new theory NatPair of the injection from nat*nat -> nat
authorpaulson
Thu, 24 Jul 2003 16:37:04 +0200
changeset 14127 40a4768c8e0b
parent 14126 28824746d046
child 14128 fd6d20c2371c
new theory NatPair of the injection from nat*nat -> nat
src/HOL/Library/Library.thy
src/HOL/Library/NatPair.thy
--- a/src/HOL/Library/Library.thy	Thu Jul 24 16:36:29 2003 +0200
+++ b/src/HOL/Library/Library.thy	Thu Jul 24 16:37:04 2003 +0200
@@ -10,6 +10,7 @@
   Continuity +
   Multiset +
   Permutation +
+  NatPair +
   Primes +
   While_Combinator:
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/NatPair.thy	Thu Jul 24 16:37:04 2003 +0200
@@ -0,0 +1,93 @@
+(*  Title:      HOL/Library/NatPair.thy
+    ID:         $Id$
+    Author:     Christophe Tabacznyj and Lawrence C Paulson
+    Copyright   1996  University of Cambridge
+*)
+
+header {*
+  \title{Pairs of Natural Numbers}
+  \author{Stefan Richter}
+*}
+
+theory NatPair = Main:
+
+text{*An injective function from $\mathbf{N}^2$ to
+  $\mathbf{N}$.  Definition and proofs are from 
+  Arnold Oberschelp.  Rekursionstheorie.  BI-Wissenschafts-Verlag, 1993
+  (page 85).  *}
+
+constdefs 
+  nat2_to_nat:: "(nat * nat) \<Rightarrow> nat"
+  "nat2_to_nat pair \<equiv> let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n"
+
+lemma dvd2_a_x_suc_a: "2 dvd a * (Suc a)" 
+proof (cases "2 dvd a") 
+  case True
+  thus ?thesis by (rule dvd_mult2)
+next
+  case False 
+  hence "Suc (a mod 2) = 2" by (simp add: dvd_eq_mod_eq_0)
+  hence "Suc a mod 2 = 0" by (simp add: mod_Suc) 
+  hence "2 dvd Suc a" by (simp only:dvd_eq_mod_eq_0) 
+  thus ?thesis by (rule dvd_mult)
+qed
+
+lemma assumes eq: "nat2_to_nat (u,v) = nat2_to_nat (x,y)" 
+  shows nat2_to_nat_help: "u+v \<le> x+y"
+proof (rule classical)
+  assume "\<not> ?thesis"
+  hence contrapos: "x+y < u+v" 
+    by simp
+  have "nat2_to_nat (x,y) < (x+y) * Suc (x+y) div 2 + Suc (x + y)" 
+    by (unfold nat2_to_nat_def) (simp add: Let_def)
+  also have "\<dots> = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2" 
+    by (simp only: div_mult_self1_is_m) 
+  also have "\<dots> = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2 
+    + ((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2" 
+  proof -
+    have "2 dvd (x+y)*Suc(x+y)" 
+      by (rule dvd2_a_x_suc_a)
+    hence "(x+y)*Suc(x+y) mod 2 = 0" 
+      by (simp only: dvd_eq_mod_eq_0)
+    also
+    have "2 * Suc(x+y) mod 2 = 0" 
+      by (rule mod_mult_self1_is_0)
+    ultimately have 
+      "((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2 = 0" 
+      by simp 
+    thus ?thesis 
+      by simp
+  qed 
+  also have "\<dots> = ((x+y)*Suc(x+y) + 2*Suc(x+y)) div 2" 
+    by (rule div_add1_eq[THEN sym])
+  also have "\<dots> = ((x+y+2)*Suc(x+y)) div 2" 
+    by (simp only: add_mult_distrib[THEN sym])
+  also from contrapos have "\<dots> \<le> ((Suc(u+v))*(u+v)) div 2" 
+    by (simp only: mult_le_mono div_le_mono) 
+  also have "\<dots> \<le> nat2_to_nat (u,v)" 
+    by (unfold nat2_to_nat_def) (simp add: Let_def)
+  finally show ?thesis 
+    by (simp only: eq)
+qed
+
+lemma nat2_to_nat_inj: "inj nat2_to_nat"
+proof -
+  {fix u v x y assume "nat2_to_nat (u,v) = nat2_to_nat (x,y)"
+    hence "u+v \<le> x+y" by (rule nat2_to_nat_help)
+    also from prems[THEN sym] have "x+y \<le> u+v" 
+      by (rule nat2_to_nat_help)
+    finally have eq: "u+v = x+y" .
+    with prems have ux: "u=x" 
+      by (simp add: nat2_to_nat_def Let_def)
+    with eq have vy: "v=y" 
+      by simp
+    with ux have "(u,v) = (x,y)" 
+      by simp
+  }
+  hence "\<And>x y. nat2_to_nat x = nat2_to_nat y \<Longrightarrow> x=y" 
+    by fast
+  thus ?thesis 
+    by (unfold inj_on_def) simp
+qed
+
+end