mistakenly deleted this theory
authorpaulson
Thu, 17 Jan 2002 10:35:59 +0100
changeset 12787 3ecbc37befab
parent 12786 d655138ddadf
child 12788 6842f90972da
mistakenly deleted this theory
src/ZF/AC/AC7_AC9.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/AC/AC7_AC9.thy	Thu Jan 17 10:35:59 2002 +0100
@@ -0,0 +1,168 @@
+(*  Title:      ZF/AC/AC7_AC9.thy
+    ID:         $Id$
+    Author:     Krzysztof Grabczewski
+
+The proofs needed to state that AC7, AC8 and AC9 are equivalent to the previous
+instances of AC.
+*)
+
+theory AC7_AC9 = AC_Equiv:
+
+(* ********************************************************************** *)
+(* Lemmas used in the proofs AC7 ==> AC6 and AC9 ==> AC1                  *)
+(*  - Sigma_fun_space_not0                                                *)
+(*  - Sigma_fun_space_eqpoll                                              *)
+(* ********************************************************************** *)
+
+lemma Sigma_fun_space_not0: "[| 0\<notin>A; B \<in> A |] ==> (nat->Union(A)) * B \<noteq> 0"
+by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])
+
+lemma inj_lemma: 
+        "C \<in> A ==> (\<lambda>g \<in> (nat->Union(A))*C.   
+                (\<lambda>n \<in> nat. if(n=0, snd(g), fst(g)`(n #- 1))))   
+                \<in> inj((nat->Union(A))*C, (nat->Union(A)) ) "
+apply (unfold inj_def)
+apply (rule CollectI)
+apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto) 
+apply (rule fun_extension, assumption+)
+apply (drule lam_eqE [OF _ nat_succI], assumption, simp) 
+apply (drule lam_eqE [OF _ nat_0I], simp) 
+done
+
+lemma Sigma_fun_space_eqpoll:
+     "[| C \<in> A; 0\<notin>A |] ==> (nat->Union(A)) * C \<approx> (nat->Union(A))"
+apply (rule eqpollI)
+apply (simp add: lepoll_def)
+apply (fast intro!: inj_lemma)
+apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem 
+            elim: swap)
+done
+
+
+(* ********************************************************************** *)
+(* AC6 ==> AC7                                                            *)
+(* ********************************************************************** *)
+
+lemma AC6_AC7: "AC6 ==> AC7"
+by (unfold AC6_def AC7_def, blast)
+
+(* ********************************************************************** *)
+(* AC7 ==> AC6, Rubin & Rubin p. 12, Theorem 2.8                          *)
+(* The case of the empty family of sets added in order to complete        *)
+(* the proof.                                                             *)
+(* ********************************************************************** *)
+
+lemma lemma1_1: "y \<in> (\<Pi>B \<in> A. Y*B) ==> (\<lambda>B \<in> A. snd(y`B)) \<in> (\<Pi>B \<in> A. B)"
+by (fast intro!: lam_type snd_type apply_type)
+
+lemma lemma1_2:
+     "y \<in> (\<Pi>B \<in> {Y*C. C \<in> A}. B) ==> (\<lambda>B \<in> A. y`(Y*B)) \<in> (\<Pi>B \<in> A. Y*B)"
+apply (fast intro!: lam_type apply_type)
+done
+
+lemma AC7_AC6_lemma1:
+     "(\<Pi>B \<in> {(nat->Union(A))*C. C \<in> A}. B) \<noteq> 0 ==> (\<Pi>B \<in> A. B) \<noteq> 0"
+by (fast intro!: equals0I lemma1_1 lemma1_2)
+
+lemma AC7_AC6_lemma2: "0 \<notin> A ==> 0 \<notin> {(nat -> Union(A)) * C. C \<in> A}"
+by (blast dest: Sigma_fun_space_not0)
+
+lemma AC7_AC6: "AC7 ==> AC6"
+apply (unfold AC6_def AC7_def)
+apply (rule allI)
+apply (rule impI)
+apply (case_tac "A=0", simp)
+apply (rule AC7_AC6_lemma1)
+apply (erule allE) 
+apply (blast del: notI
+	     intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans 
+                    Sigma_fun_space_eqpoll)
+done
+
+
+(* ********************************************************************** *)
+(* AC1 ==> AC8                                                            *)
+(* ********************************************************************** *)
+
+lemma AC1_AC8_lemma1: 
+        "\<forall>B \<in> A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2   
+        ==> 0 \<notin> { bij(fst(B),snd(B)). B \<in> A }"
+apply (unfold eqpoll_def, auto)
+done
+
+lemma AC1_AC8_lemma2:
+     "[| f \<in> (\<Pi>X \<in> RepFun(A,p). X); D \<in> A |] ==> (\<lambda>x \<in> A. f`p(x))`D \<in> p(D)" 
+apply (simp, fast elim!: apply_type)
+done
+
+lemma AC1_AC8: "AC1 ==> AC8"
+apply (unfold AC1_def AC8_def)
+apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2)
+done
+
+
+(* ********************************************************************** *)
+(* AC8 ==> AC9                                                            *)
+(*  - this proof replaces the following two from Rubin & Rubin:           *)
+(*    AC8 ==> AC1 and AC1 ==> AC9                                         *)
+(* ********************************************************************** *)
+
+lemma AC8_AC9_lemma:
+     "\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1 \<approx> B2 
+      ==> \<forall>B \<in> A*A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2"
+by fast
+
+lemma AC8_AC9: "AC8 ==> AC9"
+apply (unfold AC8_def AC9_def)
+apply (intro allI impI)
+apply (erule allE)
+apply (erule impE, erule AC8_AC9_lemma, force) 
+done
+
+
+(* ********************************************************************** *)
+(* AC9 ==> AC1                                                            *)
+(* The idea of this proof comes from "Equivalents of the Axiom of Choice" *)
+(* by Rubin & Rubin. But (x * y) is not necessarily equipollent to        *)
+(* (x * y) Un {0} when y is a set of total functions acting from nat to   *)
+(* Union(A) -- therefore we have used the set (y * nat) instead of y.     *)
+(* ********************************************************************** *)
+
+lemma snd_lepoll_SigmaI: "b \<in> B \<Longrightarrow> X \<lesssim> B \<times> X"
+by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll 
+                 prod_commute_eqpoll) 
+
+lemma nat_lepoll_lemma:
+     "[|0 \<notin> A; B \<in> A|] ==> nat \<lesssim> ((nat \<rightarrow> Union(A)) \<times> B) \<times> nat"
+by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI)
+
+lemma AC9_AC1_lemma1:
+     "[| 0\<notin>A;  A\<noteq>0;   
+         C = {((nat->Union(A))*B)*nat. B \<in> A}  Un  
+             {cons(0,((nat->Union(A))*B)*nat). B \<in> A};  
+         B1 \<in> C;  B2 \<in> C |]   
+      ==> B1 \<approx> B2"
+by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll
+                     nat_cons_eqpoll [THEN eqpoll_trans] 
+                     prod_eqpoll_cong [OF _ eqpoll_refl]
+             intro: eqpoll_trans eqpoll_sym )
+
+lemma AC9_AC1_lemma2:
+     "\<forall>B1 \<in> {(F*B)*N. B \<in> A} Un {cons(0,(F*B)*N). B \<in> A}.   
+      \<forall>B2 \<in> {(F*B)*N. B \<in> A} Un {cons(0,(F*B)*N). B \<in> A}.   
+        f`<B1,B2> \<in> bij(B1, B2)   
+      ==> (\<lambda>B \<in> A. snd(fst((f`<cons(0,(F*B)*N),(F*B)*N>)`0))) \<in> (\<Pi>X \<in> A. X)"
+apply (intro lam_type snd_type fst_type)
+apply (rule apply_type [OF _ consI1]) 
+apply (fast intro!: fun_weaken_type bij_is_fun)
+done
+
+lemma AC9_AC1: "AC9 ==> AC1"
+apply (unfold AC1_def AC9_def)
+apply (intro allI impI)
+apply (erule allE)
+apply (case_tac "A~=0")
+apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force) 
+done
+
+end