--- a/src/HOL/Library/Library.thy Thu Jul 24 16:36:29 2003 +0200
+++ b/src/HOL/Library/Library.thy Thu Jul 24 16:37:04 2003 +0200
@@ -10,6 +10,7 @@
Continuity +
Multiset +
Permutation +
+ NatPair +
Primes +
While_Combinator:
end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/NatPair.thy Thu Jul 24 16:37:04 2003 +0200
@@ -0,0 +1,93 @@
+(* Title: HOL/Library/NatPair.thy
+ ID: $Id$
+ Author: Christophe Tabacznyj and Lawrence C Paulson
+ Copyright 1996 University of Cambridge
+*)
+
+header {*
+ \title{Pairs of Natural Numbers}
+ \author{Stefan Richter}
+*}
+
+theory NatPair = Main:
+
+text{*An injective function from $\mathbf{N}^2$ to
+ $\mathbf{N}$. Definition and proofs are from
+ Arnold Oberschelp. Rekursionstheorie. BI-Wissenschafts-Verlag, 1993
+ (page 85). *}
+
+constdefs
+ nat2_to_nat:: "(nat * nat) \<Rightarrow> nat"
+ "nat2_to_nat pair \<equiv> let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n"
+
+lemma dvd2_a_x_suc_a: "2 dvd a * (Suc a)"
+proof (cases "2 dvd a")
+ case True
+ thus ?thesis by (rule dvd_mult2)
+next
+ case False
+ hence "Suc (a mod 2) = 2" by (simp add: dvd_eq_mod_eq_0)
+ hence "Suc a mod 2 = 0" by (simp add: mod_Suc)
+ hence "2 dvd Suc a" by (simp only:dvd_eq_mod_eq_0)
+ thus ?thesis by (rule dvd_mult)
+qed
+
+lemma assumes eq: "nat2_to_nat (u,v) = nat2_to_nat (x,y)"
+ shows nat2_to_nat_help: "u+v \<le> x+y"
+proof (rule classical)
+ assume "\<not> ?thesis"
+ hence contrapos: "x+y < u+v"
+ by simp
+ have "nat2_to_nat (x,y) < (x+y) * Suc (x+y) div 2 + Suc (x + y)"
+ by (unfold nat2_to_nat_def) (simp add: Let_def)
+ also have "\<dots> = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2"
+ by (simp only: div_mult_self1_is_m)
+ also have "\<dots> = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2
+ + ((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2"
+ proof -
+ have "2 dvd (x+y)*Suc(x+y)"
+ by (rule dvd2_a_x_suc_a)
+ hence "(x+y)*Suc(x+y) mod 2 = 0"
+ by (simp only: dvd_eq_mod_eq_0)
+ also
+ have "2 * Suc(x+y) mod 2 = 0"
+ by (rule mod_mult_self1_is_0)
+ ultimately have
+ "((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2 = 0"
+ by simp
+ thus ?thesis
+ by simp
+ qed
+ also have "\<dots> = ((x+y)*Suc(x+y) + 2*Suc(x+y)) div 2"
+ by (rule div_add1_eq[THEN sym])
+ also have "\<dots> = ((x+y+2)*Suc(x+y)) div 2"
+ by (simp only: add_mult_distrib[THEN sym])
+ also from contrapos have "\<dots> \<le> ((Suc(u+v))*(u+v)) div 2"
+ by (simp only: mult_le_mono div_le_mono)
+ also have "\<dots> \<le> nat2_to_nat (u,v)"
+ by (unfold nat2_to_nat_def) (simp add: Let_def)
+ finally show ?thesis
+ by (simp only: eq)
+qed
+
+lemma nat2_to_nat_inj: "inj nat2_to_nat"
+proof -
+ {fix u v x y assume "nat2_to_nat (u,v) = nat2_to_nat (x,y)"
+ hence "u+v \<le> x+y" by (rule nat2_to_nat_help)
+ also from prems[THEN sym] have "x+y \<le> u+v"
+ by (rule nat2_to_nat_help)
+ finally have eq: "u+v = x+y" .
+ with prems have ux: "u=x"
+ by (simp add: nat2_to_nat_def Let_def)
+ with eq have vy: "v=y"
+ by simp
+ with ux have "(u,v) = (x,y)"
+ by simp
+ }
+ hence "\<And>x y. nat2_to_nat x = nat2_to_nat y \<Longrightarrow> x=y"
+ by fast
+ thus ?thesis
+ by (unfold inj_on_def) simp
+qed
+
+end