+  in mk_eq (t ` mk_bottom T, mk_bottom U) end;
+
+
+(*** Product type ***)
+
+val mk_prodT = HOLogic.mk_prodT
+
+fun mk_tupleT [] = HOLogic.unitT
+  | mk_tupleT [T] = T
+  | mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts);
+
+(* builds the expression (v1,v2,..,vn) *)
+fun mk_tuple [] = HOLogic.unit
+  | mk_tuple (t::[]) = t
+  | mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
+
+(* builds the expression (%(v1,v2,..,vn). rhs) *)
+fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
+  | lambda_tuple (v::[]) rhs = Term.lambda v rhs
+  | lambda_tuple (v::vs) rhs =
+      HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
+
+
+(*** Lifted cpo type ***)
+
+fun mk_upT T = Type(@{type_name "u"}, [T]);
+
+fun dest_upT (Type(@{type_name "u"}, [T])) = T
+  | dest_upT T = raise TYPE ("dest_upT", [T], []);
+
+fun up_const T = Const(@{const_name up}, T ->> mk_upT T);
+
+fun mk_up t = up_const (fastype_of t) ` t;
+
+fun fup_const (T, U) =
+  Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U);
+
+fun from_up T = fup_const (T, T) ` mk_ID T;
+
+
+(*** Strict product type ***)
+
+val oneT = @{typ "one"};
+
+fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U]);
+
+fun dest_sprodT (Type(@{type_name sprod}, [T, U])) = (T, U)
+  | dest_sprodT T = raise TYPE ("dest_sprodT", [T], []);
+
+fun spair_const (T, U) =
+  Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U));
+
+(* builds the expression (:t, u:) *)
+fun mk_spair (t, u) =
+  spair_const (fastype_of t, fastype_of u) ` t ` u;
+
+(* builds the expression (:t1,t2,..,tn:) *)
+fun mk_stuple [] = @{term "ONE"}
+  | mk_stuple (t::[]) = t
+  | mk_stuple (t::ts) = mk_spair (t, mk_stuple ts);
+
+fun sfst_const (T, U) =
+  Const(@{const_name sfst}, mk_sprodT (T, U) ->> T);
+
+fun ssnd_const (T, U) =
+  Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U);
+
+
+(*** Strict sum type ***)
+
+fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U]);
+
+fun dest_ssumT (Type(@{type_name ssum}, [T, U])) = (T, U)
+  | dest_ssumT T = raise TYPE ("dest_ssumT", [T], []);
+
+fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U));
+fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U));
+
+(* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *)
+fun mk_sinjects ts =
+  let
+    val Ts = map fastype_of ts;
+    fun combine (t, T) (us, U) =
+      let
+        val v = sinl_const (T, U) ` t;
+        val vs = map (fn u => sinr_const (T, U) ` u) us;
+      in
+        (v::vs, mk_ssumT (T, U))
+      end
+    fun inj [] = error "mk_sinjects: empty list"
+      | inj ((t, T)::[]) = ([t], T)
+      | inj ((t, T)::ts) = combine (t, T) (inj ts);
+  in
+    fst (inj (ts ~~ Ts))
+  end;
+
+fun sscase_const (T, U, V) =
+  Const(@{const_name sscase},
+    (T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V);
+
+fun from_sinl (T, U) =
+  sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T);
+
+fun from_sinr (T, U) =
+  sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U;
+
+
+(*** pattern match monad type ***)
+
+fun mk_matchT T = Type (@{type_name "maybe"}, [T]);
+
+fun dest_matchT (Type(@{type_name "maybe"}, [T])) = T
+  | dest_matchT T = raise TYPE ("dest_matchT", [T], []);
+
+fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T);
+
+fun return_const T = Const (@{const_name "Fixrec.return"}, T ->> mk_matchT T);
+fun mk_return t = return_const (fastype_of t) ` t;
+
+
+(*** lifted boolean type ***)
+
+val trT = @{typ "tr"};
+
+
+(*** theory of fixed points ***)
+
+fun mk_fix t =
+  let val (T, _) = dest_cfunT (fastype_of t)
+  in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end;
+
+fun iterate_const T =
+  Const (@{const_name iterate}, natT --> (T ->> T) ->> (T ->> T));
+
+fun mk_iterate (n, f) =
+  let val (T, _) = dest_cfunT (Term.fastype_of f);
+  in (iterate_const T $ n) ` f ` mk_bottom T end;
+
+end;
--- a/src/HOLCF/Tools/repdef.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/Tools/repdef.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -20,32 +20,28 @@
 structure Repdef :> REPDEF =
 struct
 
+open HOLCF_Library;
+
+infixr 6 ->>;
+infix -->>;
+
 (** type definitions **)
 
 type rep_info =
   { emb_def: thm, prj_def: thm, approx_def: thm, REP: thm };
 
-(* building terms *)
+(* building types and terms *)
 
-fun adm_const T = Const (@{const_name adm}, (T --> HOLogic.boolT) --> HOLogic.boolT);
-fun mk_adm (x, T, P) = adm_const T $ absfree (x, T, P);
-
-fun below_const T = Const (@{const_name below}, T --> T --> HOLogic.boolT);
-
-val natT = @{typ nat};
 val udomT = @{typ udom};
 fun alg_deflT T = Type (@{type_name alg_defl}, [T]);
-fun cfunT (T, U) = Type (@{type_name "->"}, [T, U]);
-fun emb_const T = Const (@{const_name emb}, cfunT (T, udomT));
-fun prj_const T = Const (@{const_name prj}, cfunT (udomT, T));
-fun approx_const T = Const (@{const_name approx}, natT --> cfunT (T, T));
+fun emb_const T = Const (@{const_name emb}, T ->> udomT);
+fun prj_const T = Const (@{const_name prj}, udomT ->> T);
+fun approx_const T = Const (@{const_name approx}, natT --> (T ->> T));
 
-fun LAM_const (T, U) = Const (@{const_name Abs_CFun}, (T --> U) --> cfunT (T, U));
-fun APP_const (T, U) = Const (@{const_name Rep_CFun}, cfunT (T, U) --> (T --> U));
-fun cast_const T = Const (@{const_name cast}, cfunT (alg_deflT T, cfunT (T, T)));
+fun cast_const T = Const (@{const_name cast}, alg_deflT T ->> T ->> T);
 fun mk_cast (t, x) =
-  APP_const (udomT, udomT)
-  $ (APP_const (alg_deflT udomT, cfunT (udomT, udomT)) $ cast_const udomT $ t)
+  capply_const (udomT, udomT)
+  $ (capply_const (alg_deflT udomT, udomT ->> udomT) $ cast_const udomT $ t)
   $ x;
 
 (* manipulating theorems *)
@@ -99,12 +95,12 @@
     (*definitions*)
     val Rep_const = Const (#Rep_name info, newT --> udomT);
     val Abs_const = Const (#Abs_name info, udomT --> newT);
-    val emb_eqn = Logic.mk_equals (emb_const newT, LAM_const (newT, udomT) $ Rep_const);
-    val prj_eqn = Logic.mk_equals (prj_const newT, LAM_const (udomT, newT) $
+    val emb_eqn = Logic.mk_equals (emb_const newT, cabs_const (newT, udomT) $ Rep_const);
+    val prj_eqn = Logic.mk_equals (prj_const newT, cabs_const (udomT, newT) $
       Abs ("x", udomT, Abs_const $ mk_cast (defl, Bound 0)));
     val repdef_approx_const =
       Const (@{const_name repdef_approx}, (newT --> udomT) --> (udomT --> newT)
-        --> alg_deflT udomT --> natT --> cfunT (newT, newT));
+        --> alg_deflT udomT --> natT --> (newT ->> newT));
     val approx_eqn = Logic.mk_equals (approx_const newT,
       repdef_approx_const $ Rep_const $ Abs_const $ defl);
 
--- a/src/HOLCF/ex/Dnat.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/ex/Dnat.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -55,17 +55,17 @@
   apply (induct_tac x rule: dnat.ind)
     apply fast
    apply (rule allI)
-   apply (rule_tac x = y in dnat.casedist)
+   apply (case_tac y)
      apply simp
     apply simp
    apply simp
   apply (rule allI)
-  apply (rule_tac x = y in dnat.casedist)
+  apply (case_tac y)
     apply (fast intro!: UU_I)
-   apply (thin_tac "ALL y. d << y --> d = UU | d = y")
+   apply (thin_tac "ALL y. dnat << y --> dnat = UU | dnat = y")
    apply simp
   apply (simp (no_asm_simp))
-  apply (drule_tac x="da" in spec)
+  apply (drule_tac x="dnata" in spec)
   apply simp
   done
 
--- a/src/HOLCF/ex/Domain_Proofs.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/ex/Domain_Proofs.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -196,7 +196,7 @@
 by (rule bar_defl_unfold)
 
 lemma REP_baz': "REP('a baz) = REP(('a foo convex_pd \<rightarrow> tr)\<^sub>\<bottom>)"
-unfolding REP_foo REP_bar REP_baz REP_simps
+unfolding REP_foo REP_bar REP_baz REP_simps REP_convex
 by (rule baz_defl_unfold)
 
 (********************************************************************)
--- a/src/HOLCF/ex/Domain_ex.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/ex/Domain_ex.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -99,7 +99,7 @@
 
 text {* Trivial datatypes will produce a warning message. *}
 
-domain triv = triv1 triv triv
+domain triv = Triv triv triv
   -- "domain Domain_ex.triv is empty!"
 
 lemma "(x::triv) = \<bottom>" by (induct x, simp_all)
@@ -122,7 +122,7 @@
 text {* Rules about constructors *}
 term Leaf
 term Node
-thm tree.Leaf_def tree.Node_def
+thm Leaf_def Node_def
 thm tree.exhaust
 thm tree.casedist
 thm tree.compacts
@@ -134,7 +134,7 @@
 
 text {* Rules about case combinator *}
 term tree_when
-thm tree.when_def
+thm tree.tree_when_def
 thm tree.when_rews
 
 text {* Rules about selectors *}
@@ -157,16 +157,17 @@
 term match_Node
 thm tree.match_rews
 
-text {* Rules about copy function *}
-term tree_copy
-thm tree.copy_def
-thm tree.copy_rews
-
 text {* Rules about take function *}
 term tree_take
 thm tree.take_def
+thm tree.take_0
+thm tree.take_Suc
 thm tree.take_rews
+thm tree.chain_take
+thm tree.take_take
+thm tree.deflation_take
 thm tree.take_lemmas
+thm tree.reach
 thm tree.finite_ind
 
 text {* Rules about finiteness predicate *}
--- a/src/HOLCF/ex/New_Domain.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/ex/New_Domain.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -51,12 +51,12 @@
 thm ltree.reach
 
 text {*
-  The definition of the copy function uses map functions associated with
+  The definition of the take function uses map functions associated with
   each type constructor involved in the definition.  A map function
   for the lazy list type has been generated by the new domain package.
 *}
 
-thm ltree.copy_def
+thm ltree.take_rews
 thm llist_map_def
 
 lemma ltree_induct:
@@ -67,24 +67,24 @@
   assumes Branch: "\<And>f l. \<forall>x. P (f\<cdot>x) \<Longrightarrow> P (Branch\<cdot>(llist_map\<cdot>f\<cdot>l))"
   shows "P x"
 proof -
-  have "\<forall>x. P (fix\<cdot>ltree_copy\<cdot>x)"
-  proof (rule fix_ind)
-    show "adm (\<lambda>a. \<forall>x. P (a\<cdot>x))"
-      by (simp add: adm_subst [OF _ adm])
-  next
-    show "\<forall>x. P (\<bottom>\<cdot>x)"
-      by (simp add: bot)
-  next
-    fix f :: "'a ltree \<rightarrow> 'a ltree"
-    assume f: "\<forall>x. P (f\<cdot>x)"
-    show "\<forall>x. P (ltree_copy\<cdot>f\<cdot>x)"
-      apply (rule allI)
-      apply (case_tac x)
-      apply (simp add: bot)
-      apply (simp add: Leaf)
-      apply (simp add: Branch [OF f])
-      done
-  qed
+  have "P (\<Squnion>i. ltree_take i\<cdot>x)"
+  using adm
+  proof (rule admD)
+    fix i
+    show "P (ltree_take i\<cdot>x)"
+    proof (induct i arbitrary: x)
+      case (0 x)
+      show "P (ltree_take 0\<cdot>x)" by (simp add: bot)
+    next
+      case (Suc n x)
+      show "P (ltree_take (Suc n)\<cdot>x)"
+        apply (cases x)
+        apply (simp add: bot)
+        apply (simp add: Leaf)
+        apply (simp add: Branch Suc)
+        done
+    qed
+  qed (simp add: ltree.chain_take)
   thus ?thesis
     by (simp add: ltree.reach)
 qed
--- a/src/HOLCF/ex/Stream.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/ex/Stream.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -143,16 +143,10 @@
 
 
 lemma stream_reach2: "(LUB i. stream_take i$s) = s"
-apply (insert stream.reach [of s], erule subst) back
-apply (simp add: fix_def2 stream.take_def)
-apply (insert contlub_cfun_fun [of "%i. iterate i$stream_copy$UU" s,THEN sym])
-by simp
+by (rule stream.reach)
 
 lemma chain_stream_take: "chain (%i. stream_take i$s)"
-apply (rule chainI)
-apply (rule monofun_cfun_fun)
-apply (simp add: stream.take_def del: iterate_Suc)
-by (rule chainE, simp)
+by (simp add: stream.chain_take)
 
 lemma stream_take_prefix [simp]: "stream_take n$s << s"
 apply (insert stream_reach2 [of s])
@@ -259,10 +253,9 @@
 lemma stream_ind2:
 "[| adm P; P UU; !!a. a ~= UU ==> P (a && UU); !!a b s. [| a ~= UU; b ~= UU; P s |] ==> P (a && b && s) |] ==> P x"
 apply (insert stream.reach [of x],erule subst)
-apply (frule adm_impl_admw, rule wfix_ind, auto)
-apply (rule adm_subst [THEN adm_impl_admw],auto)
+apply (erule admD, rule chain_stream_take)
 apply (insert stream_finite_ind2 [of P])
-by (simp add: stream.take_def)
+by simp
 
 
 
@@ -275,16 +268,9 @@
 
 lemma stream_coind_lemma2: "!s1 s2. R s1 s2 --> ft$s1 = ft$s2 &  R (rt$s1) (rt$s2) ==> stream_bisim R"
  apply (simp add: stream.bisim_def,clarsimp)
- apply (case_tac "x=UU",clarsimp)
-  apply (erule_tac x="UU" in allE,simp)
-  apply (case_tac "x'=UU",simp)
-  apply (drule stream_exhaust_eq [THEN iffD1],auto)+
- apply (case_tac "x'=UU",auto)
-  apply (erule_tac x="a && y" in allE)
-  apply (erule_tac x="UU" in allE)+
-  apply (auto,drule stream_exhaust_eq [THEN iffD1],clarsimp)
- apply (erule_tac x="a && y" in allE)
- apply (erule_tac x="aa && ya" in allE) back
+ apply (drule spec, drule spec, drule (1) mp)
+ apply (case_tac "x", simp)
+ apply (case_tac "x'", simp)
 by auto
 
 
@@ -304,12 +290,12 @@
 
 lemma stream_finite_lemma1: "stream_finite xs ==> stream_finite (x && xs)"
 apply (simp add: stream.finite_def,auto)
-apply (rule_tac x="Suc n" in exI)
+apply (rule_tac x="Suc i" in exI)
 by (simp add: stream_take_lemma4)
 
 lemma stream_finite_lemma2: "[| x ~= UU; stream_finite (x && xs) |] ==> stream_finite xs"
 apply (simp add: stream.finite_def, auto)
-apply (rule_tac x="n" in exI)
+apply (rule_tac x="i" in exI)
 by (erule stream_take_lemma3,simp)
 
 lemma stream_finite_rt_eq: "stream_finite (rt$s) = stream_finite s"
@@ -379,8 +365,8 @@
 lemma slen_scons_eq_rev: "(#x < Fin (Suc (Suc n))) = (!a y. x ~= a && y |  a = \<bottom> |  #y < Fin (Suc n))"
  apply (rule stream.casedist [of x], auto)
    apply (simp add: zero_inat_def)
-  apply (case_tac "#s") apply (simp_all add: iSuc_Fin)
- apply (case_tac "#s") apply (simp_all add: iSuc_Fin)
+  apply (case_tac "#stream") apply (simp_all add: iSuc_Fin)
+ apply (case_tac "#stream") apply (simp_all add: iSuc_Fin)
 done
 
 lemma slen_take_lemma4 [rule_format]:
--- a/src/HOLCF/ex/Strict_Fun.thy	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/HOLCF/ex/Strict_Fun.thy	Wed Mar 03 16:43:55 2010 +0100
@@ -232,8 +232,8 @@
 
 setup {*
   Domain_Isomorphism.add_type_constructor
-    (@{type_name "sfun"}, @{term sfun_defl}, @{const_name sfun_map},
-        @{thm REP_sfun}, @{thm isodefl_sfun}, @{thm sfun_map_ID})
+    (@{type_name "sfun"}, @{term sfun_defl}, @{const_name sfun_map}, @{thm REP_sfun},
+       @{thm isodefl_sfun}, @{thm sfun_map_ID}, @{thm deflation_sfun_map})
 *}
 
 end
--- a/src/Tools/nbe.ML	Wed Mar 03 15:40:39 2010 +0100
+++ b/src/Tools/nbe.ML	Wed Mar 03 16:43:55 2010 +0100
@@ -235,7 +235,7 @@
 fun nbe_dict v n = "d_" ^ v ^ "_" ^ string_of_int n;
 fun nbe_bound v = "v_" ^ v;
 fun nbe_bound_optional NONE = "_"
-  | nbe_bound_optional  (SOME v) = nbe_bound v;
+  | nbe_bound_optional (SOME v) = nbe_bound v;
 fun nbe_default v = "w_" ^ v;
 
 (*note: these three are the "turning spots" where proper argument order is established!*)
@@ -434,7 +434,7 @@
       #-> fold (fn (name, univ) => (Graph.map_node name o apfst) (K (SOME univ))))
   end;
 
-fun ensure_stmts ctxt naming program =
+fun ensure_stmts ctxt program =
   let
     fun add_stmts names (gr, (maxidx, idx_tab)) = if exists ((can o Graph.get_node) gr) names
       then (gr, (maxidx, idx_tab))
@@ -443,7 +443,6 @@
           Graph.imm_succs program name)) names);
   in
     fold_rev add_stmts (Graph.strong_conn program)
-    #> pair naming
   end;
 
 
@@ -513,18 +512,18 @@
 
 structure Nbe_Functions = Code_Data
 (
-  type T = Code_Thingol.naming * ((Univ option * int) Graph.T * (int * string Inttab.table));
-  val empty = (Code_Thingol.empty_naming, (Graph.empty, (0, Inttab.empty)));
+  type T = (Univ option * int) Graph.T * (int * string Inttab.table);
+  val empty = (Graph.empty, (0, Inttab.empty));
 );
 
 
 (* compilation, evaluation and reification *)
 
-fun compile_eval thy naming program vs_t deps =
+fun compile_eval thy program vs_t deps =
   let
     val ctxt = ProofContext.init thy;
-    val (_, (gr, (_, idx_tab))) =
-      Nbe_Functions.change thy (ensure_stmts ctxt naming program o snd);
+    val (gr, (_, idx_tab)) =
+      Nbe_Functions.change thy (ensure_stmts ctxt program);
   in
     vs_t
     |> eval_term ctxt gr deps
@@ -534,7 +533,7 @@
 
 (* evaluation with type reconstruction *)
 
-fun normalize thy naming program ((vs0, (vs, ty)), t) deps =
+fun normalize thy program ((vs0, (vs, ty)), t) deps =
   let
     val ty' = typ_of_itype program vs0 ty;
     fun type_infer t =
@@ -546,7 +545,7 @@
         ^ setmp_CRITICAL show_types true (Syntax.string_of_term_global thy) t);
     val string_of_term = setmp_CRITICAL show_types true (Syntax.string_of_term_global thy);
   in
-    compile_eval thy naming program (vs, t) deps
+    compile_eval thy program (vs, t) deps
     |> traced (fn t => "Normalized:\n" ^ string_of_term t)
     |> type_infer
     |> traced (fn t => "Types inferred:\n" ^ string_of_term t)
@@ -565,11 +564,11 @@
   in Thm.mk_binop eq lhs rhs end;
 
 val (_, raw_norm_oracle) = Context.>>> (Context.map_theory_result
-  (Thm.add_oracle (Binding.name "norm", fn (thy, naming, program, vsp_ty_t, deps, ct) =>
-    mk_equals thy ct (normalize thy naming program vsp_ty_t deps))));
+  (Thm.add_oracle (Binding.name "norm", fn (thy, program, vsp_ty_t, deps, ct) =>
+    mk_equals thy ct (normalize thy program vsp_ty_t deps))));
 
-fun norm_oracle thy naming program vsp_ty_t deps ct =
-  raw_norm_oracle (thy, naming, program, vsp_ty_t, deps, ct);
+fun norm_oracle thy program vsp_ty_t deps ct =
+  raw_norm_oracle (thy, program, vsp_ty_t, deps, ct);
 
 fun no_frees_conv conv ct =
   let
@@ -597,9 +596,9 @@
 val norm_conv = no_frees_conv (fn ct =>
   let
     val thy = Thm.theory_of_cterm ct;
-  in lift_triv_classes_conv thy (Code_Thingol.eval_conv thy (norm_oracle thy)) ct end);
+  in lift_triv_classes_conv thy (Code_Thingol.eval_conv thy (K (norm_oracle thy))) ct end);
 
-fun norm thy = lift_triv_classes_rew thy (no_frees_rew (Code_Thingol.eval thy I (normalize thy)));
+fun norm thy = lift_triv_classes_rew thy (no_frees_rew (Code_Thingol.eval thy I (K (normalize thy))));
 
 
 (* evaluation command *)