--- a/src/Pure/Pure.thy Wed Dec 19 16:41:55 2012 +0100
+++ b/src/Pure/Pure.thy Wed Dec 19 22:26:26 2012 +0100
@@ -146,7 +146,7 @@
qed
lemma imp_conjunction:
- "(PROP A ==> PROP B &&& PROP C) == (PROP A ==> PROP B) &&& (PROP A ==> PROP C)"
+ "(PROP A ==> PROP B &&& PROP C) == ((PROP A ==> PROP B) &&& (PROP A ==> PROP C))"
proof
assume conj: "PROP A ==> PROP B &&& PROP C"
show "(PROP A ==> PROP B) &&& (PROP A ==> PROP C)"
--- a/src/Pure/pure_thy.ML Wed Dec 19 16:41:55 2012 +0100
+++ b/src/Pure/pure_thy.ML Wed Dec 19 22:26:26 2012 +0100
@@ -177,7 +177,7 @@
#> Sign.add_modesyntax_i ("HTML", false)
[("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3))]
#> Sign.add_consts_i
- [(Binding.name "==", typ "'a => 'a => prop", Infixr ("==", 2)),
+ [(Binding.name "==", typ "'a => 'a => prop", Infix ("==", 2)),
(Binding.name "==>", typ "prop => prop => prop", Mixfix ("(_/ ==> _)", [2, 1], 1)),
(Binding.name "all", typ "('a => prop) => prop", Binder ("!!", 0, 0)),
(Binding.name "prop", typ "prop => prop", NoSyn),