modernized section about congruence rules;
authorwenzelm
Sun, 27 Nov 2011 12:52:52 +0100
changeset 45645 4014bc2a09ff
parent 45644 8634b4e61b88
child 45646 02afa20cf397
modernized section about congruence rules;
doc-src/IsarRef/Thy/Generic.thy
doc-src/IsarRef/Thy/document/Generic.tex
doc-src/Ref/simplifier.tex
--- a/doc-src/IsarRef/Thy/Generic.thy	Sat Nov 26 17:10:03 2011 +0100
+++ b/doc-src/IsarRef/Thy/Generic.thy	Sun Nov 27 12:52:52 2011 +0100
@@ -399,8 +399,8 @@
   like @{text add}.
 
   \medskip The @{text cong} modifiers add or delete Simplifier
-  congruence rules (see also \cite{isabelle-ref}), the default is to
-  add.
+  congruence rules (see also \secref{sec:simp-cong}), the default is
+  to add.
 
   \medskip The @{text split} modifiers add or delete rules for the
   Splitter (see also \cite{isabelle-ref}), the default is to add.
@@ -453,12 +453,11 @@
   \begin{matharray}{rcl}
     @{command_def "print_simpset"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
     @{attribute_def simp} & : & @{text attribute} \\
-    @{attribute_def cong} & : & @{text attribute} \\
     @{attribute_def split} & : & @{text attribute} \\
   \end{matharray}
 
   @{rail "
-    (@@{attribute simp} | @@{attribute cong} | @@{attribute split}) (() | 'add' | 'del')
+    (@@{attribute simp} | @@{attribute split}) (() | 'add' | 'del')
   "}
 
   \begin{description}
@@ -469,14 +468,68 @@
 
   \item @{attribute simp} declares simplification rules.
 
-  \item @{attribute cong} declares congruence rules.
-
   \item @{attribute split} declares case split rules.
 
   \end{description}
 *}
 
 
+subsection {* Congruence rules\label{sec:simp-cong} *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{attribute_def cong} & : & @{text attribute} \\
+  \end{matharray}
+
+  @{rail "
+    @@{attribute cong} (() | 'add' | 'del')
+  "}
+
+  \begin{description}
+
+  \item @{attribute cong} declares congruence rules to the Simplifier
+  context.
+
+  \end{description}
+
+  Congruence rules are equalities of the form @{text [display]
+  "\<dots> \<Longrightarrow> f ?x\<^sub>1 \<dots> ?x\<^sub>n = f ?y\<^sub>1 \<dots> ?y\<^sub>n"}
+
+  This controls the simplification of the arguments of @{text f}.  For
+  example, some arguments can be simplified under additional
+  assumptions: @{text [display] "?P\<^sub>1 \<longleftrightarrow> ?Q\<^sub>1 \<Longrightarrow> (?Q\<^sub>1 \<Longrightarrow> ?P\<^sub>2 \<longleftrightarrow> ?Q\<^sub>2) \<Longrightarrow>
+  (?P\<^sub>1 \<longrightarrow> ?P\<^sub>2) \<longleftrightarrow> (?Q\<^sub>1 \<longrightarrow> ?Q\<^sub>2)"}
+
+  Given this rule, the simplifier assumes @{text "?Q\<^sub>1"} and extracts
+  rewrite rules from it when simplifying @{text "?P\<^sub>2"}.  Such local
+  assumptions are effective for rewriting formulae such as @{text "x =
+  0 \<longrightarrow> y + x = y"}.
+
+  %FIXME
+  %The local assumptions are also provided as theorems to the solver;
+  %see \secref{sec:simp-solver} below.
+
+  \medskip The following congruence rule for bounded quantifiers also
+  supplies contextual information --- about the bound variable:
+  @{text [display] "(?A = ?B) \<Longrightarrow> (\<And>x. x \<in> ?B \<Longrightarrow> ?P x \<longleftrightarrow> ?Q x) \<Longrightarrow>
+    (\<forall>x \<in> ?A. ?P x) \<longleftrightarrow> (\<forall>x \<in> ?B. ?Q x)"}
+
+  \medskip This congruence rule for conditional expressions can
+  supply contextual information for simplifying the arms:
+  @{text [display] "?p = ?q \<Longrightarrow> (?q \<Longrightarrow> ?a = ?c) \<Longrightarrow> (\<not> ?q \<Longrightarrow> ?b = ?d) \<Longrightarrow>
+    (if ?p then ?a else ?b) = (if ?q then ?c else ?d)"}
+
+  A congruence rule can also \emph{prevent} simplification of some
+  arguments.  Here is an alternative congruence rule for conditional
+  expressions that conforms to non-strict functional evaluation:
+  @{text [display] "?p = ?q \<Longrightarrow> (if ?p then ?a else ?b) = (if ?q then ?a else ?b)"}
+
+  Only the first argument is simplified; the others remain unchanged.
+  This can make simplification much faster, but may require an extra
+  case split over the condition @{text "?q"} to prove the goal.
+*}
+
+
 subsection {* Simplification procedures *}
 
 text {* Simplification procedures are ML functions that produce proven
--- a/doc-src/IsarRef/Thy/document/Generic.tex	Sat Nov 26 17:10:03 2011 +0100
+++ b/doc-src/IsarRef/Thy/document/Generic.tex	Sun Nov 27 12:52:52 2011 +0100
@@ -653,8 +653,8 @@
   like \isa{add}.
 
   \medskip The \isa{cong} modifiers add or delete Simplifier
-  congruence rules (see also \cite{isabelle-ref}), the default is to
-  add.
+  congruence rules (see also \secref{sec:simp-cong}), the default is
+  to add.
 
   \medskip The \isa{split} modifiers add or delete rules for the
   Splitter (see also \cite{isabelle-ref}), the default is to add.
@@ -704,7 +704,6 @@
 \begin{matharray}{rcl}
     \indexdef{}{command}{print\_simpset}\hypertarget{command.print-simpset}{\hyperlink{command.print-simpset}{\mbox{\isa{\isacommand{print{\isaliteral{5F}{\isacharunderscore}}simpset}}}}}\isa{{\isaliteral{22}{\isachardoublequote}}\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequote}}} & : & \isa{{\isaliteral{22}{\isachardoublequote}}context\ {\isaliteral{5C3C72696768746172726F773E}{\isasymrightarrow}}{\isaliteral{22}{\isachardoublequote}}} \\
     \indexdef{}{attribute}{simp}\hypertarget{attribute.simp}{\hyperlink{attribute.simp}{\mbox{\isa{simp}}}} & : & \isa{attribute} \\
-    \indexdef{}{attribute}{cong}\hypertarget{attribute.cong}{\hyperlink{attribute.cong}{\mbox{\isa{cong}}}} & : & \isa{attribute} \\
     \indexdef{}{attribute}{split}\hypertarget{attribute.split}{\hyperlink{attribute.split}{\mbox{\isa{split}}}} & : & \isa{attribute} \\
   \end{matharray}
 
@@ -713,8 +712,6 @@
 \rail@bar
 \rail@term{\hyperlink{attribute.simp}{\mbox{\isa{simp}}}}[]
 \rail@nextbar{1}
-\rail@term{\hyperlink{attribute.cong}{\mbox{\isa{cong}}}}[]
-\rail@nextbar{2}
 \rail@term{\hyperlink{attribute.split}{\mbox{\isa{split}}}}[]
 \rail@endbar
 \rail@bar
@@ -735,14 +732,87 @@
 
   \item \hyperlink{attribute.simp}{\mbox{\isa{simp}}} declares simplification rules.
 
-  \item \hyperlink{attribute.cong}{\mbox{\isa{cong}}} declares congruence rules.
-
   \item \hyperlink{attribute.split}{\mbox{\isa{split}}} declares case split rules.
 
   \end{description}%
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
+\isamarkupsubsection{Congruence rules\label{sec:simp-cong}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{attribute}{cong}\hypertarget{attribute.cong}{\hyperlink{attribute.cong}{\mbox{\isa{cong}}}} & : & \isa{attribute} \\
+  \end{matharray}
+
+  \begin{railoutput}
+\rail@begin{3}{}
+\rail@term{\hyperlink{attribute.cong}{\mbox{\isa{cong}}}}[]
+\rail@bar
+\rail@nextbar{1}
+\rail@term{\isa{add}}[]
+\rail@nextbar{2}
+\rail@term{\isa{del}}[]
+\rail@endbar
+\rail@end
+\end{railoutput}
+
+
+  \begin{description}
+
+  \item \hyperlink{attribute.cong}{\mbox{\isa{cong}}} declares congruence rules to the Simplifier
+  context.
+
+  \end{description}
+
+  Congruence rules are equalities of the form \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ f\ {\isaliteral{3F}{\isacharquery}}x\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{3F}{\isacharquery}}x\isaliteral{5C3C5E7375623E}{}\isactrlsub n\ {\isaliteral{3D}{\isacharequal}}\ f\ {\isaliteral{3F}{\isacharquery}}y\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{3F}{\isacharquery}}y\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  This controls the simplification of the arguments of \isa{f}.  For
+  example, some arguments can be simplified under additional
+  assumptions: \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{3F}{\isacharquery}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ {\isaliteral{3F}{\isacharquery}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ {\isaliteral{3F}{\isacharquery}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
+\ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  Given this rule, the simplifier assumes \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{3F}{\isacharquery}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{22}{\isachardoublequote}}} and extracts
+  rewrite rules from it when simplifying \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{3F}{\isacharquery}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{22}{\isachardoublequote}}}.  Such local
+  assumptions are effective for rewriting formulae such as \isa{{\isaliteral{22}{\isachardoublequote}}x\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ y\ {\isaliteral{2B}{\isacharplus}}\ x\ {\isaliteral{3D}{\isacharequal}}\ y{\isaliteral{22}{\isachardoublequote}}}.
+
+  %FIXME
+  %The local assumptions are also provided as theorems to the solver;
+  %see \secref{sec:simp-solver} below.
+
+  \medskip The following congruence rule for bounded quantifiers also
+  supplies contextual information --- about the bound variable:
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}A\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{3F}{\isacharquery}}B{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C416E643E}{\isasymAnd}}x{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}B\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\ x\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ {\isaliteral{3F}{\isacharquery}}Q\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
+\ \ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}A{\isaliteral{2E}{\isachardot}}\ {\isaliteral{3F}{\isacharquery}}P\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}B{\isaliteral{2E}{\isachardot}}\ {\isaliteral{3F}{\isacharquery}}Q\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  \medskip This congruence rule for conditional expressions can
+  supply contextual information for simplifying the arms:
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{3F}{\isacharquery}}p\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{3F}{\isacharquery}}q\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}q\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}a\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{3F}{\isacharquery}}c{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{3F}{\isacharquery}}q\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}b\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{3F}{\isacharquery}}d{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
+\ \ \ \ {\isaliteral{28}{\isacharparenleft}}if\ {\isaliteral{3F}{\isacharquery}}p\ then\ {\isaliteral{3F}{\isacharquery}}a\ else\ {\isaliteral{3F}{\isacharquery}}b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}if\ {\isaliteral{3F}{\isacharquery}}q\ then\ {\isaliteral{3F}{\isacharquery}}c\ else\ {\isaliteral{3F}{\isacharquery}}d{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  A congruence rule can also \emph{prevent} simplification of some
+  arguments.  Here is an alternative congruence rule for conditional
+  expressions that conforms to non-strict functional evaluation:
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{3F}{\isacharquery}}p\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{3F}{\isacharquery}}q\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}if\ {\isaliteral{3F}{\isacharquery}}p\ then\ {\isaliteral{3F}{\isacharquery}}a\ else\ {\isaliteral{3F}{\isacharquery}}b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}if\ {\isaliteral{3F}{\isacharquery}}q\ then\ {\isaliteral{3F}{\isacharquery}}a\ else\ {\isaliteral{3F}{\isacharquery}}b{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  Only the first argument is simplified; the others remain unchanged.
+  This can make simplification much faster, but may require an extra
+  case split over the condition \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{3F}{\isacharquery}}q{\isaliteral{22}{\isachardoublequote}}} to prove the goal.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
 \isamarkupsubsection{Simplification procedures%
 }
 \isamarkuptrue%
--- a/doc-src/Ref/simplifier.tex	Sat Nov 26 17:10:03 2011 +0100
+++ b/doc-src/Ref/simplifier.tex	Sun Nov 27 12:52:52 2011 +0100
@@ -336,75 +336,6 @@
 \index{rewrite rules|)}
 
 
-\subsection{*Congruence rules}\index{congruence rules}\label{sec:simp-congs}
-\begin{ttbox}
-addcongs   : simpset * thm list -> simpset \hfill{\bf infix 4}
-delcongs   : simpset * thm list -> simpset \hfill{\bf infix 4}
-addeqcongs : simpset * thm list -> simpset \hfill{\bf infix 4}
-deleqcongs : simpset * thm list -> simpset \hfill{\bf infix 4}
-\end{ttbox}
-
-Congruence rules are meta-equalities of the form
-\[ \dots \Imp
-   f(\Var{x@1},\ldots,\Var{x@n}) \equiv f(\Var{y@1},\ldots,\Var{y@n}).
-\]
-This governs the simplification of the arguments of~$f$.  For
-example, some arguments can be simplified under additional assumptions:
-\[ \List{\Var{P@1} \bimp \Var{Q@1};\; \Var{Q@1} \Imp \Var{P@2} \bimp \Var{Q@2}}
-   \Imp (\Var{P@1} \imp \Var{P@2}) \equiv (\Var{Q@1} \imp \Var{Q@2})
-\]
-Given this rule, the simplifier assumes $Q@1$ and extracts rewrite
-rules from it when simplifying~$P@2$.  Such local assumptions are
-effective for rewriting formulae such as $x=0\imp y+x=y$.  The local
-assumptions are also provided as theorems to the solver; see
-{\S}~\ref{sec:simp-solver} below.
-
-\begin{ttdescription}
-  
-\item[$ss$ \ttindexbold{addcongs} $thms$] adds congruence rules to the
-  simpset $ss$.  These are derived from $thms$ in an appropriate way,
-  depending on the underlying object-logic.
-  
-\item[$ss$ \ttindexbold{delcongs} $thms$] deletes congruence rules
-  derived from $thms$.
-  
-\item[$ss$ \ttindexbold{addeqcongs} $thms$] adds congruence rules in
-  their internal form (conclusions using meta-equality) to simpset
-  $ss$.  This is the basic mechanism that \texttt{addcongs} is built
-  on.  It should be rarely used directly.
-  
-\item[$ss$ \ttindexbold{deleqcongs} $thms$] deletes congruence rules
-  in internal form from simpset $ss$.
-  
-\end{ttdescription}
-
-\medskip
-
-Here are some more examples.  The congruence rule for bounded
-quantifiers also supplies contextual information, this time about the
-bound variable:
-\begin{eqnarray*}
-  &&\List{\Var{A}=\Var{B};\; 
-          \Forall x. x\in \Var{B} \Imp \Var{P}(x) = \Var{Q}(x)} \Imp{} \\
- &&\qquad\qquad
-    (\forall x\in \Var{A}.\Var{P}(x)) = (\forall x\in \Var{B}.\Var{Q}(x))
-\end{eqnarray*}
-The congruence rule for conditional expressions can supply contextual
-information for simplifying the arms:
-\[ \List{\Var{p}=\Var{q};~ \Var{q} \Imp \Var{a}=\Var{c};~
-         \neg\Var{q} \Imp \Var{b}=\Var{d}} \Imp
-   if(\Var{p},\Var{a},\Var{b}) \equiv if(\Var{q},\Var{c},\Var{d})
-\]
-A congruence rule can also {\em prevent\/} simplification of some arguments.
-Here is an alternative congruence rule for conditional expressions:
-\[ \Var{p}=\Var{q} \Imp
-   if(\Var{p},\Var{a},\Var{b}) \equiv if(\Var{q},\Var{a},\Var{b})
-\]
-Only the first argument is simplified; the others remain unchanged.
-This can make simplification much faster, but may require an extra case split
-to prove the goal.  
-
-
 \subsection{*The subgoaler}\label{sec:simp-subgoaler}
 \begin{ttbox}
 setsubgoaler :