alternative deletion in Red-Black trees
authornipkow
Tue, 07 Jan 2020 12:37:12 +0100
changeset 71352 41f3ca717da5
parent 71351 b3a93a91803b
child 71353 475b2260b9c4
child 71354 c71a44893645
alternative deletion in Red-Black trees
src/HOL/Data_Structures/RBT_Set2.thy
src/HOL/Data_Structures/document/root.tex
src/HOL/ROOT
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/RBT_Set2.thy	Tue Jan 07 12:37:12 2020 +0100
@@ -0,0 +1,161 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>Alternative Deletion in Red-Black Trees\<close>
+
+theory RBT_Set2
+imports RBT_Set
+begin
+
+text \<open>This is a conceptually simpler version of deletion. Instead of the tricky \<open>combine\<close>
+function this version follows the standard approach of replacing the deleted element
+(in function \<open>del\<close>) by the minimal element in its right subtree.\<close>
+
+fun split_min :: "'a rbt \<Rightarrow> 'a \<times> 'a rbt" where
+"split_min (Node l (a, _) r) =
+  (if l = Leaf then (a,r)
+   else let (x,l') = split_min l
+        in (x, if color l = Black then baldL l' a r else R l' a r))"
+
+fun del :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
+"del x Leaf = Leaf" |
+"del x (Node l (a, _) r) =
+  (case cmp x a of
+     LT \<Rightarrow> let l' = del x l in if l \<noteq> Leaf \<and> color l = Black
+           then baldL l' a r else R l' a r |
+     GT \<Rightarrow> let r' = del x r in if r \<noteq> Leaf \<and> color r = Black
+           then baldR l a r' else R l a r' |
+     EQ \<Rightarrow> if r = Leaf then l else let (a',r') = split_min r in
+           if color r = Black then baldR l a' r' else R l a' r')"
+
+text \<open>The first two \<open>let\<close>s speed up the automatic proof of \<open>inv_del\<close> below.\<close>
+
+definition delete :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
+"delete x t = paint Black (del x t)"
+
+
+subsection "Functional Correctness Proofs"
+
+lemma split_minD:
+  "split_min t = (x,t') \<Longrightarrow> t \<noteq> Leaf \<Longrightarrow> x # inorder t' = inorder t"
+by(induction t arbitrary: t' rule: split_min.induct)
+  (auto simp: inorder_baldL sorted_lems split: prod.splits if_splits)
+
+lemma inorder_del:
+ "sorted(inorder t) \<Longrightarrow>  inorder(del x t) = del_list x (inorder t)"
+by(induction x t rule: del.induct)
+  (auto simp: del_list_simps inorder_baldL inorder_baldR split_minD Let_def split: prod.splits)
+
+lemma inorder_delete:
+  "sorted(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)"
+by (auto simp: delete_def inorder_del inorder_paint)
+
+
+subsection \<open>Structural invariants\<close>
+
+lemma neq_Red[simp]: "(c \<noteq> Red) = (c = Black)"
+by (cases c) auto
+
+
+subsubsection \<open>Deletion\<close>
+
+lemma inv_split_min: "\<lbrakk> split_min t = (x,t'); t \<noteq> Leaf; invh t; invc t \<rbrakk> \<Longrightarrow>
+   invh t' \<and>
+   (color t = Red \<longrightarrow> bheight t' = bheight t \<and> invc t') \<and>
+   (color t = Black \<longrightarrow> bheight t' = bheight t - 1 \<and> invc2 t')"
+apply(induction t arbitrary: x t' rule: split_min.induct)
+apply(auto simp: inv_baldR inv_baldL invc2I dest!: neq_LeafD
+           split: if_splits prod.splits)
+done
+
+text \<open>An automatic proof. It is quite brittle, e.g. inlining the \<open>let\<close>s in @{const del} breaks it.\<close>
+lemma inv_del: "\<lbrakk> invh t; invc t \<rbrakk> \<Longrightarrow>
+   invh (del x t) \<and>
+   (color t = Red \<longrightarrow> bheight (del x t) = bheight t \<and> invc (del x t)) \<and>
+   (color t = Black \<longrightarrow> bheight (del x t) = bheight t - 1 \<and> invc2 (del x t))"
+apply(induction x t rule: del.induct)
+apply(auto simp: inv_baldR inv_baldL invc2I Let_def dest!: inv_split_min dest: neq_LeafD
+           split!: prod.splits if_splits)
+done
+
+text\<open>A structured proof where one can see what is used in each case.\<close>
+lemma inv_del2: "\<lbrakk> invh t; invc t \<rbrakk> \<Longrightarrow>
+   invh (del x t) \<and>
+   (color t = Red \<longrightarrow> bheight (del x t) = bheight t \<and> invc (del x t)) \<and>
+   (color t = Black \<longrightarrow> bheight (del x t) = bheight t - 1 \<and> invc2 (del x t))"
+proof(induction x t rule: del.induct)
+  case (1 x)
+  then show ?case by simp
+next
+  case (2 x l a c r)
+  note if_split[split del]
+  show ?case
+  proof cases
+    assume "x < a"
+    show ?thesis
+    proof cases
+      assume "l \<noteq> Leaf \<and> color l = Black"
+      then show ?thesis using \<open>x < a\<close> "2.IH"(1) "2.prems"
+        by(auto simp: inv_baldL dest: neq_LeafD)
+    next
+      assume "\<not>(l \<noteq> Leaf \<and> color l = Black)"
+      then show ?thesis using \<open>x < a\<close> "2.IH"(1) "2.prems"
+        by(auto)
+    qed
+  next
+    assume "\<not> x < a"
+    show ?thesis
+    proof cases
+      assume "x > a"
+      show ?thesis
+      proof cases
+        assume "r \<noteq> Leaf \<and> color r = Black"
+        then show ?thesis using \<open>a < x\<close> "2.IH"(2) "2.prems"
+          by(auto simp: inv_baldR dest: neq_LeafD)
+      next
+        assume "\<not>(r \<noteq> Leaf \<and> color r = Black)"
+        then show ?thesis using \<open>a < x\<close> "2.IH"(2) "2.prems"
+          by(auto)
+      qed
+    next
+      assume "\<not> x > a"
+      show ?thesis
+      proof cases
+        assume "r = Leaf"
+        then show ?thesis using "2.prems" \<open>\<not> x < a\<close> \<open>\<not> x > a\<close>
+          by(auto simp: invc2I)
+      next
+        assume "\<not> r = Leaf"
+        then show ?thesis using "2.prems" \<open>\<not> x < a\<close> \<open>\<not> x > a\<close>
+          by(auto simp: inv_baldR dest!: inv_split_min dest: neq_LeafD split: prod.split if_split)
+      qed
+    next
+    qed
+  qed
+qed
+
+theorem rbt_delete: "rbt t \<Longrightarrow> rbt (delete x t)"
+by (metis delete_def rbt_def color_paint_Black inv_del invh_paint)
+
+text \<open>Overall correctness:\<close>
+
+interpretation S: Set_by_Ordered
+where empty = empty and isin = isin and insert = insert and delete = delete
+and inorder = inorder and inv = rbt
+proof (standard, goal_cases)
+  case 1 show ?case by (simp add: empty_def)
+next
+  case 2 thus ?case by(simp add: isin_set_inorder)
+next
+  case 3 thus ?case by(simp add: inorder_insert)
+next
+  case 4 thus ?case by(simp add: inorder_delete)
+next
+  case 5 thus ?case by (simp add: rbt_def empty_def) 
+next
+  case 6 thus ?case by (simp add: rbt_insert) 
+next
+  case 7 thus ?case by (simp add: rbt_delete) 
+qed
+
+
+end
--- a/src/HOL/Data_Structures/document/root.tex	Tue Jan 07 07:03:18 2020 +0100
+++ b/src/HOL/Data_Structures/document/root.tex	Tue Jan 07 12:37:12 2020 +0100
@@ -42,8 +42,9 @@
 \section{Bibliographic Notes}
 
 \paragraph{Red-black trees}
-The insert function follows Okasaki \cite{Okasaki}, the delete function
-Kahrs \cite{Kahrs-html,Kahrs-JFP01}.
+The insert function follows Okasaki \cite{Okasaki}. The delete function
+in theory \isa{RBT\_Set} follows Kahrs \cite{Kahrs-html,Kahrs-JFP01},
+an alternative delete function is given in theory \isa{RBT\_Set2}.
 
 \paragraph{2-3 trees}
 Equational definitions were given by Hoffmann and
--- a/src/HOL/ROOT	Tue Jan 07 07:03:18 2020 +0100
+++ b/src/HOL/ROOT	Tue Jan 07 12:37:12 2020 +0100
@@ -237,6 +237,7 @@
     Balance
     Tree_Map
     AVL_Map
+    RBT_Set2
     RBT_Map
     Tree23_Map
     Tree234_Map