compactified proposition
authorhaftmann
Fri, 17 Apr 2015 19:49:40 +0200
changeset 60128 3d696ccb7fa6
parent 60127 b758c9937160
child 60129 add41579a1d3
child 60130 8044de95819b
compactified proposition
src/HOL/Archimedean_Field.thy
--- a/src/HOL/Archimedean_Field.thy	Fri Apr 17 22:59:19 2015 +0200
+++ b/src/HOL/Archimedean_Field.thy	Fri Apr 17 19:49:40 2015 +0200
@@ -311,7 +311,7 @@
 
 lemma floor_divide_of_int_eq:
   fixes k l :: int
-  shows "\<lfloor>of_int k / of_int l\<rfloor> = of_int (k div l)"
+  shows "\<lfloor>of_int k / of_int l\<rfloor> = k div l"
 proof (cases "l = 0")
   case True then show ?thesis by simp
 next
@@ -340,7 +340,7 @@
     by simp
   then have "\<lfloor>of_int k / of_int l :: 'a\<rfloor> = \<lfloor>of_int (k mod l) / of_int l + of_int (k div l) :: 'a\<rfloor>"
     by (simp add: ac_simps)
-  then have "\<lfloor>of_int k / of_int l :: 'a\<rfloor> = \<lfloor>of_int (k mod l) / of_int l :: 'a\<rfloor> + of_int (k div l)"
+  then have "\<lfloor>of_int k / of_int l :: 'a\<rfloor> = \<lfloor>of_int (k mod l) / of_int l :: 'a\<rfloor> + k div l"
     by simp
   with * show ?thesis by simp
 qed