--- a/src/HOL/Analysis/L2_Norm.thy Thu Dec 07 15:48:50 2017 +0100
+++ b/src/HOL/Analysis/L2_Norm.thy Thu Dec 07 18:04:52 2017 +0100
@@ -8,7 +8,7 @@
imports Complex_Main
begin
-definition "L2_set f A = sqrt (\<Sum>i\<in>A. (f i)\<^sup>2)"
+definition %important "L2_set f A = sqrt (\<Sum>i\<in>A. (f i)\<^sup>2)"
lemma L2_set_cong:
"\<lbrakk>A = B; \<And>x. x \<in> B \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> L2_set f A = L2_set g B"
@@ -73,9 +73,9 @@
unfolding L2_set_def
by (simp add: sum_nonneg sum_nonneg_eq_0_iff)
-lemma L2_set_triangle_ineq:
- shows "L2_set (\<lambda>i. f i + g i) A \<le> L2_set f A + L2_set g A"
-proof (cases "finite A")
+lemma %important L2_set_triangle_ineq:
+ "L2_set (\<lambda>i. f i + g i) A \<le> L2_set f A + L2_set g A"
+proof %unimportant (cases "finite A")
case False
thus ?thesis by simp
next