--- a/NEWS Mon Nov 21 16:21:49 2022 +0000
+++ b/NEWS Mon Nov 21 18:23:32 2022 +0100
@@ -26,25 +26,24 @@
Minor INCOMPATIBILITY.
* Theory "HOL.Relation":
- - Strengthened lemmas. Minor INCOMPATIBILITY.
- preorder.reflp_ge
- preorder.reflp_le
+ - Strengthened (and renamed) lemmas. Minor INCOMPATIBILITY.
total_on_singleton
+ reflp_equality[simp] ~> reflp_on_equality[simp]
- Added lemmas.
antisym_if_asymp
antisymp_if_asymp
irreflD
irreflpD
- linorder.totalp_ge[simp]
- linorder.totalp_greater[simp]
- linorder.totalp_le[simp]
- linorder.totalp_less[simp]
+ linorder.totalp_on_ge[simp]
+ linorder.totalp_on_greater[simp]
+ linorder.totalp_on_le[simp]
+ linorder.totalp_on_less[simp]
order.antisymp_ge[simp]
order.antisymp_le[simp]
preorder.antisymp_greater[simp]
preorder.antisymp_less[simp]
- preorder.reflp_ge[simp]
- preorder.reflp_le[simp]
+ preorder.reflp_on_ge[simp]
+ preorder.reflp_on_le[simp]
reflp_on_conversp[simp]
totalp_on_singleton[simp]
--- a/src/HOL/Relation.thy Mon Nov 21 16:21:49 2022 +0000
+++ b/src/HOL/Relation.thy Mon Nov 21 18:23:32 2022 +0100
@@ -246,8 +246,8 @@
"refl_on A r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<in> A \<and> y \<in> A) \<and> (\<forall>x \<in> A. (x, x) \<in> r)"
by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)
-lemma reflp_equality [simp]: "reflp (=)"
- by (simp add: reflp_def)
+lemma reflp_on_equality [simp]: "reflp_on A (=)"
+ by (simp add: reflp_on_def)
lemma reflp_on_mono:
"reflp_on A R \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> Q x y) \<Longrightarrow> reflp_on A Q"
@@ -256,10 +256,10 @@
lemma reflp_mono: "reflp R \<Longrightarrow> (\<And>x y. R x y \<Longrightarrow> Q x y) \<Longrightarrow> reflp Q"
by (rule reflp_on_mono[of UNIV R Q]) simp_all
-lemma (in preorder) reflp_le[simp]: "reflp_on A (\<le>)"
+lemma (in preorder) reflp_on_le[simp]: "reflp_on A (\<le>)"
by (simp add: reflp_onI)
-lemma (in preorder) reflp_ge[simp]: "reflp_on A (\<ge>)"
+lemma (in preorder) reflp_on_ge[simp]: "reflp_on A (\<ge>)"
by (simp add: reflp_onI)
@@ -593,16 +593,16 @@
lemma totalp_on_singleton [simp]: "totalp_on {x} R"
by (simp add: totalp_on_def)
-lemma (in linorder) totalp_less[simp]: "totalp_on A (<)"
+lemma (in linorder) totalp_on_less[simp]: "totalp_on A (<)"
by (auto intro: totalp_onI)
-lemma (in linorder) totalp_greater[simp]: "totalp_on A (>)"
+lemma (in linorder) totalp_on_greater[simp]: "totalp_on A (>)"
by (auto intro: totalp_onI)
-lemma (in linorder) totalp_le[simp]: "totalp_on A (\<le>)"
+lemma (in linorder) totalp_on_le[simp]: "totalp_on A (\<le>)"
by (rule totalp_onI, rule linear)
-lemma (in linorder) totalp_ge[simp]: "totalp_on A (\<ge>)"
+lemma (in linorder) totalp_on_ge[simp]: "totalp_on A (\<ge>)"
by (rule totalp_onI, rule linear)