merged
authornipkow
Thu, 24 Mar 2016 15:56:54 +0100
changeset 62707 3f724ca245d0
parent 62704 478b49f0d726 (current diff)
parent 62706 49c6a54ceab6 (diff)
child 62708 96f20d90c989
merged
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Leftist_Heap.thy	Thu Mar 24 15:56:54 2016 +0100
@@ -0,0 +1,214 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>Leftist Heap\<close>
+
+theory Leftist_Heap
+imports Tree2 "~~/src/HOL/Library/Multiset" Complex_Main
+begin
+
+type_synonym 'a lheap = "('a,nat)tree"
+
+fun rank :: "'a lheap \<Rightarrow> nat" where
+"rank Leaf = 0" |
+"rank (Node _ _ _ r) = rank r + 1"
+
+fun rk :: "'a lheap \<Rightarrow> nat" where
+"rk Leaf = 0" |
+"rk (Node n _ _ _) = n"
+
+text{* The invariant: *}
+
+fun lheap :: "'a lheap \<Rightarrow> bool" where
+"lheap Leaf = True" |
+"lheap (Node n l a r) =
+ (n = rank r + 1 \<and> rank l \<ge> rank r \<and> lheap l & lheap r)"
+
+definition node :: "'a lheap \<Rightarrow> 'a \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where
+"node l a r =
+ (let rl = rk l; rr = rk r
+  in if rl \<ge> rr then Node (rr+1) l a r else Node (rl+1) r a l)"
+
+fun get_min :: "'a lheap \<Rightarrow> 'a" where
+"get_min(Node n l a r) = a"
+
+function meld :: "'a::ord lheap \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where
+"meld Leaf t2 = t2" |
+"meld t1 Leaf = t1" |
+"meld (Node n1 l1 a1 r1) (Node n2 l2 a2 r2) =
+   (if a1 \<le> a2 then node l1 a1 (meld r1 (Node n2 l2 a2 r2))
+    else node l2 a2 (meld r2 (Node n1 l1 a1 r1)))"
+by pat_completeness auto
+termination by (relation "measure (%(t1,t2). rank t1 + rank t2)") auto
+
+lemma meld_code: "meld t1 t2 = (case (t1,t2) of
+  (Leaf, _) \<Rightarrow> t2 |
+  (_, Leaf) \<Rightarrow> t1 |
+  (Node n1 l1 a1 r1, Node n2 l2 a2 r2) \<Rightarrow>
+    if a1 \<le> a2 then node l1 a1 (meld r1 t2) else node l2 a2 (meld r2 t1))"
+by(induction t1 t2 rule: meld.induct) (simp_all split: tree.split)
+
+definition insert :: "'a::ord \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where
+"insert x t = meld (Node 1 Leaf x Leaf) t"
+
+fun del_min :: "'a::ord lheap \<Rightarrow> 'a lheap" where
+"del_min Leaf = Leaf" |
+"del_min (Node n l x r) = meld l r"
+
+
+subsection "Lemmas"
+
+declare Let_def [simp]
+
+lemma rk_eq_rank[simp]: "lheap t \<Longrightarrow> rk t = rank t"
+by(cases t) auto
+
+lemma lheap_node: "lheap (node l a r) \<longleftrightarrow> lheap l \<and> lheap r"
+by(auto simp add: node_def)
+
+
+subsection "Functional Correctness"
+
+locale Priority_Queue =
+fixes empty :: "'pq"
+and insert :: "'a \<Rightarrow> 'pq \<Rightarrow> 'pq"
+and get_min :: "'pq \<Rightarrow> 'a"
+and del_min :: "'pq \<Rightarrow> 'pq"
+and invar :: "'pq \<Rightarrow> bool"
+and mset :: "'pq \<Rightarrow> 'a multiset"
+assumes mset_empty: "mset empty = {#}"
+and mset_insert: "invar pq \<Longrightarrow> mset (insert x pq) = {#x#} + mset pq"
+and mset_del_min: "invar pq \<Longrightarrow> mset (del_min pq) = mset pq - {#get_min pq#}"
+and invar_insert: "invar pq \<Longrightarrow> invar (insert x pq)"
+and invar_del_min: "invar pq \<Longrightarrow> invar (del_min pq)"
+
+
+fun mset_tree :: "('a,'b) tree \<Rightarrow> 'a multiset" where
+"mset_tree Leaf = {#}" |
+"mset_tree (Node _ l a r) = {#a#} + mset_tree l + mset_tree r"
+
+
+lemma mset_meld: "mset_tree (meld h1 h2) = mset_tree h1 + mset_tree h2"
+by (induction h1 h2 rule: meld.induct) (auto simp add: node_def ac_simps)
+
+lemma mset_insert: "mset_tree (insert x t) = {#x#} + mset_tree t"
+by (auto simp add: insert_def mset_meld)
+
+lemma mset_del_min: "mset_tree (del_min h) = mset_tree h - {# get_min h #}"
+by (cases h) (auto simp: mset_meld ac_simps subset_mset.diff_add_assoc)
+
+
+lemma lheap_meld: "\<lbrakk> lheap l; lheap r \<rbrakk> \<Longrightarrow> lheap (meld l r)"
+proof(induction l r rule: meld.induct)
+  case (3 n1 l1 a1 r1 n2 l2 a2 r2)
+  show ?case (is "lheap(meld ?t1 ?t2)")
+  proof cases
+    assume "a1 \<le> a2"
+    hence "lheap (meld ?t1 ?t2) = lheap (node l1 a1 (meld r1 ?t2))" by simp
+    also have "\<dots> = (lheap l1 \<and> lheap(meld r1 ?t2))"
+      by(simp add: lheap_node)
+    also have "..." using "3.prems" "3.IH"(1)[OF `a1 \<le> a2`] by (simp)
+    finally show ?thesis .
+  next (* analogous but automatic *)
+    assume "\<not> a1 \<le> a2"
+    thus ?thesis using 3 by(simp)(auto simp: lheap_node)
+  qed
+qed simp_all
+
+lemma lheap_insert: "lheap t \<Longrightarrow> lheap(insert x t)"
+by(simp add: insert_def lheap_meld del: meld.simps split: tree.split)
+
+lemma lheap_del_min: "lheap t \<Longrightarrow> lheap(del_min t)"
+by(cases t)(auto simp add: lheap_meld simp del: meld.simps)
+
+
+interpretation lheap: Priority_Queue
+where empty = Leaf and insert = insert and del_min = del_min
+and get_min = get_min and invar = lheap and mset = mset_tree
+proof(standard, goal_cases)
+  case 1 show ?case by simp
+next
+  case 2 show ?case by(rule mset_insert)
+next
+  case 3 show ?case by(rule mset_del_min)
+next
+  case 4 thus ?case by(rule lheap_insert)
+next
+  case 5 thus ?case by(rule lheap_del_min)
+qed
+
+
+subsection "Complexity"
+
+lemma pow2_rank_size1: "lheap t \<Longrightarrow> 2 ^ rank t \<le> size1 t"
+proof(induction t)
+  case Leaf show ?case by simp
+next
+  case (Node n l a r)
+  hence "rank r \<le> rank l" by simp
+  hence *: "(2::nat) ^ rank r \<le> 2 ^ rank l" by simp
+  have "(2::nat) ^ rank \<langle>n, l, a, r\<rangle> = 2 ^ rank r + 2 ^ rank r"
+    by(simp add: mult_2)
+  also have "\<dots> \<le> size1 l + size1 r"
+    using Node * by (simp del: power_increasing_iff)
+  also have "\<dots> = size1 \<langle>n, l, a, r\<rangle>" by simp
+  finally show ?case .
+qed
+
+function t_meld :: "'a::ord lheap \<Rightarrow> 'a lheap \<Rightarrow> nat" where
+"t_meld Leaf t2 = 1" |
+"t_meld t2 Leaf = 1" |
+"t_meld (Node n1 l1 a1 r1) (Node n2 l2 a2 r2) =
+  (if a1 \<le> a2 then 1 + t_meld r1 (Node n2 l2 a2 r2)
+   else 1 + t_meld r2 (Node n1 l1 a1 r1))"
+by pat_completeness auto
+termination by (relation "measure (%(t1,t2). rank t1 + rank t2)") auto
+
+definition t_insert :: "'a::ord \<Rightarrow> 'a lheap \<Rightarrow> nat" where
+"t_insert x t = t_meld (Node 1 Leaf x Leaf) t"
+
+fun t_del_min :: "'a::ord lheap \<Rightarrow> nat" where
+"t_del_min Leaf = 1" |
+"t_del_min (Node n l a r) = t_meld l r"
+
+lemma t_meld_rank: "t_meld l r \<le> rank l + rank r + 1"
+proof(induction l r rule: meld.induct)
+  case 3 thus ?case
+    by(simp)(fastforce split: tree.splits simp del: t_meld.simps)
+qed simp_all
+
+corollary t_meld_log: assumes "lheap l" "lheap r"
+  shows "t_meld l r \<le> log 2 (size1 l) + log 2 (size1 r) + 1"
+using le_log2_of_power[OF pow2_rank_size1[OF assms(1)]]
+  le_log2_of_power[OF pow2_rank_size1[OF assms(2)]] t_meld_rank[of l r]
+by linarith
+
+corollary t_insert_log: "lheap t \<Longrightarrow> t_insert x t \<le> log 2 (size1 t) + 2"
+using t_meld_log[of "Node 1 Leaf x Leaf" t]
+by(simp add: t_insert_def split: tree.split)
+
+lemma ld_ld_1_less:
+  assumes "x > 0" "y > 0" shows "1 + log 2 x + log 2 y < 2 * log 2 (x+y)"
+proof -
+  have 1: "2*x*y < (x+y)^2" using assms
+    by(simp add: numeral_eq_Suc algebra_simps add_pos_pos)
+  show ?thesis
+    apply(rule powr_less_cancel_iff[of 2, THEN iffD1])
+     apply simp
+    using assms 1 by(simp add: powr_add log_powr[symmetric] powr_numeral)
+qed
+
+corollary t_del_min_log: assumes "lheap t"
+  shows "t_del_min t \<le> 2 * log 2 (size1 t) + 1"
+proof(cases t)
+  case Leaf thus ?thesis using assms by simp
+next
+  case [simp]: (Node _ t1 _ t2)
+  have "t_del_min t = t_meld t1 t2" by simp
+  also have "\<dots> \<le> log 2 (size1 t1) + log 2 (size1 t2) + 1"
+    using \<open>lheap t\<close> by (auto simp: t_meld_log simp del: t_meld.simps)
+  also have "\<dots> \<le> 2 * log 2 (size1 t) + 1"
+    using ld_ld_1_less[of "size1 t1" "size1 t2"] by (simp)
+  finally show ?thesis .
+qed
+
+end
--- a/src/HOL/Data_Structures/document/root.bib	Thu Mar 24 14:55:43 2016 +0100
+++ b/src/HOL/Data_Structures/document/root.bib	Thu Mar 24 15:56:54 2016 +0100
@@ -3,6 +3,10 @@
 booktitle={Algorithms and Data Structures (WADS '93)},
 series={LNCS},volume={709},publisher={Springer}}
 
+@phdthesis{Crane72,author={Clark A. Crane},
+title={Linear Lists and Prorty Queues as Balanced Binary Trees},
+school={Computer Science Department, Stanford University},year=1972}
+
 @article{Hinze-bro12,author={Ralf Hinze},
 title={Purely Functional 1-2 Brother Trees},
 journal={J. Functional Programming},
@@ -23,6 +27,23 @@
 title={Automatic Functional Correctness Proofs for Functional Search Trees},
 year=2016,month=feb,note={\url{http://www.in.tum.de/~nipkow/pubs/trees.html}}}
 
+@inproceedings{NunezPP95,
+  author    = {Manuel N{\'{u}}{\~{n}}ez and
+               Pedro Palao and
+               Ricardo Pena},
+  title     = {A Second Year Course on Data Structures Based on Functional Programming},
+  booktitle = {Functional Programming Languages in Education},
+  pages     = {65--84},
+  year      = {1995},
+  editor    = {Pieter H. Hartel and
+               Marinus J. Plasmeijer},
+  series    = {LNCS},
+  volume    = {1022},
+  publisher = {Springer},
+  year      = {1995},
+}
+
+
 @book{Okasaki,author={Chris Okasaki},title="Purely Functional Data Structures",
 publisher="Cambridge University Press",year=1998}
 
--- a/src/HOL/Data_Structures/document/root.tex	Thu Mar 24 14:55:43 2016 +0100
+++ b/src/HOL/Data_Structures/document/root.tex	Thu Mar 24 15:56:54 2016 +0100
@@ -63,6 +63,10 @@
 They were invented by Sleator and Tarjan \cite{SleatorT-JACM85}.
 Our formalisation follows Schoenmakers \cite{Schoenmakers-IPL93}.
 
+\paragraph{Leftist heaps}
+They were invented by Crane \cite{Crane72}. A first functional implementation
+is due to N\'u\~{n}ez \emph{et al.}~\cite{NunezPP95}.
+
 \bibliographystyle{abbrv}
 \bibliography{root}
 
--- a/src/HOL/ROOT	Thu Mar 24 14:55:43 2016 +0100
+++ b/src/HOL/ROOT	Thu Mar 24 15:56:54 2016 +0100
@@ -173,6 +173,7 @@
   options [document_variants = document]
   theories [document = false]
     "Less_False"
+    "~~/src/HOL/Library/Multiset"
   theories
     Tree_Map
     AVL_Map
@@ -182,6 +183,7 @@
     Brother12_Map
     AA_Map
     Splay_Map
+    Leftist_Heap
   document_files "root.tex" "root.bib"
 
 session "HOL-Import" in Import = HOL +