dropped session W0; c.f. MiniML in AFP
authorhaftmann
Tue, 23 Feb 2010 10:11:31 +0100
changeset 35319 4140f31b2ed2
parent 35318 e1b61c5fd494
child 35320 f80aee1ed475
dropped session W0; c.f. MiniML in AFP
src/HOL/IsaMakefile
src/HOL/W0/README.html
src/HOL/W0/ROOT.ML
src/HOL/W0/W0.thy
src/HOL/W0/document/root.tex
--- a/src/HOL/IsaMakefile	Tue Feb 23 10:11:16 2010 +0100
+++ b/src/HOL/IsaMakefile	Tue Feb 23 10:11:31 2010 +0100
@@ -66,7 +66,6 @@
       TLA-Memory \
   HOL-UNITY \
   HOL-Unix \
-  HOL-W0 \
   HOL-Word-Examples \
   HOL-ZF
     # ^ this is the sort position
@@ -592,9 +591,10 @@
 
 $(LOG)/HOL-Hoare.gz: $(OUT)/HOL Hoare/Arith2.thy Hoare/Examples.thy	\
   Hoare/Hoare.thy Hoare/hoare_tac.ML Hoare/Heap.thy			\
+  Hoare/Hoare_Logic.thy	Hoare/Hoare_Logic_Abort.thy			\
   Hoare/HeapSyntax.thy Hoare/Pointer_Examples.thy Hoare/ROOT.ML		\
   Hoare/ExamplesAbort.thy Hoare/HeapSyntaxAbort.thy			\
-  Hoare/HoareAbort.thy Hoare/SchorrWaite.thy Hoare/Separation.thy	\
+  Hoare/SchorrWaite.thy Hoare/Separation.thy				\
   Hoare/SepLogHeap.thy Hoare/document/root.tex Hoare/document/root.bib
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Hoare
 
@@ -848,14 +848,6 @@
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Prolog
 
 
-## HOL-W0
-
-HOL-W0: HOL $(LOG)/HOL-W0.gz
-
-$(LOG)/HOL-W0.gz: $(OUT)/HOL W0/ROOT.ML W0/W0.thy W0/document/root.tex
-	@$(ISABELLE_TOOL) usedir $(OUT)/HOL W0
-
-
 ## HOL-MicroJava
 
 HOL-MicroJava: HOL $(LOG)/HOL-MicroJava.gz
@@ -1321,7 +1313,7 @@
 		$(LOG)/HOL-SMT-Examples.gz $(LOG)/HOL-SMT.gz		\
 		$(LOG)/HOL-Statespace.gz $(LOG)/HOL-Subst.gz		\
 		$(LOG)/HOL-UNITY.gz $(LOG)/HOL-Unix.gz			\
-		$(LOG)/HOL-W0.gz $(LOG)/HOL-Word-Examples.gz		\
+		$(LOG)/HOL-Word-Examples.gz		\
 		$(LOG)/HOL-Word.gz $(LOG)/HOL-ZF.gz $(LOG)/HOL-ex.gz	\
 		$(LOG)/HOL.gz $(LOG)/HOL4.gz $(LOG)/TLA-Buffer.gz	\
 		$(LOG)/TLA-Inc.gz $(LOG)/TLA-Memory.gz $(LOG)/TLA.gz	\
--- a/src/HOL/W0/README.html	Tue Feb 23 10:11:16 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,33 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
-
-<!-- $Id$ -->
-
-<HTML>
-
-<HEAD>
-  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
-  <TITLE>HOL/W0/README</TITLE>
-</HEAD>
-
-<BODY>
-
-<H1>Type Inference for MiniML (without <tt>let</tt>)</H1>
-
-This theory defines the type inference rules and the type inference algorithm
-<em>W</em> for simply-typed lambda terms due to Milner. It proves the
-soundness and completeness of <em>W</em> w.r.t. to the rules. An optimized
-version <em>I</em> is shown to implement <em>W</em>.
-
-<P>
-
-A report describing the theory is found here:<br>
-<A HREF = "http://www4.informatik.tu-muenchen.de/~nipkow/pubs/tphol96.html">
-Formal Verification of Algorithm W: The Monomorphic Case</A>.
-
-<P>
-
-<B>NOTE:</B> This theory has been superseded by a more recent development
-which formalizes type inference for a language including <tt>let</tt>. For
-details click <A HREF="../MiniML/index.html">here</A>.
-</BODY>
-</HTML>
--- a/src/HOL/W0/ROOT.ML	Tue Feb 23 10:11:16 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-use_thys ["W0"];
--- a/src/HOL/W0/W0.thy	Tue Feb 23 10:11:16 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,925 +0,0 @@
-(*  Title:      HOL/W0/W0.thy
-    ID:         $Id$
-    Author:     Dieter Nazareth, Tobias Nipkow, Thomas Stauner, Markus Wenzel
-*)
-
-theory W0
-imports Main
-begin
-
-section {* Universal error monad *}
-
-datatype 'a maybe = Ok 'a | Fail
-
-definition
-  bind :: "'a maybe \<Rightarrow> ('a \<Rightarrow> 'b maybe) \<Rightarrow> 'b maybe"    (infixl "\<bind>" 60) where
-  "m \<bind> f = (case m of Ok r \<Rightarrow> f r | Fail \<Rightarrow> Fail)"
-
-syntax
-  "_bind" :: "patterns \<Rightarrow> 'a maybe \<Rightarrow> 'b \<Rightarrow> 'c"    ("(_ := _;//_)" 0)
-translations
-  "P := E; F" == "E \<bind> (\<lambda>P. F)"
-
-lemma bind_Ok [simp]: "(Ok s) \<bind> f = (f s)"
-  by (simp add: bind_def)
-
-lemma bind_Fail [simp]: "Fail \<bind> f = Fail"
-  by (simp add: bind_def)
-
-lemma split_bind:
-    "P (res \<bind> f) = ((res = Fail \<longrightarrow> P Fail) \<and> (\<forall>s. res = Ok s \<longrightarrow> P (f s)))"
-  by (induct res) simp_all
-
-lemma split_bind_asm:
-  "P (res \<bind> f) = (\<not> (res = Fail \<and> \<not> P Fail \<or> (\<exists>s. res = Ok s \<and> \<not> P (f s))))"
-  by (simp split: split_bind)
-
-lemmas bind_splits = split_bind split_bind_asm
-
-lemma bind_eq_Fail [simp]:
-  "((m \<bind> f) = Fail) = ((m = Fail) \<or> (\<exists>p. m = Ok p \<and> f p = Fail))"
-  by (simp split: split_bind)
-
-lemma rotate_Ok: "(y = Ok x) = (Ok x = y)"
-  by (rule eq_sym_conv)
-
-
-section {* MiniML-types and type substitutions *}
-
-axclass type_struct \<subseteq> type
-  -- {* new class for structures containing type variables *}
-
-datatype "typ" = TVar nat | TFun "typ" "typ"    (infixr "->" 70)
-  -- {* type expressions *}
-
-types subst = "nat => typ"
-  -- {* type variable substitution *}
-
-instance "typ" :: type_struct ..
-instance list :: (type_struct) type_struct ..
-instance "fun" :: (type, type_struct) type_struct ..
-
-
-subsection {* Substitutions *}
-
-consts
-  app_subst :: "subst \<Rightarrow> 'a::type_struct \<Rightarrow> 'a::type_struct"    ("$")
-  -- {* extension of substitution to type structures *}
-primrec (app_subst_typ)
-  app_subst_TVar: "$s (TVar n) = s n"
-  app_subst_Fun: "$s (t1 -> t2) = $s t1 -> $s t2"
-
-defs (overloaded)
-  app_subst_list: "$s \<equiv> map ($s)"
-
-consts
-  free_tv :: "'a::type_struct \<Rightarrow> nat set"
-  -- {* @{text "free_tv s"}: the type variables occuring freely in the type structure @{text s} *}
-
-primrec (free_tv_typ)
-  "free_tv (TVar m) = {m}"
-  "free_tv (t1 -> t2) = free_tv t1 \<union> free_tv t2"
-
-primrec (free_tv_list)
-  "free_tv [] = {}"
-  "free_tv (x # xs) = free_tv x \<union> free_tv xs"
-
-definition
-  dom :: "subst \<Rightarrow> nat set" where
-  "dom s = {n. s n \<noteq> TVar n}"
-  -- {* domain of a substitution *}
-
-definition
-  cod :: "subst \<Rightarrow> nat set" where
-  "cod s = (\<Union>m \<in> dom s. free_tv (s m))"
-  -- {* codomain of a substitutions: the introduced variables *}
-
-defs (overloaded)
-  free_tv_subst: "free_tv s \<equiv> dom s \<union> cod s"
-
-text {*
-  @{text "new_tv s n"} checks whether @{text n} is a new type variable
-  wrt.\ a type structure @{text s}, i.e.\ whether @{text n} is greater
-  than any type variable occuring in the type structure.
-*}
-
-definition
-  new_tv :: "nat \<Rightarrow> 'a::type_struct \<Rightarrow> bool" where
-  "new_tv n ts = (\<forall>m. m \<in> free_tv ts \<longrightarrow> m < n)"
-
-
-subsubsection {* Identity substitution *}
-
-definition
-  id_subst :: subst where
-  "id_subst = (\<lambda>n. TVar n)"
-
-lemma app_subst_id_te [simp]:
-  "$id_subst = (\<lambda>t::typ. t)"
-  -- {* application of @{text id_subst} does not change type expression *}
-proof
-  fix t :: "typ"
-  show "$id_subst t = t"
-    by (induct t) (simp_all add: id_subst_def)
-qed
-
-lemma app_subst_id_tel [simp]: "$id_subst = (\<lambda>ts::typ list. ts)"
-  -- {* application of @{text id_subst} does not change list of type expressions *}
-proof
-  fix ts :: "typ list"
-  show "$id_subst ts = ts"
-    by (induct ts) (simp_all add: app_subst_list)
-qed
-
-lemma o_id_subst [simp]: "$s o id_subst = s"
-  by (rule ext) (simp add: id_subst_def)
-
-lemma dom_id_subst [simp]: "dom id_subst = {}"
-  by (simp add: dom_def id_subst_def)
-
-lemma cod_id_subst [simp]: "cod id_subst = {}"
-  by (simp add: cod_def)
-
-lemma free_tv_id_subst [simp]: "free_tv id_subst = {}"
-  by (simp add: free_tv_subst)
-
-
-lemma cod_app_subst [simp]:
-  assumes free: "v \<in> free_tv (s n)"
-    and neq: "v \<noteq> n"
-  shows "v \<in> cod s"
-proof -
-  have "s n \<noteq> TVar n"
-  proof
-    assume "s n = TVar n"
-    with free have "v = n" by simp
-    with neq show False ..
-  qed
-  with free show ?thesis
-    by (auto simp add: dom_def cod_def)
-qed
-
-lemma subst_comp_te: "$g ($f t :: typ) = $(\<lambda>x. $g (f x)) t"
-  -- {* composition of substitutions *}
-  by (induct t) simp_all
-
-lemma subst_comp_tel: "$g ($f ts :: typ list) = $(\<lambda>x. $g (f x)) ts"
-  by (induct ts) (simp_all add: app_subst_list subst_comp_te)
-
-
-lemma app_subst_Nil [simp]: "$s [] = []"
-  by (simp add: app_subst_list)
-
-lemma app_subst_Cons [simp]: "$s (t # ts) = ($s t) # ($s ts)"
-  by (simp add: app_subst_list)
-
-lemma new_tv_TVar [simp]: "new_tv n (TVar m) = (m < n)"
-  by (simp add: new_tv_def)
-
-lemma new_tv_Fun [simp]:
-  "new_tv n (t1 -> t2) = (new_tv n t1 \<and> new_tv n t2)"
-  by (auto simp add: new_tv_def)
-
-lemma new_tv_Nil [simp]: "new_tv n []"
-  by (simp add: new_tv_def)
-
-lemma new_tv_Cons [simp]: "new_tv n (t # ts) = (new_tv n t \<and> new_tv n ts)"
-  by (auto simp add: new_tv_def)
-
-lemma new_tv_id_subst [simp]: "new_tv n id_subst"
-  by (simp add: id_subst_def new_tv_def free_tv_subst dom_def cod_def)
-
-lemma new_tv_subst:
-  "new_tv n s =
-    ((\<forall>m. n \<le> m \<longrightarrow> s m = TVar m) \<and>
-     (\<forall>l. l < n \<longrightarrow> new_tv n (s l)))"
-  apply (unfold new_tv_def)
-  apply (tactic "safe_tac HOL_cs")
-  -- {* @{text \<Longrightarrow>} *}
-    apply (tactic {* fast_tac (HOL_cs addDs [@{thm leD}] addss (@{simpset}
-      addsimps [thm "free_tv_subst", thm "dom_def"])) 1 *})
-   apply (subgoal_tac "m \<in> cod s \<or> s l = TVar l")
-    apply (tactic "safe_tac HOL_cs")
-     apply (tactic {* fast_tac (HOL_cs addDs [UnI2] addss (@{simpset}
-       addsimps [thm "free_tv_subst"])) 1 *})
-    apply (drule_tac P = "\<lambda>x. m \<in> free_tv x" in subst, assumption)
-    apply simp
-    apply (unfold free_tv_subst cod_def dom_def)
-    apply clarsimp
-  apply safe
-  apply metis
-  apply (metis linorder_not_less)+
-  done
-
-lemma new_tv_list: "new_tv n x = (\<forall>y \<in> set x. new_tv n y)"
-  by (induct x) simp_all
-
-lemma subst_te_new_tv [simp]:
-  "new_tv n (t::typ) \<Longrightarrow> $(\<lambda>x. if x = n then t' else s x) t = $s t"
-  -- {* substitution affects only variables occurring freely *}
-  by (induct t) simp_all
-
-lemma subst_tel_new_tv [simp]:
-  "new_tv n (ts::typ list) \<Longrightarrow> $(\<lambda>x. if x = n then t else s x) ts = $s ts"
-  by (induct ts) simp_all
-
-lemma new_tv_le: "n \<le> m \<Longrightarrow> new_tv n (t::typ) \<Longrightarrow> new_tv m t"
-  -- {* all greater variables are also new *}
-proof (induct t)
-  case (TVar n)
-  then show ?case by (auto intro: less_le_trans)
-next
-  case TFun
-  then show ?case by simp
-qed
-
-lemma [simp]: "new_tv n t \<Longrightarrow> new_tv (Suc n) (t::typ)"
-  by (rule lessI [THEN less_imp_le [THEN new_tv_le]])
-
-lemma new_tv_list_le:
-  assumes "n \<le> m"
-  shows "new_tv n (ts::typ list) \<Longrightarrow> new_tv m ts"
-proof (induct ts)
-  case Nil
-  then show ?case by simp
-next
-  case Cons
-  with `n \<le> m` show ?case by (auto intro: new_tv_le)
-qed
-
-lemma [simp]: "new_tv n ts \<Longrightarrow> new_tv (Suc n) (ts::typ list)"
-  by (rule lessI [THEN less_imp_le [THEN new_tv_list_le]])
-
-lemma new_tv_subst_le: "n \<le> m \<Longrightarrow> new_tv n (s::subst) \<Longrightarrow> new_tv m s"
-  apply (simp add: new_tv_subst)
-  apply clarify
-  apply (rule_tac P = "l < n" and Q = "n <= l" in disjE)
-    apply clarify
-    apply (simp_all add: new_tv_le)
-  done
-
-lemma [simp]: "new_tv n s \<Longrightarrow> new_tv (Suc n) (s::subst)"
-  by (rule lessI [THEN less_imp_le [THEN new_tv_subst_le]])
-
-lemma new_tv_subst_var:
-    "n < m \<Longrightarrow> new_tv m (s::subst) \<Longrightarrow> new_tv m (s n)"
-  -- {* @{text new_tv} property remains if a substitution is applied *}
-  by (simp add: new_tv_subst)
-
-lemma new_tv_subst_te [simp]:
-    "new_tv n s \<Longrightarrow> new_tv n (t::typ) \<Longrightarrow> new_tv n ($s t)"
-  by (induct t) (auto simp add: new_tv_subst)
-
-lemma new_tv_subst_tel [simp]:
-    "new_tv n s \<Longrightarrow> new_tv n (ts::typ list) \<Longrightarrow> new_tv n ($s ts)"
-  by (induct ts) (fastsimp simp add: new_tv_subst)+
-
-lemma new_tv_Suc_list: "new_tv n ts --> new_tv (Suc n) (TVar n # ts)"
-  -- {* auxilliary lemma *}
-  by (simp add: new_tv_list)
-
-lemma new_tv_subst_comp_1 [simp]:
-    "new_tv n (s::subst) \<Longrightarrow> new_tv n r \<Longrightarrow> new_tv n ($r o s)"
-  -- {* composition of substitutions preserves @{text new_tv} proposition *}
-  by (simp add: new_tv_subst)
-
-lemma new_tv_subst_comp_2 [simp]:
-    "new_tv n (s::subst) \<Longrightarrow> new_tv n r \<Longrightarrow> new_tv n (\<lambda>v. $r (s v))"
-  by (simp add: new_tv_subst)
-
-lemma new_tv_not_free_tv [simp]: "new_tv n ts \<Longrightarrow> n \<notin> free_tv ts"
-  -- {* new type variables do not occur freely in a type structure *}
-  by (auto simp add: new_tv_def)
-
-lemma ftv_mem_sub_ftv_list [simp]:
-    "(t::typ) \<in> set ts \<Longrightarrow> free_tv t \<subseteq> free_tv ts"
-  by (induct ts) auto
-
-text {*
-  If two substitutions yield the same result if applied to a type
-  structure the substitutions coincide on the free type variables
-  occurring in the type structure.
-*}
-
-lemma eq_subst_te_eq_free:
-    "$s1 (t::typ) = $s2 t \<Longrightarrow> n \<in> free_tv t \<Longrightarrow> s1 n = s2 n"
-  by (induct t) auto
-
-lemma eq_free_eq_subst_te:
-    "(\<forall>n. n \<in> free_tv t --> s1 n = s2 n) \<Longrightarrow> $s1 (t::typ) = $s2 t"
-  by (induct t) auto
-
-lemma eq_subst_tel_eq_free:
-    "$s1 (ts::typ list) = $s2 ts \<Longrightarrow> n \<in> free_tv ts \<Longrightarrow> s1 n = s2 n"
-  by (induct ts) (auto intro: eq_subst_te_eq_free)
-
-lemma eq_free_eq_subst_tel:
-    "(\<forall>n. n \<in> free_tv ts --> s1 n = s2 n) \<Longrightarrow> $s1 (ts::typ list) = $s2 ts"
-  by (induct ts) (auto intro: eq_free_eq_subst_te)
-
-text {*
-  \medskip Some useful lemmas.
-*}
-
-lemma codD: "v \<in> cod s \<Longrightarrow> v \<in> free_tv s"
-  by (simp add: free_tv_subst)
-
-lemma not_free_impl_id: "x \<notin> free_tv s \<Longrightarrow> s x = TVar x"
-  by (simp add: free_tv_subst dom_def)
-
-lemma free_tv_le_new_tv: "new_tv n t \<Longrightarrow> m \<in> free_tv t \<Longrightarrow> m < n"
-  by (unfold new_tv_def) fast
-
-lemma free_tv_subst_var: "free_tv (s (v::nat)) \<le> insert v (cod s)"
-  by (cases "v \<in> dom s") (auto simp add: cod_def dom_def)
-
-lemma free_tv_app_subst_te: "free_tv ($s (t::typ)) \<subseteq> cod s \<union> free_tv t"
-  by (induct t) (auto simp add: free_tv_subst_var)
-
-lemma free_tv_app_subst_tel: "free_tv ($s (ts::typ list)) \<subseteq> cod s \<union> free_tv ts"
-  apply (induct ts)
-   apply simp
-  apply (cut_tac free_tv_app_subst_te)
-  apply fastsimp
-  done
-
-lemma free_tv_comp_subst:
-    "free_tv (\<lambda>u::nat. $s1 (s2 u) :: typ) \<subseteq> free_tv s1 \<union> free_tv s2"
-  apply (unfold free_tv_subst dom_def)
-  apply (auto dest!: free_tv_subst_var [THEN subsetD] free_tv_app_subst_te [THEN subsetD]
-    simp add: cod_def dom_def simp del: bex_simps)
-  done
-
-
-subsection {* Most general unifiers *}
-
-consts
-  mgu :: "typ \<Rightarrow> typ \<Rightarrow> subst maybe"
-axioms
-  mgu_eq [simp]: "mgu t1 t2 = Ok u \<Longrightarrow> $u t1 = $u t2"
-  mgu_mg [simp]: "mgu t1 t2 = Ok u \<Longrightarrow> $s t1 = $s t2 \<Longrightarrow> \<exists>r. s = $r o u"
-  mgu_Ok: "$s t1 = $s t2 \<Longrightarrow> \<exists>u. mgu t1 t2 = Ok u"
-  mgu_free [simp]: "mgu t1 t2 = Ok u \<Longrightarrow> free_tv u \<subseteq> free_tv t1 \<union> free_tv t2"
-
-lemma mgu_new: "mgu t1 t2 = Ok u \<Longrightarrow> new_tv n t1 \<Longrightarrow> new_tv n t2 \<Longrightarrow> new_tv n u"
-  -- {* @{text mgu} does not introduce new type variables *}
-  by (unfold new_tv_def) (blast dest: mgu_free)
-
-
-section {* Mini-ML with type inference rules *}
-
-datatype
-  expr = Var nat | Abs expr | App expr expr
-
-
-text {* Type inference rules. *}
-
-inductive
-  has_type :: "typ list \<Rightarrow> expr \<Rightarrow> typ \<Rightarrow> bool"  ("((_) |-/ (_) :: (_))" [60, 0, 60] 60)
-  where
-    Var: "n < length a \<Longrightarrow> a |- Var n :: a ! n"
-  | Abs: "t1#a |- e :: t2 \<Longrightarrow> a |- Abs e :: t1 -> t2"
-  | App: "a |- e1 :: t2 -> t1 \<Longrightarrow> a |- e2 :: t2
-      \<Longrightarrow> a |- App e1 e2 :: t1"
-
-
-text {* Type assigment is closed wrt.\ substitution. *}
-
-lemma has_type_subst_closed: "a |- e :: t ==> $s a |- e :: $s t"
-proof (induct set: has_type)
-  case (Var n a)
-  then have "n < length (map ($ s) a)" by simp
-  then have "map ($ s) a |- Var n :: map ($ s) a ! n"
-    by (rule has_type.Var)
-  also have "map ($ s) a ! n = $ s (a ! n)"
-    by (rule nth_map) (rule Var)
-  also have "map ($ s) a = $ s a"
-    by (simp only: app_subst_list)
-  finally show ?case .
-next
-  case (Abs t1 a e t2)
-  then have "$ s t1 # map ($ s) a |- e :: $ s t2"
-    by (simp add: app_subst_list)
-  then have "map ($ s) a |- Abs e :: $ s t1 -> $ s t2"
-    by (rule has_type.Abs)
-  then show ?case
-    by (simp add: app_subst_list)
-next
-  case App
-  then show ?case by (simp add: has_type.App)
-qed
-
-
-section {* Correctness and completeness of the type inference algorithm W *}
-
-consts
-  "\<W>" :: "expr \<Rightarrow> typ list \<Rightarrow> nat \<Rightarrow> (subst \<times> typ \<times> nat) maybe"
-primrec
-  "\<W> (Var i) a n =
-    (if i < length a then Ok (id_subst, a ! i, n) else Fail)"
-  "\<W> (Abs e) a n =
-    ((s, t, m) := \<W> e (TVar n # a) (Suc n);
-     Ok (s, (s n) -> t, m))"
-  "\<W> (App e1 e2) a n =
-    ((s1, t1, m1) := \<W> e1 a n;
-     (s2, t2, m2) := \<W> e2 ($s1 a) m1;
-     u := mgu ($ s2 t1) (t2 -> TVar m2);
-     Ok ($u o $s2 o s1, $u (TVar m2), Suc m2))"
-
-theorem W_correct: "Ok (s, t, m) = \<W> e a n ==> $s a |- e :: t"
-proof (induct e arbitrary: a s t m n)
-  case (Var i)
-  from `Ok (s, t, m) = \<W> (Var i) a n`
-  show "$s a |- Var i :: t" by (simp add: has_type.Var split: if_splits)
-next
-  case (Abs e)
-  from `Ok (s, t, m) = \<W> (Abs e) a n`
-  obtain t' where "t = s n -> t'"
-      and "Ok (s, t', m) = \<W> e (TVar n # a) (Suc n)"
-    by (auto split: bind_splits)
-  with Abs.hyps show "$s a |- Abs e :: t"
-    by (force intro: has_type.Abs)
-next
-  case (App e1 e2)
-  from `Ok (s, t, m) = \<W> (App e1 e2) a n`
-  obtain s1 t1 n1 s2 t2 n2 u where
-          s: "s = $u o $s2 o s1"
-      and t: "t = u n2"
-      and mgu_ok: "mgu ($s2 t1) (t2 -> TVar n2) = Ok u"
-      and W1_ok: "Ok (s1, t1, n1) = \<W> e1 a n"
-      and W2_ok: "Ok (s2, t2, n2) = \<W> e2 ($s1 a) n1"
-    by (auto split: bind_splits simp: that)
-  show "$s a |- App e1 e2 :: t"
-  proof (rule has_type.App)
-    from s have s': "$u ($s2 ($s1 a)) = $s a"
-      by (simp add: subst_comp_tel o_def)
-    show "$s a |- e1 :: $u t2 -> t"
-    proof -
-      from W1_ok have "$s1 a |- e1 :: t1" by (rule App.hyps(1))
-      then have "$u ($s2 ($s1 a)) |- e1 :: $u ($s2 t1)"
-        by (intro has_type_subst_closed)
-      with s' t mgu_ok show ?thesis by simp
-    qed
-    show "$s a |- e2 :: $u t2"
-    proof -
-      from W2_ok have "$s2 ($s1 a) |- e2 :: t2" by (rule App.hyps(2))
-      then have "$u ($s2 ($s1 a)) |- e2 :: $u t2"
-        by (rule has_type_subst_closed)
-      with s' show ?thesis by simp
-    qed
-  qed
-qed
-
-
-inductive_cases has_type_casesE:
-  "s |- Var n :: t"
-  "s |- Abs e :: t"
-  "s |- App e1 e2 ::t"
-
-
-lemmas [simp] = Suc_le_lessD
-  and [simp del] = less_imp_le ex_simps all_simps
-
-lemma W_var_ge [simp]: "!!a n s t m. \<W> e a n = Ok (s, t, m) \<Longrightarrow> n \<le> m"
-  -- {* the resulting type variable is always greater or equal than the given one *}
-  apply (atomize (full))
-  apply (induct e)
-    txt {* case @{text "Var n"} *}
-    apply clarsimp
-   txt {* case @{text "Abs e"} *}
-   apply (simp split add: split_bind)
-   apply (fast dest: Suc_leD)
-  txt {* case @{text "App e1 e2"} *}
-  apply (simp (no_asm) split add: split_bind)
-  apply (intro strip)
-  apply (rename_tac s t na sa ta nb sb)
-  apply (erule_tac x = a in allE)
-  apply (erule_tac x = n in allE)
-  apply (erule_tac x = "$s a" in allE)
-  apply (erule_tac x = s in allE)
-  apply (erule_tac x = t in allE)
-  apply (erule_tac x = na in allE)
-  apply (erule_tac x = na in allE)
-  apply (simp add: eq_sym_conv)
-  done
-
-lemma W_var_geD: "Ok (s, t, m) = \<W> e a n \<Longrightarrow> n \<le> m"
-  by (simp add: eq_sym_conv)
-
-lemma new_tv_W: "!!n a s t m.
-  new_tv n a \<Longrightarrow> \<W> e a n = Ok (s, t, m) \<Longrightarrow> new_tv m s & new_tv m t"
-  -- {* resulting type variable is new *}
-  apply (atomize (full))
-  apply (induct e)
-    txt {* case @{text "Var n"} *}
-    apply clarsimp
-    apply (force elim: list_ball_nth simp add: id_subst_def new_tv_list new_tv_subst)
-   txt {* case @{text "Abs e"} *}
-   apply (simp (no_asm) add: new_tv_subst new_tv_Suc_list split add: split_bind)
-   apply (intro strip)
-   apply (erule_tac x = "Suc n" in allE)
-   apply (erule_tac x = "TVar n # a" in allE)
-   apply (fastsimp simp add: new_tv_subst new_tv_Suc_list)
-  txt {* case @{text "App e1 e2"} *}
-  apply (simp (no_asm) split add: split_bind)
-  apply (intro strip)
-  apply (rename_tac s t na sa ta nb sb)
-  apply (erule_tac x = n in allE)
-  apply (erule_tac x = a in allE)
-  apply (erule_tac x = s in allE)
-  apply (erule_tac x = t in allE)
-  apply (erule_tac x = na in allE)
-  apply (erule_tac x = na in allE)
-  apply (simp add: eq_sym_conv)
-  apply (erule_tac x = "$s a" in allE)
-  apply (erule_tac x = sa in allE)
-  apply (erule_tac x = ta in allE)
-  apply (erule_tac x = nb in allE)
-  apply (simp add: o_def rotate_Ok)
-  apply (rule conjI)
-   apply (rule new_tv_subst_comp_2)
-    apply (rule new_tv_subst_comp_2)
-     apply (rule lessI [THEN less_imp_le, THEN new_tv_subst_le])
-     apply (rule_tac n = na in new_tv_subst_le)
-      apply (simp add: rotate_Ok)
-     apply (simp (no_asm_simp))
-    apply (fast dest: W_var_geD intro: new_tv_list_le new_tv_subst_tel
-      lessI [THEN less_imp_le, THEN new_tv_subst_le])
-   apply (erule sym [THEN mgu_new])
-    apply (best dest: W_var_geD intro: new_tv_subst_te new_tv_list_le new_tv_subst_tel
-      lessI [THEN less_imp_le, THEN new_tv_le] lessI [THEN less_imp_le, THEN new_tv_subst_le]
-      new_tv_le)
-   apply (tactic {* fast_tac (HOL_cs addDs [thm "W_var_geD"]
-     addIs [thm "new_tv_list_le", thm "new_tv_subst_tel", thm "new_tv_le"]
-     addss @{simpset}) 1 *})
-  apply (rule lessI [THEN new_tv_subst_var])
-  apply (erule sym [THEN mgu_new])
-    apply (bestsimp intro!: lessI [THEN less_imp_le, THEN new_tv_le] new_tv_subst_te
-      dest!: W_var_geD intro: new_tv_list_le new_tv_subst_tel
-        lessI [THEN less_imp_le, THEN new_tv_subst_le] new_tv_le)
-  apply (tactic {* fast_tac (HOL_cs addDs [thm "W_var_geD"]
-    addIs [thm "new_tv_list_le", thm "new_tv_subst_tel", thm "new_tv_le"]
-    addss @{simpset}) 1 *})
-  done
-
-lemma free_tv_W: "!!n a s t m v. \<W> e a n = Ok (s, t, m) \<Longrightarrow>
-    (v \<in> free_tv s \<or> v \<in> free_tv t) \<Longrightarrow> v < n \<Longrightarrow> v \<in> free_tv a"
-  apply (atomize (full))
-  apply (induct e)
-    txt {* case @{text "Var n"} *}
-    apply clarsimp
-    apply (tactic {* fast_tac (HOL_cs addIs [thm "nth_mem", subsetD, thm "ftv_mem_sub_ftv_list"]) 1 *})
-   txt {* case @{text "Abs e"} *}
-   apply (simp add: free_tv_subst split add: split_bind)
-   apply (intro strip)
-   apply (rename_tac s t n1 v)
-   apply (erule_tac x = "Suc n" in allE)
-   apply (erule_tac x = "TVar n # a" in allE)
-   apply (erule_tac x = s in allE)
-   apply (erule_tac x = t in allE)
-   apply (erule_tac x = n1 in allE)
-   apply (erule_tac x = v in allE)
-   apply (force elim!: allE intro: cod_app_subst)
-  txt {* case @{text "App e1 e2"} *}
-  apply (simp (no_asm) split add: split_bind)
-  apply (intro strip)
-  apply (rename_tac s t n1 s1 t1 n2 s3 v)
-  apply (erule_tac x = n in allE)
-  apply (erule_tac x = a in allE)
-  apply (erule_tac x = s in allE)
-  apply (erule_tac x = t in allE)
-  apply (erule_tac x = n1 in allE)
-  apply (erule_tac x = n1 in allE)
-  apply (erule_tac x = v in allE)
-  txt {* second case *}
-  apply (erule_tac x = "$ s a" in allE)
-  apply (erule_tac x = s1 in allE)
-  apply (erule_tac x = t1 in allE)
-  apply (erule_tac x = n2 in allE)
-  apply (erule_tac x = v in allE)
-  apply (tactic "safe_tac (empty_cs addSIs [conjI, impI] addSEs [conjE])")
-   apply (simp add: rotate_Ok o_def)
-   apply (drule W_var_geD)
-   apply (drule W_var_geD)
-   apply (frule less_le_trans, assumption)
-   apply (fastsimp dest: free_tv_comp_subst [THEN subsetD] sym [THEN mgu_free] codD
-     free_tv_app_subst_te [THEN subsetD] free_tv_app_subst_tel [THEN subsetD] subsetD elim: UnE)
-  apply simp
-  apply (drule sym [THEN W_var_geD])
-  apply (drule sym [THEN W_var_geD])
-  apply (frule less_le_trans, assumption)
-  apply (tactic {* fast_tac (HOL_cs addDs [thm "mgu_free", thm "codD",
-    thm "free_tv_subst_var" RS subsetD,
-    thm "free_tv_app_subst_te" RS subsetD,
-    thm "free_tv_app_subst_tel" RS subsetD, @{thm less_le_trans}, subsetD]
-    addSEs [UnE] addss (@{simpset} setSolver unsafe_solver)) 1 *})
-      -- {* builtin arithmetic in simpset messes things up *}
-  done
-
-text {*
-  \medskip Completeness of @{text \<W>} wrt.\ @{text has_type}.
-*}
-
-lemma W_complete_aux: "!!s' a t' n. $s' a |- e :: t' \<Longrightarrow> new_tv n a \<Longrightarrow>
-    (\<exists>s t. (\<exists>m. \<W> e a n = Ok (s, t, m)) \<and> (\<exists>r. $s' a = $r ($s a) \<and> t' = $r t))"
-  apply (atomize (full))
-  apply (induct e)
-    txt {* case @{text "Var n"} *}
-    apply (intro strip)
-    apply (simp (no_asm) cong add: conj_cong)
-    apply (erule has_type_casesE)
-    apply (simp add: eq_sym_conv app_subst_list)
-    apply (rule_tac x = s' in exI)
-    apply simp
-   txt {* case @{text "Abs e"} *}
-   apply (intro strip)
-   apply (erule has_type_casesE)
-   apply (erule_tac x = "\<lambda>x. if x = n then t1 else (s' x)" in allE)
-   apply (erule_tac x = "TVar n # a" in allE)
-   apply (erule_tac x = t2 in allE)
-   apply (erule_tac x = "Suc n" in allE)
-   apply (fastsimp cong add: conj_cong split add: split_bind)
-  txt {* case @{text "App e1 e2"} *}
-  apply (intro strip)
-  apply (erule has_type_casesE)
-  apply (erule_tac x = s' in allE)
-  apply (erule_tac x = a in allE)
-  apply (erule_tac x = "t2 -> t'" in allE)
-  apply (erule_tac x = n in allE)
-  apply (tactic "safe_tac HOL_cs")
-  apply (erule_tac x = r in allE)
-  apply (erule_tac x = "$s a" in allE)
-  apply (erule_tac x = t2 in allE)
-  apply (erule_tac x = m in allE)
-  apply simp
-  apply (tactic "safe_tac HOL_cs")
-   apply (tactic {* fast_tac (HOL_cs addIs [sym RS thm "W_var_geD",
-     thm "new_tv_W" RS conjunct1, thm "new_tv_list_le", thm "new_tv_subst_tel"]) 1 *})
-  apply (subgoal_tac
-    "$(\<lambda>x. if x = ma then t' else (if x \<in> free_tv t - free_tv sa then r x
-      else ra x)) ($ sa t) =
-    $(\<lambda>x. if x = ma then t' else (if x \<in> free_tv t - free_tv sa then r x
-      else ra x)) (ta -> (TVar ma))")
-   apply (rule_tac [2] t = "$(\<lambda>x. if x = ma then t'
-     else (if x \<in> (free_tv t - free_tv sa) then r x else ra x)) ($sa t)" and
-     s = "($ ra ta) -> t'" in ssubst)
-    prefer 2
-    apply (simp add: subst_comp_te)
-    apply (rule eq_free_eq_subst_te)
-    apply (intro strip)
-    apply (subgoal_tac "na \<noteq> ma")
-     prefer 2
-     apply (fast dest: new_tv_W sym [THEN W_var_geD] new_tv_not_free_tv new_tv_le)
-    apply (case_tac "na \<in> free_tv sa")
-     txt {* @{text "na \<notin> free_tv sa"} *}
-     prefer 2
-     apply (frule not_free_impl_id)
-     apply simp
-    txt {* @{text "na \<in> free_tv sa"} *}
-    apply (drule_tac ts1 = "$s a" and r = "$ r ($ s a)" in subst_comp_tel [THEN [2] trans])
-    apply (drule_tac eq_subst_tel_eq_free)
-     apply (fast intro: free_tv_W free_tv_le_new_tv dest: new_tv_W)
-    apply simp
-    apply (case_tac "na \<in> dom sa")
-     prefer 2
-     txt {* @{text "na \<noteq> dom sa"} *}
-     apply (simp add: dom_def)
-    txt {* @{text "na \<in> dom sa"} *}
-    apply (rule eq_free_eq_subst_te)
-    apply (intro strip)
-    apply (subgoal_tac "nb \<noteq> ma")
-     prefer 2
-     apply (frule new_tv_W, assumption)
-     apply (erule conjE)
-     apply (drule new_tv_subst_tel)
-      apply (fast intro: new_tv_list_le dest: sym [THEN W_var_geD])
-     apply (fastsimp dest: new_tv_W new_tv_not_free_tv simp add: cod_def free_tv_subst)
-    apply (fastsimp simp add: cod_def free_tv_subst)
-   prefer 2
-   apply (simp (no_asm))
-   apply (rule eq_free_eq_subst_te)
-   apply (intro strip)
-   apply (subgoal_tac "na \<noteq> ma")
-    prefer 2
-    apply (frule new_tv_W, assumption)
-    apply (erule conjE)
-    apply (drule sym [THEN W_var_geD])
-    apply (fast dest: new_tv_list_le new_tv_subst_tel new_tv_W new_tv_not_free_tv)
-   apply (case_tac "na \<in> free_tv t - free_tv sa")
-    prefer 2
-    txt {* case @{text "na \<notin> free_tv t - free_tv sa"} *}
-    apply simp
-    defer
-    txt {* case @{text "na \<in> free_tv t - free_tv sa"} *}
-    apply simp
-    apply (drule_tac ts1 = "$s a" and r = "$ r ($ s a)" in subst_comp_tel [THEN [2] trans])
-    apply (drule eq_subst_tel_eq_free)
-     apply (fast intro: free_tv_W free_tv_le_new_tv dest: new_tv_W)
-    apply (simp add: free_tv_subst dom_def)
-   prefer 2 apply fast
-  apply (simp (no_asm_simp) split add: split_bind)
-  apply (tactic "safe_tac HOL_cs")
-   apply (drule mgu_Ok)
-   apply fastsimp
-  apply (drule mgu_mg, assumption)
-  apply (erule exE)
-  apply (rule_tac x = rb in exI)
-  apply (rule conjI)
-   prefer 2
-   apply (drule_tac x = ma in fun_cong)
-   apply (simp add: eq_sym_conv)
-  apply (simp (no_asm) add: o_def subst_comp_tel [symmetric])
-  apply (rule subst_comp_tel [symmetric, THEN [2] trans])
-  apply (simp add: o_def eq_sym_conv)
-  apply (rule eq_free_eq_subst_tel)
-  apply (tactic "safe_tac HOL_cs")
-  apply (subgoal_tac "ma \<noteq> na")
-   prefer 2
-   apply (frule new_tv_W, assumption)
-   apply (erule conjE)
-   apply (drule new_tv_subst_tel)
-    apply (fast intro: new_tv_list_le dest: sym [THEN W_var_geD])
-   apply (frule_tac n = m in new_tv_W, assumption)
-   apply (erule conjE)
-   apply (drule free_tv_app_subst_tel [THEN subsetD])
-   apply (auto dest: W_var_geD [OF sym] new_tv_list_le
-     codD new_tv_not_free_tv)
-  apply (case_tac "na \<in> free_tv t - free_tv sa")
-   prefer 2
-   txt {* case @{text "na \<notin> free_tv t - free_tv sa"} *}
-   apply simp
-   defer
-   txt {* case @{text "na \<in> free_tv t - free_tv sa"} *}
-   apply simp
-   apply (drule free_tv_app_subst_tel [THEN subsetD])
-   apply (fastsimp dest: codD subst_comp_tel [THEN [2] trans]
-     eq_subst_tel_eq_free simp add: free_tv_subst dom_def)
-  done
-
-lemma W_complete: "[] |- e :: t' ==>
-    \<exists>s t. (\<exists>m. \<W> e [] n = Ok (s, t, m)) \<and> (\<exists>r. t' = $r t)"
-  apply (cut_tac a = "[]" and s' = id_subst and e = e and t' = t' in W_complete_aux)
-    apply simp_all
-  done
-
-
-section {* Equivalence of W and I *}
-
-text {*
-  Recursive definition of type inference algorithm @{text \<I>} for
-  Mini-ML.
-*}
-
-consts
-  "\<I>" :: "expr \<Rightarrow> typ list \<Rightarrow> nat \<Rightarrow> subst \<Rightarrow> (subst \<times> typ \<times> nat) maybe"
-primrec
-  "\<I> (Var i) a n s = (if i < length a then Ok (s, a ! i, n) else Fail)"
-  "\<I> (Abs e) a n s = ((s, t, m) := \<I> e (TVar n # a) (Suc n) s;
-    Ok (s, TVar n -> t, m))"
-  "\<I> (App e1 e2) a n s =
-    ((s1, t1, m1) := \<I> e1 a n s;
-    (s2, t2, m2) := \<I> e2 a m1 s1;
-    u := mgu ($s2 t1) ($s2 t2 -> TVar m2);
-    Ok($u o s2, TVar m2, Suc m2))"
-
-text {* \medskip Correctness. *}
-
-lemma I_correct_wrt_W: "!!a m s s' t n.
-    new_tv m a \<and> new_tv m s \<Longrightarrow> \<I> e a m s = Ok (s', t, n) \<Longrightarrow>
-    \<exists>r. \<W> e ($s a) m = Ok (r, $s' t, n) \<and> s' = ($r o s)"
-  apply (atomize (full))
-  apply (induct e)
-    txt {* case @{text "Var n"} *}
-    apply (simp add: app_subst_list split: split_if)
-   txt {* case @{text "Abs e"} *}
-   apply (tactic {* asm_full_simp_tac
-     (@{simpset} setloop (split_inside_tac [thm "split_bind"])) 1 *})
-   apply (intro strip)
-   apply (rule conjI)
-    apply (intro strip)
-    apply (erule allE)+
-    apply (erule impE)
-     prefer 2 apply (fastsimp simp add: new_tv_subst)
-    apply (tactic {* fast_tac (HOL_cs addIs [thm "new_tv_Suc_list" RS mp,
-      thm "new_tv_subst_le", @{thm less_imp_le}, @{thm lessI}]) 1 *})
-   apply (intro strip)
-   apply (erule allE)+
-   apply (erule impE)
-    prefer 2 apply (fastsimp simp add: new_tv_subst)
-   apply (tactic {* fast_tac (HOL_cs addIs [thm "new_tv_Suc_list" RS mp,
-     thm "new_tv_subst_le", @{thm less_imp_le}, @{thm lessI}]) 1 *})
-  txt {* case @{text "App e1 e2"} *}
-  apply (tactic {* simp_tac (@{simpset} setloop (split_inside_tac [thm "split_bind"])) 1 *})
-  apply (intro strip)
-  apply (rename_tac s1' t1 n1 s2' t2 n2 sa)
-  apply (rule conjI)
-   apply fastsimp
-  apply (intro strip)
-  apply (rename_tac s1 t1' n1')
-  apply (erule_tac x = a in allE)
-  apply (erule_tac x = m in allE)
-  apply (erule_tac x = s in allE)
-  apply (erule_tac x = s1' in allE)
-  apply (erule_tac x = t1 in allE)
-  apply (erule_tac x = n1 in allE)
-  apply (erule_tac x = a in allE)
-  apply (erule_tac x = n1 in allE)
-  apply (erule_tac x = s1' in allE)
-  apply (erule_tac x = s2' in allE)
-  apply (erule_tac x = t2 in allE)
-  apply (erule_tac x = n2 in allE)
-  apply (rule conjI)
-   apply (intro strip)
-   apply (rule notI)
-   apply simp
-   apply (erule impE)
-    apply (frule new_tv_subst_tel, assumption)
-    apply (drule_tac a = "$s a" in new_tv_W, assumption)
-    apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
-   apply (fastsimp simp add: subst_comp_tel)
-  apply (intro strip)
-  apply (rename_tac s2 t2' n2')
-  apply (rule conjI)
-   apply (intro strip)
-   apply (rule notI)
-   apply simp
-   apply (erule impE)
-   apply (frule new_tv_subst_tel, assumption)
-   apply (drule_tac a = "$s a" in new_tv_W, assumption)
-    apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
-   apply (fastsimp simp add: subst_comp_tel subst_comp_te)
-  apply (intro strip)
-  apply (erule (1) notE impE)
-  apply (erule (1) notE impE)
-  apply (erule exE)
-  apply (erule conjE)
-  apply (erule impE)
-   apply (frule new_tv_subst_tel, assumption)
-   apply (drule_tac a = "$s a" in new_tv_W, assumption)
-   apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
-  apply (erule (1) notE impE)
-  apply (erule exE conjE)+
-  apply (simp (asm_lr) add: subst_comp_tel subst_comp_te o_def, (erule conjE)+, hypsubst)+
-  apply (subgoal_tac "new_tv n2 s \<and> new_tv n2 r \<and> new_tv n2 ra")
-   apply (simp add: new_tv_subst)
-  apply (frule new_tv_subst_tel, assumption)
-  apply (drule_tac a = "$s a" in new_tv_W, assumption)
-  apply (tactic "safe_tac HOL_cs")
-    apply (bestsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
-   apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
-  apply (drule_tac e = e1 in sym [THEN W_var_geD])
-  apply (drule new_tv_subst_tel, assumption)
-  apply (drule_tac ts = "$s a" in new_tv_list_le, assumption)
-  apply (drule new_tv_subst_tel, assumption)
-  apply (bestsimp dest: new_tv_W simp add: subst_comp_tel)
-  done
-
-lemma I_complete_wrt_W: "!!a m s.
-    new_tv m a \<and> new_tv m s \<Longrightarrow> \<I> e a m s = Fail \<Longrightarrow> \<W> e ($s a) m = Fail"
-  apply (atomize (full))
-  apply (induct e)
-    apply (simp add: app_subst_list)
-   apply (simp (no_asm))
-   apply (intro strip)
-   apply (subgoal_tac "TVar m # $s a = $s (TVar m # a)")
-    apply (tactic {* asm_simp_tac (HOL_ss addsimps
-      [thm "new_tv_Suc_list", @{thm lessI} RS @{thm less_imp_le} RS thm "new_tv_subst_le"]) 1 *})
-    apply (erule conjE)
-    apply (drule new_tv_not_free_tv [THEN not_free_impl_id])
-    apply (simp (no_asm_simp))
-  apply (simp (no_asm_simp))
-  apply (intro strip)
-  apply (erule exE)+
-  apply (erule conjE)+
-  apply (drule I_correct_wrt_W [COMP swap_prems_rl])
-   apply fast
-  apply (erule exE)
-  apply (erule conjE)
-  apply hypsubst
-  apply (simp (no_asm_simp))
-  apply (erule disjE)
-   apply (rule disjI1)
-   apply (simp (no_asm_use) add: o_def subst_comp_tel)
-   apply (erule allE, erule allE, erule allE, erule impE, erule_tac [2] impE,
-     erule_tac [2] asm_rl, erule_tac [2] asm_rl)
-   apply (rule conjI)
-    apply (fast intro: W_var_ge [THEN new_tv_list_le])
-   apply (rule new_tv_subst_comp_2)
-    apply (fast intro: W_var_ge [THEN new_tv_subst_le])
-   apply (fast intro!: new_tv_subst_tel intro: new_tv_W [THEN conjunct1])
-  apply (rule disjI2)
-  apply (erule exE)+
-  apply (erule conjE)
-  apply (drule I_correct_wrt_W [COMP swap_prems_rl])
-   apply (rule conjI)
-   apply (fast intro: W_var_ge [THEN new_tv_list_le])
-   apply (rule new_tv_subst_comp_1)
-   apply (fast intro: W_var_ge [THEN new_tv_subst_le])
-   apply (fast intro!: new_tv_subst_tel intro: new_tv_W [THEN conjunct1])
-  apply (erule exE)
-  apply (erule conjE)
-  apply hypsubst
-  apply (simp add: o_def subst_comp_te [symmetric] subst_comp_tel [symmetric])
-  done
-
-end
--- a/src/HOL/W0/document/root.tex	Tue Feb 23 10:11:16 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,25 +0,0 @@
-
-\documentclass[11pt,a4paper]{article}
-\usepackage{isabelle,isabellesym}
-\usepackage{pdfsetup}
-
-\urlstyle{rm}
-\isabellestyle{it}
-
-\newcommand{\isasymbind}{\textsf{bind}}
-
-\begin{document}
-
-\title{Type inference for let-free MiniML}
-\author{Dieter Nazareth, Tobias Nipkow, Thomas Stauner, Markus Wenzel}
-\maketitle
-
-\tableofcontents
-
-\parindent 0pt\parskip 0.5ex
-\input{session}
-
-%\bibliographystyle{abbrv}
-%\bibliography{root}
-
-\end{document}