--- a/src/HOL/Probability/Lebesgue_Integration.thy Sat Feb 25 09:07:39 2012 +0100
+++ b/src/HOL/Probability/Lebesgue_Integration.thy Sat Feb 25 09:07:41 2012 +0100
@@ -366,7 +366,7 @@
also have "\<dots> \<le> natfloor (real (u x) * 2 ^ i * 2)"
proof cases
assume "0 \<le> u x" then show ?thesis
- by (intro le_mult_natfloor) (cases "u x", auto intro!: mult_nonneg_nonneg)
+ by (intro le_mult_natfloor)
next
assume "\<not> 0 \<le> u x" then show ?thesis
by (cases "u x") (auto simp: natfloor_neg mult_nonpos_nonneg)
--- a/src/HOL/RComplete.thy Sat Feb 25 09:07:39 2012 +0100
+++ b/src/HOL/RComplete.thy Sat Feb 25 09:07:41 2012 +0100
@@ -415,10 +415,9 @@
lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
by (simp add: natfloor_add [symmetric] del: One_nat_def)
-lemma natfloor_subtract [simp]: "real a <= x ==>
- natfloor(x - real a) = natfloor x - a"
- unfolding natfloor_def
- unfolding real_of_int_of_nat_eq [symmetric] floor_subtract
+lemma natfloor_subtract [simp]:
+ "natfloor(x - real a) = natfloor x - a"
+ unfolding natfloor_def real_of_int_of_nat_eq [symmetric] floor_subtract
by simp
lemma natfloor_div_nat:
@@ -441,10 +440,9 @@
qed
lemma le_mult_natfloor:
- assumes "0 \<le> (a :: real)" and "0 \<le> b"
shows "natfloor a * natfloor b \<le> natfloor (a * b)"
- using assms
- by (simp add: le_natfloor_eq mult_nonneg_nonneg mult_mono' real_natfloor_le)
+ by (cases "0 <= a & 0 <= b")
+ (auto simp add: le_natfloor_eq mult_nonneg_nonneg mult_mono' real_natfloor_le natfloor_neg)
lemma natceiling_zero [simp]: "natceiling 0 = 0"
by (unfold natceiling_def, simp)
@@ -505,10 +503,8 @@
lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
by (simp add: natceiling_add [symmetric] del: One_nat_def)
-lemma natceiling_subtract [simp]: "real a <= x ==>
- natceiling(x - real a) = natceiling x - a"
- unfolding natceiling_def
- unfolding real_of_int_of_nat_eq [symmetric] ceiling_subtract
+lemma natceiling_subtract [simp]: "natceiling(x - real a) = natceiling x - a"
+ unfolding natceiling_def real_of_int_of_nat_eq [symmetric] ceiling_subtract
by simp
subsection {* Exponentiation with floor *}