--- a/src/HOLCF/Bifinite.thy Thu Jun 12 22:30:00 2008 +0200
+++ b/src/HOLCF/Bifinite.thy Thu Jun 12 22:41:03 2008 +0200
@@ -27,18 +27,17 @@
apply (clarify, erule subst, rule exI, rule refl)
done
-lemma chain_approx [simp]:
- "chain (approx :: nat \<Rightarrow> 'a::profinite \<rightarrow> 'a)"
+lemma chain_approx [simp]: "chain approx"
apply (rule chainI)
apply (rule less_cfun_ext)
apply (rule chainE)
apply (rule chain_approx_app)
done
-lemma lub_approx [simp]: "(\<Squnion>i. approx i) = (\<Lambda>(x::'a::profinite). x)"
+lemma lub_approx [simp]: "(\<Squnion>i. approx i) = (\<Lambda> x. x)"
by (rule ext_cfun, simp add: contlub_cfun_fun)
-lemma approx_less: "approx i\<cdot>x \<sqsubseteq> (x::'a::profinite)"
+lemma approx_less: "approx i\<cdot>x \<sqsubseteq> x"
apply (subgoal_tac "approx i\<cdot>x \<sqsubseteq> (\<Squnion>i. approx i\<cdot>x)", simp)
apply (rule is_ub_thelub, simp)
done
@@ -47,7 +46,7 @@
by (rule UU_I, rule approx_less)
lemma approx_approx1:
- "i \<le> j \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx i\<cdot>(x::'a::profinite)"
+ "i \<le> j \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx i\<cdot>x"
apply (rule antisym_less)
apply (rule monofun_cfun_arg [OF approx_less])
apply (rule sq_ord_eq_less_trans [OF approx_idem [symmetric]])
@@ -57,7 +56,7 @@
done
lemma approx_approx2:
- "j \<le> i \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx j\<cdot>(x::'a::profinite)"
+ "j \<le> i \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx j\<cdot>x"
apply (rule antisym_less)
apply (rule approx_less)
apply (rule sq_ord_eq_less_trans [OF approx_idem [symmetric]])
@@ -66,7 +65,7 @@
done
lemma approx_approx [simp]:
- "approx i\<cdot>(approx j\<cdot>x) = approx (min i j)\<cdot>(x::'a::profinite)"
+ "approx i\<cdot>(approx j\<cdot>x) = approx (min i j)\<cdot>x"
apply (rule_tac x=i and y=j in linorder_le_cases)
apply (simp add: approx_approx1 min_def)
apply (simp add: approx_approx2 min_def)
@@ -76,16 +75,16 @@
"\<forall>x. f (f x) = f x \<Longrightarrow> {x. f x = x} = {y. \<exists>x. y = f x}"
by (auto simp add: eq_sym_conv)
-lemma finite_approx: "finite {y::'a::profinite. \<exists>x. y = approx n\<cdot>x}"
+lemma finite_approx: "finite {y. \<exists>x. y = approx n\<cdot>x}"
using finite_fixes_approx by (simp add: idem_fixes_eq_range)
-lemma finite_range_approx:
- "finite (range (\<lambda>x::'a::profinite. approx n\<cdot>x))"
-by (simp add: image_def finite_approx)
+lemma finite_image_approx: "finite ((\<lambda>x. approx n\<cdot>x) ` A)"
+by (rule finite_subset [OF _ finite_fixes_approx [where i=n]]) auto
-lemma compact_approx [simp]:
- fixes x :: "'a::profinite"
- shows "compact (approx n\<cdot>x)"
+lemma finite_range_approx: "finite (range (\<lambda>x. approx n\<cdot>x))"
+by (rule finite_image_approx)
+
+lemma compact_approx [simp]: "compact (approx n\<cdot>x)"
proof (rule compactI2)
fix Y::"nat \<Rightarrow> 'a"
assume Y: "chain Y"
@@ -115,7 +114,6 @@
qed
lemma bifinite_compact_eq_approx:
- fixes x :: "'a::profinite"
assumes x: "compact x"
shows "\<exists>i. approx i\<cdot>x = x"
proof -
@@ -129,7 +127,7 @@
qed
lemma bifinite_compact_iff:
- "compact (x::'a::profinite) = (\<exists>n. approx n\<cdot>x = x)"
+ "compact x \<longleftrightarrow> (\<exists>n. approx n\<cdot>x = x)"
apply (rule iffI)
apply (erule bifinite_compact_eq_approx)
apply (erule exE)
@@ -139,16 +137,14 @@
lemma approx_induct:
assumes adm: "adm P" and P: "\<And>n x. P (approx n\<cdot>x)"
- shows "P (x::'a::profinite)"
+ shows "P x"
proof -
have "P (\<Squnion>n. approx n\<cdot>x)"
by (rule admD [OF adm], simp, simp add: P)
thus "P x" by simp
qed
-lemma bifinite_less_ext:
- fixes x y :: "'a::profinite"
- shows "(\<And>i. approx i\<cdot>x \<sqsubseteq> approx i\<cdot>y) \<Longrightarrow> x \<sqsubseteq> y"
+lemma bifinite_less_ext: "(\<And>i. approx i\<cdot>x \<sqsubseteq> approx i\<cdot>y) \<Longrightarrow> x \<sqsubseteq> y"
apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> (\<Squnion>i. approx i\<cdot>y)", simp)
apply (rule lub_mono, simp, simp, simp)
done