--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Halting.thy Thu Dec 05 19:44:53 2024 +0100
@@ -0,0 +1,68 @@
+(*
+Undecidability of the special Halting problem:
+ Does a program applied to an encoding of itself terminate?
+Author: Fabian Huch
+*)
+
+theory Halting
+ imports "HOL-IMP.Big_Step"
+begin
+
+definition "halts c s \<equiv> (\<exists>s'. (c, s) \<Rightarrow> s')"
+
+text \<open>A simple program that does not halt:\<close>
+definition "loop \<equiv> WHILE Bc True DO SKIP"
+
+lemma loop_never_halts[simp]: "\<not> halts loop s"
+ unfolding halts_def
+proof clarify
+ fix s' assume "(loop, s) \<Rightarrow> s'"
+ then show False
+ by (induction loop s s' rule: big_step_induct) (simp_all add: loop_def)
+qed
+
+section \<open>Halting Problem\<close>
+
+text \<open>
+Given any encoding \<open>f\<close> (of programs to states), there is no Program \<open>H\<close> such that
+for all programs \<open>c\<close>, \<open>H\<close> terminates in a state \<open>s'\<close> which has at variable \<open>x\<close> the
+answer whether \<open>c\<close> halts.\<close>
+
+theorem halting:
+ "\<nexists>H. \<forall>c. \<exists>s'. (H, f c) \<Rightarrow> s' \<and> (halts c (f c) \<longleftrightarrow> s' x > 0)"
+ (is "\<nexists>H. ?P H")
+proof clarify
+ fix H assume assm: "?P H"
+
+ \<comment> \<open>inverted H: loops if input halts\<close>
+ let ?inv_H = "H ;; IF Less (V x) (N 1) THEN SKIP ELSE loop"
+
+ \<comment> \<open>compute in \<open>s'\<close> whether inverted \<open>H\<close> halts when applied to itself\<close>
+ obtain s' where
+ s'_def: "(H, f ?inv_H) \<Rightarrow> s'" and
+ s'_halts: "halts ?inv_H (f ?inv_H) \<longleftrightarrow> (s' x > 0)"
+ using assm by blast
+
+ \<comment> \<open>contradiction: if it terminates, loop must have terminated; if not, SKIP must have looped!\<close>
+ show False
+ proof(cases "halts ?inv_H (f ?inv_H)")
+ case True
+
+ then have "halts (IF Less (V x) (N 1) THEN SKIP ELSE loop) s'"
+ unfolding halts_def using big_step_determ s'_def by fast
+
+ then have "halts loop s'"
+ using s'_halts True halts_def by auto
+
+ then show False by auto
+ next
+ case False
+
+ then have "\<not> halts SKIP s'"
+ using s'_def s'_halts halts_def by force
+
+ then show False using halts_def by auto
+ qed
+qed
+
+end
--- a/src/HOL/ROOT Thu Dec 05 15:49:48 2024 +0100
+++ b/src/HOL/ROOT Thu Dec 05 19:44:53 2024 +0100
@@ -268,6 +268,7 @@
Procs_Stat_Vars_Stat
C_like
OO
+ Halting
document_files "root.bib" "root.tex"
session "HOL-IMPP" in IMPP = HOL +