HOL-Analysis: move Continuum_Not_Denumerable from Library
authorhoelzl
Fri, 30 Sep 2016 15:35:32 +0200
changeset 63970 3b6a3632e754
parent 63969 f4b4fba60b1d
child 63971 da89140186e2
HOL-Analysis: move Continuum_Not_Denumerable from Library
src/HOL/Analysis/Continuum_Not_Denumerable.thy
src/HOL/Analysis/Path_Connected.thy
src/HOL/Hahn_Banach/Bounds.thy
src/HOL/Library/Continuum_Not_Denumerable.thy
src/HOL/Library/Library.thy
src/HOL/Probability/Distribution_Functions.thy
src/HOL/Probability/ex/Measure_Not_CCC.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Continuum_Not_Denumerable.thy	Fri Sep 30 15:35:32 2016 +0200
@@ -0,0 +1,195 @@
+(*  Title:      HOL/Analysis/Continuum_Not_Denumerable.thy
+    Author:     Benjamin Porter, Monash University, NICTA, 2005
+    Author:     Johannes Hölzl, TU München
+*)
+
+section \<open>Non-denumerability of the Continuum.\<close>
+
+theory Continuum_Not_Denumerable
+imports
+  Complex_Main 
+  "~~/src/HOL/Library/Countable_Set"
+begin
+
+subsection \<open>Abstract\<close>
+
+text \<open>
+  The following document presents a proof that the Continuum is uncountable.
+  It is formalised in the Isabelle/Isar theorem proving system.
+
+  \<^bold>\<open>Theorem:\<close> The Continuum \<open>\<real>\<close> is not denumerable. In other words, there does
+  not exist a function \<open>f: \<nat> \<Rightarrow> \<real>\<close> such that \<open>f\<close> is surjective.
+
+  \<^bold>\<open>Outline:\<close> An elegant informal proof of this result uses Cantor's
+  Diagonalisation argument. The proof presented here is not this one.
+
+  First we formalise some properties of closed intervals, then we prove the
+  Nested Interval Property. This property relies on the completeness of the
+  Real numbers and is the foundation for our argument. Informally it states
+  that an intersection of countable closed intervals (where each successive
+  interval is a subset of the last) is non-empty. We then assume a surjective
+  function \<open>f: \<nat> \<Rightarrow> \<real>\<close> exists and find a real \<open>x\<close> such that \<open>x\<close> is not in the
+  range of \<open>f\<close> by generating a sequence of closed intervals then using the
+  Nested Interval Property.
+\<close>
+
+theorem real_non_denum: "\<nexists>f :: nat \<Rightarrow> real. surj f"
+proof
+  assume "\<exists>f::nat \<Rightarrow> real. surj f"
+  then obtain f :: "nat \<Rightarrow> real" where "surj f" ..
+
+  txt \<open>First we construct a sequence of nested intervals, ignoring @{term "range f"}.\<close>
+
+  have "a < b \<Longrightarrow> \<exists>ka kb. ka < kb \<and> {ka..kb} \<subseteq> {a..b} \<and> c \<notin> {ka..kb}" for a b c :: real
+    by (auto simp add: not_le cong: conj_cong)
+      (metis dense le_less_linear less_linear less_trans order_refl)
+  then obtain i j where ij:
+    "a < b \<Longrightarrow> i a b c < j a b c"
+      "a < b \<Longrightarrow> {i a b c .. j a b c} \<subseteq> {a .. b}"
+      "a < b \<Longrightarrow> c \<notin> {i a b c .. j a b c}"
+    for a b c :: real
+    by metis
+
+  define ivl where "ivl =
+    rec_nat (f 0 + 1, f 0 + 2) (\<lambda>n x. (i (fst x) (snd x) (f n), j (fst x) (snd x) (f n)))"
+  define I where "I n = {fst (ivl n) .. snd (ivl n)}" for n
+
+  have ivl [simp]:
+    "ivl 0 = (f 0 + 1, f 0 + 2)"
+    "\<And>n. ivl (Suc n) = (i (fst (ivl n)) (snd (ivl n)) (f n), j (fst (ivl n)) (snd (ivl n)) (f n))"
+    unfolding ivl_def by simp_all
+
+  txt \<open>This is a decreasing sequence of non-empty intervals.\<close>
+
+  have less: "fst (ivl n) < snd (ivl n)" for n
+    by (induct n) (auto intro!: ij)
+
+  have "decseq I"
+    unfolding I_def decseq_Suc_iff ivl fst_conv snd_conv
+    by (intro ij allI less)
+
+  txt \<open>Now we apply the finite intersection property of compact sets.\<close>
+
+  have "I 0 \<inter> (\<Inter>i. I i) \<noteq> {}"
+  proof (rule compact_imp_fip_image)
+    fix S :: "nat set"
+    assume fin: "finite S"
+    have "{} \<subset> I (Max (insert 0 S))"
+      unfolding I_def using less[of "Max (insert 0 S)"] by auto
+    also have "I (Max (insert 0 S)) \<subseteq> (\<Inter>i\<in>insert 0 S. I i)"
+      using fin decseqD[OF \<open>decseq I\<close>, of _ "Max (insert 0 S)"]
+      by (auto simp: Max_ge_iff)
+    also have "(\<Inter>i\<in>insert 0 S. I i) = I 0 \<inter> (\<Inter>i\<in>S. I i)"
+      by auto
+    finally show "I 0 \<inter> (\<Inter>i\<in>S. I i) \<noteq> {}"
+      by auto
+  qed (auto simp: I_def)
+  then obtain x where "x \<in> I n" for n
+    by blast
+  moreover from \<open>surj f\<close> obtain j where "x = f j"
+    by blast
+  ultimately have "f j \<in> I (Suc j)"
+    by blast
+  with ij(3)[OF less] show False
+    unfolding I_def ivl fst_conv snd_conv by auto
+qed
+
+lemma uncountable_UNIV_real: "uncountable (UNIV :: real set)"
+  using real_non_denum unfolding uncountable_def by auto
+
+lemma bij_betw_open_intervals:
+  fixes a b c d :: real
+  assumes "a < b" "c < d"
+  shows "\<exists>f. bij_betw f {a<..<b} {c<..<d}"
+proof -
+  define f where "f a b c d x = (d - c)/(b - a) * (x - a) + c" for a b c d x :: real
+  {
+    fix a b c d x :: real
+    assume *: "a < b" "c < d" "a < x" "x < b"
+    moreover from * have "(d - c) * (x - a) < (d - c) * (b - a)"
+      by (intro mult_strict_left_mono) simp_all
+    moreover from * have "0 < (d - c) * (x - a) / (b - a)"
+      by simp
+    ultimately have "f a b c d x < d" "c < f a b c d x"
+      by (simp_all add: f_def field_simps)
+  }
+  with assms have "bij_betw (f a b c d) {a<..<b} {c<..<d}"
+    by (intro bij_betw_byWitness[where f'="f c d a b"]) (auto simp: f_def)
+  then show ?thesis by auto
+qed
+
+lemma bij_betw_tan: "bij_betw tan {-pi/2<..<pi/2} UNIV"
+  using arctan_ubound by (intro bij_betw_byWitness[where f'=arctan]) (auto simp: arctan arctan_tan)
+
+lemma uncountable_open_interval: "uncountable {a<..<b} \<longleftrightarrow> a < b" for a b :: real
+proof
+  show "a < b" if "uncountable {a<..<b}"
+    using uncountable_def that by force
+  show "uncountable {a<..<b}" if "a < b"
+  proof -
+    obtain f where "bij_betw f {a <..< b} {-pi/2<..<pi/2}"
+      using bij_betw_open_intervals[OF \<open>a < b\<close>, of "-pi/2" "pi/2"] by auto
+    then show ?thesis
+      by (metis bij_betw_tan uncountable_bij_betw uncountable_UNIV_real)
+  qed
+qed
+
+lemma uncountable_half_open_interval_1: "uncountable {a..<b} \<longleftrightarrow> a < b" for a b :: real
+  apply auto
+  using atLeastLessThan_empty_iff
+  apply fastforce
+  using uncountable_open_interval [of a b]
+  apply (metis countable_Un_iff ivl_disj_un_singleton(3))
+  done
+
+lemma uncountable_half_open_interval_2: "uncountable {a<..b} \<longleftrightarrow> a < b" for a b :: real
+  apply auto
+  using atLeastLessThan_empty_iff
+  apply fastforce
+  using uncountable_open_interval [of a b]
+  apply (metis countable_Un_iff ivl_disj_un_singleton(4))
+  done
+
+lemma real_interval_avoid_countable_set:
+  fixes a b :: real and A :: "real set"
+  assumes "a < b" and "countable A"
+  shows "\<exists>x\<in>{a<..<b}. x \<notin> A"
+proof -
+  from \<open>countable A\<close> have *: "countable (A \<inter> {a<..<b})"
+    by auto
+  with \<open>a < b\<close> have "\<not> countable {a<..<b}"
+    by (simp add: uncountable_open_interval)
+  with * have "A \<inter> {a<..<b} \<noteq> {a<..<b}"
+    by auto
+  then have "A \<inter> {a<..<b} \<subset> {a<..<b}"
+    by (intro psubsetI) auto
+  then have "\<exists>x. x \<in> {a<..<b} - A \<inter> {a<..<b}"
+    by (rule psubset_imp_ex_mem)
+  then show ?thesis
+    by auto
+qed
+
+lemma uncountable_closed_interval: "uncountable {a..b} \<longleftrightarrow> a < b" for a b :: real
+  apply (rule iffI)
+   apply (metis atLeastAtMost_singleton atLeastatMost_empty countable_finite finite.emptyI finite_insert linorder_neqE_linordered_idom)
+  using real_interval_avoid_countable_set by fastforce
+
+lemma open_minus_countable:
+  fixes S A :: "real set"
+  assumes "countable A" "S \<noteq> {}" "open S"
+  shows "\<exists>x\<in>S. x \<notin> A"
+proof -
+  obtain x where "x \<in> S"
+    using \<open>S \<noteq> {}\<close> by auto
+  then obtain e where "0 < e" "{y. dist y x < e} \<subseteq> S"
+    using \<open>open S\<close> by (auto simp: open_dist subset_eq)
+  moreover have "{y. dist y x < e} = {x - e <..< x + e}"
+    by (auto simp: dist_real_def)
+  ultimately have "uncountable (S - A)"
+    using uncountable_open_interval[of "x - e" "x + e"] \<open>countable A\<close>
+    by (intro uncountable_minus_countable) (auto dest: countable_subset)
+  then show ?thesis
+    unfolding uncountable_def by auto
+qed
+
+end
--- a/src/HOL/Analysis/Path_Connected.thy	Fri Sep 30 12:00:17 2016 +0200
+++ b/src/HOL/Analysis/Path_Connected.thy	Fri Sep 30 15:35:32 2016 +0200
@@ -5,7 +5,7 @@
 section \<open>Continuous paths and path-connected sets\<close>
 
 theory Path_Connected
-imports Continuous_Extension "~~/src/HOL/Library/Continuum_Not_Denumerable"
+imports Continuous_Extension Continuum_Not_Denumerable
 begin
 
 subsection \<open>Paths and Arcs\<close>
--- a/src/HOL/Hahn_Banach/Bounds.thy	Fri Sep 30 12:00:17 2016 +0200
+++ b/src/HOL/Hahn_Banach/Bounds.thy	Fri Sep 30 15:35:32 2016 +0200
@@ -5,7 +5,7 @@
 section \<open>Bounds\<close>
 
 theory Bounds
-imports Main "~~/src/HOL/Library/Continuum_Not_Denumerable"
+imports Main "~~/src/HOL/Analysis/Continuum_Not_Denumerable"
 begin
 
 locale lub =
--- a/src/HOL/Library/Continuum_Not_Denumerable.thy	Fri Sep 30 12:00:17 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,193 +0,0 @@
-(*  Title:      HOL/Library/Continuum_Not_Denumerable.thy
-    Author:     Benjamin Porter, Monash University, NICTA, 2005
-    Author:     Johannes Hölzl, TU München
-*)
-
-section \<open>Non-denumerability of the Continuum.\<close>
-
-theory Continuum_Not_Denumerable
-imports Complex_Main Countable_Set
-begin
-
-subsection \<open>Abstract\<close>
-
-text \<open>
-  The following document presents a proof that the Continuum is uncountable.
-  It is formalised in the Isabelle/Isar theorem proving system.
-
-  \<^bold>\<open>Theorem:\<close> The Continuum \<open>\<real>\<close> is not denumerable. In other words, there does
-  not exist a function \<open>f: \<nat> \<Rightarrow> \<real>\<close> such that \<open>f\<close> is surjective.
-
-  \<^bold>\<open>Outline:\<close> An elegant informal proof of this result uses Cantor's
-  Diagonalisation argument. The proof presented here is not this one.
-
-  First we formalise some properties of closed intervals, then we prove the
-  Nested Interval Property. This property relies on the completeness of the
-  Real numbers and is the foundation for our argument. Informally it states
-  that an intersection of countable closed intervals (where each successive
-  interval is a subset of the last) is non-empty. We then assume a surjective
-  function \<open>f: \<nat> \<Rightarrow> \<real>\<close> exists and find a real \<open>x\<close> such that \<open>x\<close> is not in the
-  range of \<open>f\<close> by generating a sequence of closed intervals then using the
-  Nested Interval Property.
-\<close>
-
-theorem real_non_denum: "\<nexists>f :: nat \<Rightarrow> real. surj f"
-proof
-  assume "\<exists>f::nat \<Rightarrow> real. surj f"
-  then obtain f :: "nat \<Rightarrow> real" where "surj f" ..
-
-  txt \<open>First we construct a sequence of nested intervals, ignoring @{term "range f"}.\<close>
-
-  have "a < b \<Longrightarrow> \<exists>ka kb. ka < kb \<and> {ka..kb} \<subseteq> {a..b} \<and> c \<notin> {ka..kb}" for a b c :: real
-    by (auto simp add: not_le cong: conj_cong)
-      (metis dense le_less_linear less_linear less_trans order_refl)
-  then obtain i j where ij:
-    "a < b \<Longrightarrow> i a b c < j a b c"
-      "a < b \<Longrightarrow> {i a b c .. j a b c} \<subseteq> {a .. b}"
-      "a < b \<Longrightarrow> c \<notin> {i a b c .. j a b c}"
-    for a b c :: real
-    by metis
-
-  define ivl where "ivl =
-    rec_nat (f 0 + 1, f 0 + 2) (\<lambda>n x. (i (fst x) (snd x) (f n), j (fst x) (snd x) (f n)))"
-  define I where "I n = {fst (ivl n) .. snd (ivl n)}" for n
-
-  have ivl [simp]:
-    "ivl 0 = (f 0 + 1, f 0 + 2)"
-    "\<And>n. ivl (Suc n) = (i (fst (ivl n)) (snd (ivl n)) (f n), j (fst (ivl n)) (snd (ivl n)) (f n))"
-    unfolding ivl_def by simp_all
-
-  txt \<open>This is a decreasing sequence of non-empty intervals.\<close>
-
-  have less: "fst (ivl n) < snd (ivl n)" for n
-    by (induct n) (auto intro!: ij)
-
-  have "decseq I"
-    unfolding I_def decseq_Suc_iff ivl fst_conv snd_conv
-    by (intro ij allI less)
-
-  txt \<open>Now we apply the finite intersection property of compact sets.\<close>
-
-  have "I 0 \<inter> (\<Inter>i. I i) \<noteq> {}"
-  proof (rule compact_imp_fip_image)
-    fix S :: "nat set"
-    assume fin: "finite S"
-    have "{} \<subset> I (Max (insert 0 S))"
-      unfolding I_def using less[of "Max (insert 0 S)"] by auto
-    also have "I (Max (insert 0 S)) \<subseteq> (\<Inter>i\<in>insert 0 S. I i)"
-      using fin decseqD[OF \<open>decseq I\<close>, of _ "Max (insert 0 S)"]
-      by (auto simp: Max_ge_iff)
-    also have "(\<Inter>i\<in>insert 0 S. I i) = I 0 \<inter> (\<Inter>i\<in>S. I i)"
-      by auto
-    finally show "I 0 \<inter> (\<Inter>i\<in>S. I i) \<noteq> {}"
-      by auto
-  qed (auto simp: I_def)
-  then obtain x where "x \<in> I n" for n
-    by blast
-  moreover from \<open>surj f\<close> obtain j where "x = f j"
-    by blast
-  ultimately have "f j \<in> I (Suc j)"
-    by blast
-  with ij(3)[OF less] show False
-    unfolding I_def ivl fst_conv snd_conv by auto
-qed
-
-lemma uncountable_UNIV_real: "uncountable (UNIV :: real set)"
-  using real_non_denum unfolding uncountable_def by auto
-
-lemma bij_betw_open_intervals:
-  fixes a b c d :: real
-  assumes "a < b" "c < d"
-  shows "\<exists>f. bij_betw f {a<..<b} {c<..<d}"
-proof -
-  define f where "f a b c d x = (d - c)/(b - a) * (x - a) + c" for a b c d x :: real
-  {
-    fix a b c d x :: real
-    assume *: "a < b" "c < d" "a < x" "x < b"
-    moreover from * have "(d - c) * (x - a) < (d - c) * (b - a)"
-      by (intro mult_strict_left_mono) simp_all
-    moreover from * have "0 < (d - c) * (x - a) / (b - a)"
-      by simp
-    ultimately have "f a b c d x < d" "c < f a b c d x"
-      by (simp_all add: f_def field_simps)
-  }
-  with assms have "bij_betw (f a b c d) {a<..<b} {c<..<d}"
-    by (intro bij_betw_byWitness[where f'="f c d a b"]) (auto simp: f_def)
-  then show ?thesis by auto
-qed
-
-lemma bij_betw_tan: "bij_betw tan {-pi/2<..<pi/2} UNIV"
-  using arctan_ubound by (intro bij_betw_byWitness[where f'=arctan]) (auto simp: arctan arctan_tan)
-
-lemma uncountable_open_interval: "uncountable {a<..<b} \<longleftrightarrow> a < b" for a b :: real
-proof
-  show "a < b" if "uncountable {a<..<b}"
-    using uncountable_def that by force
-  show "uncountable {a<..<b}" if "a < b"
-  proof -
-    obtain f where "bij_betw f {a <..< b} {-pi/2<..<pi/2}"
-      using bij_betw_open_intervals[OF \<open>a < b\<close>, of "-pi/2" "pi/2"] by auto
-    then show ?thesis
-      by (metis bij_betw_tan uncountable_bij_betw uncountable_UNIV_real)
-  qed
-qed
-
-lemma uncountable_half_open_interval_1: "uncountable {a..<b} \<longleftrightarrow> a < b" for a b :: real
-  apply auto
-  using atLeastLessThan_empty_iff
-  apply fastforce
-  using uncountable_open_interval [of a b]
-  apply (metis countable_Un_iff ivl_disj_un_singleton(3))
-  done
-
-lemma uncountable_half_open_interval_2: "uncountable {a<..b} \<longleftrightarrow> a < b" for a b :: real
-  apply auto
-  using atLeastLessThan_empty_iff
-  apply fastforce
-  using uncountable_open_interval [of a b]
-  apply (metis countable_Un_iff ivl_disj_un_singleton(4))
-  done
-
-lemma real_interval_avoid_countable_set:
-  fixes a b :: real and A :: "real set"
-  assumes "a < b" and "countable A"
-  shows "\<exists>x\<in>{a<..<b}. x \<notin> A"
-proof -
-  from \<open>countable A\<close> have *: "countable (A \<inter> {a<..<b})"
-    by auto
-  with \<open>a < b\<close> have "\<not> countable {a<..<b}"
-    by (simp add: uncountable_open_interval)
-  with * have "A \<inter> {a<..<b} \<noteq> {a<..<b}"
-    by auto
-  then have "A \<inter> {a<..<b} \<subset> {a<..<b}"
-    by (intro psubsetI) auto
-  then have "\<exists>x. x \<in> {a<..<b} - A \<inter> {a<..<b}"
-    by (rule psubset_imp_ex_mem)
-  then show ?thesis
-    by auto
-qed
-
-lemma uncountable_closed_interval: "uncountable {a..b} \<longleftrightarrow> a < b" for a b :: real
-  apply (rule iffI)
-   apply (metis atLeastAtMost_singleton atLeastatMost_empty countable_finite finite.emptyI finite_insert linorder_neqE_linordered_idom)
-  using real_interval_avoid_countable_set by fastforce
-
-lemma open_minus_countable:
-  fixes S A :: "real set"
-  assumes "countable A" "S \<noteq> {}" "open S"
-  shows "\<exists>x\<in>S. x \<notin> A"
-proof -
-  obtain x where "x \<in> S"
-    using \<open>S \<noteq> {}\<close> by auto
-  then obtain e where "0 < e" "{y. dist y x < e} \<subseteq> S"
-    using \<open>open S\<close> by (auto simp: open_dist subset_eq)
-  moreover have "{y. dist y x < e} = {x - e <..< x + e}"
-    by (auto simp: dist_real_def)
-  ultimately have "uncountable (S - A)"
-    using uncountable_open_interval[of "x - e" "x + e"] \<open>countable A\<close>
-    by (intro uncountable_minus_countable) (auto dest: countable_subset)
-  then show ?thesis
-    unfolding uncountable_def by auto
-qed
-
-end
--- a/src/HOL/Library/Library.thy	Fri Sep 30 12:00:17 2016 +0200
+++ b/src/HOL/Library/Library.thy	Fri Sep 30 15:35:32 2016 +0200
@@ -10,7 +10,6 @@
   Bourbaki_Witt_Fixpoint
   Char_ord
   Code_Test
-  Continuum_Not_Denumerable
   Combine_PER
   Complete_Partial_Order2
   Countable
--- a/src/HOL/Probability/Distribution_Functions.thy	Fri Sep 30 12:00:17 2016 +0200
+++ b/src/HOL/Probability/Distribution_Functions.thy	Fri Sep 30 15:35:32 2016 +0200
@@ -17,7 +17,7 @@
  should be somewhere else. *)
 
 theory Distribution_Functions
-  imports Probability_Measure "~~/src/HOL/Library/Continuum_Not_Denumerable"
+  imports Probability_Measure
 begin
 
 lemma UN_Ioc_eq_UNIV: "(\<Union>n. { -real n <.. real n}) = UNIV"
--- a/src/HOL/Probability/ex/Measure_Not_CCC.thy	Fri Sep 30 12:00:17 2016 +0200
+++ b/src/HOL/Probability/ex/Measure_Not_CCC.thy	Fri Sep 30 15:35:32 2016 +0200
@@ -3,7 +3,7 @@
 section \<open>The Category of Measurable Spaces is not Cartesian Closed\<close>
 
 theory Measure_Not_CCC
-  imports "~~/src/HOL/Probability/Probability" "~~/src/HOL/Library/Continuum_Not_Denumerable"
+  imports "~~/src/HOL/Probability/Probability"
 begin
 
 text \<open>