HOL-Analysis: move Function Topology from AFP/Ergodict_Theory; HOL-Probability: move Essential Supremum from AFP/Lp
authorhoelzl
Tue, 18 Oct 2016 17:29:28 +0200
changeset 64289 42f28160bad9
parent 64288 4750673a96da
child 64290 fb5c74a58796
child 64291 1f53d58373bf
HOL-Analysis: move Function Topology from AFP/Ergodict_Theory; HOL-Probability: move Essential Supremum from AFP/Lp
src/HOL/Analysis/Analysis.thy
src/HOL/Analysis/Function_Topology.thy
src/HOL/Analysis/FurtherTopology.thy
src/HOL/Analysis/Further_Topology.thy
src/HOL/Probability/Probability.thy
--- a/src/HOL/Analysis/Analysis.thy	Tue Oct 18 16:05:24 2016 +0100
+++ b/src/HOL/Analysis/Analysis.thy	Tue Oct 18 17:29:28 2016 +0200
@@ -8,9 +8,10 @@
   Determinants
   Homeomorphism
   Bounded_Continuous_Function
+  Function_Topology
   Weierstrass_Theorems
   Polytope
-  FurtherTopology
+  Further_Topology
   Poly_Roots
   Conformal_Mappings
   Generalised_Binomial_Theorem
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Function_Topology.thy	Tue Oct 18 17:29:28 2016 +0200
@@ -0,0 +1,1392 @@
+(*  Author:  Sébastien Gouëzel   sebastien.gouezel@univ-rennes1.fr
+    License: BSD
+*)
+
+theory Function_Topology
+imports Topology_Euclidean_Space Bounded_Linear_Function Finite_Product_Measure
+begin
+
+
+section {*Product topology*}
+
+text {*We want to define the product topology.
+
+The product topology on a product of topological spaces is generated by
+the sets which are products of open sets along finitely many coordinates, and the whole
+space along the other coordinates. This is the coarsest topology for which the projection
+to each factor is continuous.
+
+To form a product of objects in Isabelle/HOL, all these objects should be subsets of a common type
+'a. The product is then @{term "PiE I X"}, the set of elements from 'i to 'a such that the $i$-th
+coordinate belongs to $X\;i$ for all $i \in I$.
+
+Hence, to form a product of topological spaces, all these spaces should be subsets of a common type.
+This means that type classes can not be used to define such a product if one wants to take the
+product of different topological spaces (as the type 'a can only be given one structure of
+topological space using type classes). On the other hand, one can define different topologies (as
+introduced in \verb+Topology_Euclidean_Space.thy+) on one type, and these topologies do not need to
+share the same maximal open set. Hence, one can form a product of topologies in this sense, and
+this works well. The big caveat is that it does not interact well with the main body of
+topology in Isabelle/HOL defined in terms of type classes... For instance, continuity of maps
+is not defined in this setting.
+
+As the product of different topological spaces is very important in several areas of
+mathematics (for instance adeles), I introduce below the product topology in terms of topologies,
+and reformulate afterwards the consequences in terms of type classes (which are of course very
+handy for applications).
+
+Given this limitation, it looks to me that it would be very beneficial to revamp the theory
+of topological spaces in Isabelle/HOL in terms of topologies, and keep the statements involving
+type classes as consequences of more general statements in terms of topologies (but I am
+probably too naive here).
+
+Here is an example of a reformulation using topologies. Let
+\begin{verbatim}
+continuous_on_topo T1 T2 f = ((\<forall> U. openin T2 U \<longrightarrow> openin T1 (f-`U \<inter> topspace(T1)))
+                                      \<and> (f`(topspace T1) \<subseteq> (topspace T2)))
+\end{verbatim}
+be the natural continuity definition of a map from the topology $T1$ to the topology $T2$. Then
+the current \verb+continuous_on+ (with type classes) can be redefined as
+\begin{verbatim}
+continuous_on s f = continuous_on_topo (subtopology euclidean s) (topology euclidean) f
+\end{verbatim}
+
+In fact, I need \verb+continuous_on_topo+ to express the continuity of the projection on subfactors
+for the product topology, in Lemma~\verb+continuous_on_restrict_product_topology+, and I show
+the above equivalence in Lemma~\verb+continuous_on_continuous_on_topo+.
+
+I only develop the basics of the product topology in this theory. The most important missing piece
+is Tychonov theorem, stating that a product of compact spaces is always compact for the product
+topology, even when the product is not finite (or even countable).
+
+I realized afterwards that this theory has a lot in common with \verb+Fin_Map.thy+.
+*}
+
+subsection {*Topology without type classes*}
+
+subsubsection {*The topology generated by some (open) subsets*}
+
+text {* In the definition below of a generated topology, the \<open>Empty\<close> case is not necessary,
+as it follows from \<open>UN\<close> taking for $K$ the empty set. However, it is convenient to have,
+and is never a problem in proofs, so I prefer to write it down explicitly.
+
+We do not require UNIV to be an open set, as this will not be the case in applications. (We are
+thinking of a topology on a subset of UNIV, the remaining part of UNIV being irrelevant.)*}
+
+inductive generate_topology_on for S where
+Empty: "generate_topology_on S {}"
+|Int: "generate_topology_on S a \<Longrightarrow> generate_topology_on S b \<Longrightarrow> generate_topology_on S (a \<inter> b)"
+| UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology_on S k) \<Longrightarrow> generate_topology_on S (\<Union>K)"
+| Basis: "s \<in> S \<Longrightarrow> generate_topology_on S s"
+
+lemma istopology_generate_topology_on:
+  "istopology (generate_topology_on S)"
+unfolding istopology_def by (auto intro: generate_topology_on.intros)
+
+text {*The basic property of the topology generated by a set $S$ is that it is the
+smallest topology containing all the elements of $S$:*}
+
+lemma generate_topology_on_coarsest:
+  assumes "istopology T"
+          "\<And>s. s \<in> S \<Longrightarrow> T s"
+          "generate_topology_on S s0"
+  shows "T s0"
+using assms(3) apply (induct rule: generate_topology_on.induct)
+using assms(1) assms(2) unfolding istopology_def by auto
+
+definition topology_generated_by::"('a set set) \<Rightarrow> ('a topology)"
+  where "topology_generated_by S = topology (generate_topology_on S)"
+
+lemma openin_topology_generated_by_iff:
+  "openin (topology_generated_by S) s \<longleftrightarrow> generate_topology_on S s"
+using topology_inverse'[OF istopology_generate_topology_on[of S]]
+unfolding topology_generated_by_def by simp
+
+lemma openin_topology_generated_by:
+  "openin (topology_generated_by S) s \<Longrightarrow> generate_topology_on S s"
+using openin_topology_generated_by_iff by auto
+
+lemma topology_generated_by_topspace:
+  "topspace (topology_generated_by S) = (\<Union>S)"
+proof
+  {
+    fix s assume "openin (topology_generated_by S) s"
+    then have "generate_topology_on S s" by (rule openin_topology_generated_by)
+    then have "s \<subseteq> (\<Union>S)" by (induct, auto)
+  }
+  then show "topspace (topology_generated_by S) \<subseteq> (\<Union>S)"
+    unfolding topspace_def by auto
+next
+  have "generate_topology_on S (\<Union>S)"
+    using generate_topology_on.UN[OF generate_topology_on.Basis, of S S] by simp
+  then show "(\<Union>S) \<subseteq> topspace (topology_generated_by S)"
+    unfolding topspace_def using openin_topology_generated_by_iff by auto
+qed
+
+lemma topology_generated_by_Basis:
+  "s \<in> S \<Longrightarrow> openin (topology_generated_by S) s"
+by (simp only: openin_topology_generated_by_iff, auto simp: generate_topology_on.Basis)
+
+subsubsection {*Continuity*}
+
+text {*We will need to deal with continuous maps in terms of topologies and not in terms
+of type classes, as defined below.*}
+
+definition continuous_on_topo::"'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
+  where "continuous_on_topo T1 T2 f = ((\<forall> U. openin T2 U \<longrightarrow> openin T1 (f-`U \<inter> topspace(T1)))
+                                      \<and> (f`(topspace T1) \<subseteq> (topspace T2)))"
+
+lemma continuous_on_continuous_on_topo:
+  "continuous_on s f \<longleftrightarrow> continuous_on_topo (subtopology euclidean s) euclidean f"
+unfolding continuous_on_open_invariant openin_open vimage_def continuous_on_topo_def
+topspace_euclidean_subtopology open_openin topspace_euclidean by fast
+
+lemma continuous_on_topo_UNIV:
+  "continuous_on UNIV f \<longleftrightarrow> continuous_on_topo euclidean euclidean f"
+using continuous_on_continuous_on_topo[of UNIV f] subtopology_UNIV[of euclidean] by auto
+
+lemma continuous_on_topo_open [intro]:
+  "continuous_on_topo T1 T2 f \<Longrightarrow> openin T2 U \<Longrightarrow> openin T1 (f-`U \<inter> topspace(T1))"
+unfolding continuous_on_topo_def by auto
+
+lemma continuous_on_topo_topspace [intro]:
+  "continuous_on_topo T1 T2 f \<Longrightarrow> f`(topspace T1) \<subseteq> (topspace T2)"
+unfolding continuous_on_topo_def by auto
+
+lemma continuous_on_generated_topo_iff:
+  "continuous_on_topo T1 (topology_generated_by S) f \<longleftrightarrow>
+      ((\<forall>U. U \<in> S \<longrightarrow> openin T1 (f-`U \<inter> topspace(T1))) \<and> (f`(topspace T1) \<subseteq> (\<Union> S)))"
+unfolding continuous_on_topo_def topology_generated_by_topspace
+proof (auto simp add: topology_generated_by_Basis)
+  assume H: "\<forall>U. U \<in> S \<longrightarrow> openin T1 (f -` U \<inter> topspace T1)"
+  fix U assume "openin (topology_generated_by S) U"
+  then have "generate_topology_on S U" by (rule openin_topology_generated_by)
+  then show "openin T1 (f -` U \<inter> topspace T1)"
+  proof (induct)
+    fix a b
+    assume H: "openin T1 (f -` a \<inter> topspace T1)" "openin T1 (f -` b \<inter> topspace T1)"
+    have "f -` (a \<inter> b) \<inter> topspace T1 = (f-`a \<inter> topspace T1) \<inter> (f-`b \<inter> topspace T1)"
+      by auto
+    then show "openin T1 (f -` (a \<inter> b) \<inter> topspace T1)" using H by auto
+  next
+    fix K
+    assume H: "openin T1 (f -` k \<inter> topspace T1)" if "k\<in> K" for k
+    define L where "L = {f -` k \<inter> topspace T1|k. k \<in> K}"
+    have *: "openin T1 l" if "l \<in>L" for l using that H unfolding L_def by auto
+    have "openin T1 (\<Union>L)" using openin_Union[OF *] by simp
+    moreover have "(\<Union>L) = (f -` \<Union>K \<inter> topspace T1)" unfolding L_def by auto
+    ultimately show "openin T1 (f -` \<Union>K \<inter> topspace T1)" by simp
+  qed (auto simp add: H)
+qed
+
+lemma continuous_on_generated_topo:
+  assumes "\<And>U. U \<in>S \<Longrightarrow> openin T1 (f-`U \<inter> topspace(T1))"
+          "f`(topspace T1) \<subseteq> (\<Union> S)"
+  shows "continuous_on_topo T1 (topology_generated_by S) f"
+using assms continuous_on_generated_topo_iff by blast
+
+lemma continuous_on_topo_compose:
+  assumes "continuous_on_topo T1 T2 f" "continuous_on_topo T2 T3 g"
+  shows "continuous_on_topo T1 T3 (g o f)"
+using assms unfolding continuous_on_topo_def
+proof (auto)
+  fix U :: "'c set"
+  assume H: "openin T3 U"
+  have "openin T1 (f -` (g -` U \<inter> topspace T2) \<inter> topspace T1)"
+    using H assms by blast
+  moreover have "f -` (g -` U \<inter> topspace T2) \<inter> topspace T1 = (g \<circ> f) -` U \<inter> topspace T1"
+    using H assms continuous_on_topo_topspace by fastforce
+  ultimately show "openin T1 ((g \<circ> f) -` U \<inter> topspace T1)"
+    by simp
+qed (blast)
+
+lemma continuous_on_topo_preimage_topspace [intro]:
+  assumes "continuous_on_topo T1 T2 f"
+  shows "f-`(topspace T2) \<inter> topspace T1 = topspace T1"
+using assms unfolding continuous_on_topo_def by auto
+
+
+subsubsection {*Pullback topology*}
+
+text {*Pulling back a topology by map gives again a topology. \<open>subtopology\<close> is
+a special case of this notion, pulling back by the identity. We introduce the general notion as
+we will need it to define the strong operator topology on the space of continuous linear operators,
+by pulling back the product topology on the space of all functions.*}
+
+text {*\verb+pullback_topology A f T+ is the pullback of the topology $T$ by the map $f$ on
+the set $A$.*}
+
+definition pullback_topology::"('a set) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b topology) \<Rightarrow> ('a topology)"
+  where "pullback_topology A f T = topology (\<lambda>S. \<exists>U. openin T U \<and> S = f-`U \<inter> A)"
+
+lemma istopology_pullback_topology:
+  "istopology (\<lambda>S. \<exists>U. openin T U \<and> S = f-`U \<inter> A)"
+unfolding istopology_def proof (auto)
+  fix K assume "\<forall>S\<in>K. \<exists>U. openin T U \<and> S = f -` U \<inter> A"
+  then have "\<exists>U. \<forall>S\<in>K. openin T (U S) \<and> S = f-`(U S) \<inter> A"
+    by (rule bchoice)
+  then obtain U where U: "\<forall>S\<in>K. openin T (U S) \<and> S = f-`(U S) \<inter> A"
+    by blast
+  define V where "V = (\<Union>S\<in>K. U S)"
+  have "openin T V" "\<Union>K = f -` V \<inter> A" unfolding V_def using U by auto
+  then show "\<exists>V. openin T V \<and> \<Union>K = f -` V \<inter> A" by auto
+qed
+
+lemma openin_pullback_topology:
+  "openin (pullback_topology A f T) S \<longleftrightarrow> (\<exists>U. openin T U \<and> S = f-`U \<inter> A)"
+unfolding pullback_topology_def topology_inverse'[OF istopology_pullback_topology] by auto
+
+lemma topspace_pullback_topology:
+  "topspace (pullback_topology A f T) = f-`(topspace T) \<inter> A"
+by (auto simp add: topspace_def openin_pullback_topology)
+
+lemma continuous_on_topo_pullback [intro]:
+  assumes "continuous_on_topo T1 T2 g"
+  shows "continuous_on_topo (pullback_topology A f T1) T2 (g o f)"
+unfolding continuous_on_topo_def
+proof (auto)
+  fix U::"'b set" assume "openin T2 U"
+  then have "openin T1 (g-`U \<inter> topspace T1)"
+    using assms unfolding continuous_on_topo_def by auto
+  have "(g o f)-`U \<inter> topspace (pullback_topology A f T1) = (g o f)-`U \<inter> A \<inter> f-`(topspace T1)"
+    unfolding topspace_pullback_topology by auto
+  also have "... = f-`(g-`U \<inter> topspace T1) \<inter> A "
+    by auto
+  also have "openin (pullback_topology A f T1) (...)"
+    unfolding openin_pullback_topology using `openin T1 (g-\`U \<inter> topspace T1)` by auto
+  finally show "openin (pullback_topology A f T1) ((g \<circ> f) -` U \<inter> topspace (pullback_topology A f T1))"
+    by auto
+next
+  fix x assume "x \<in> topspace (pullback_topology A f T1)"
+  then have "f x \<in> topspace T1"
+    unfolding topspace_pullback_topology by auto
+  then show "g (f x) \<in> topspace T2"
+    using assms unfolding continuous_on_topo_def by auto
+qed
+
+lemma continuous_on_topo_pullback' [intro]:
+  assumes "continuous_on_topo T1 T2 (f o g)" "topspace T1 \<subseteq> g-`A"
+  shows "continuous_on_topo T1 (pullback_topology A f T2) g"
+unfolding continuous_on_topo_def
+proof (auto)
+  fix U assume "openin (pullback_topology A f T2) U"
+  then have "\<exists>V. openin T2 V \<and> U = f-`V \<inter> A"
+    unfolding openin_pullback_topology by auto
+  then obtain V where "openin T2 V" "U = f-`V \<inter> A"
+    by blast
+  then have "g -` U \<inter> topspace T1 = g-`(f-`V \<inter> A) \<inter> topspace T1"
+    by blast
+  also have "... = (f o g)-`V \<inter> (g-`A \<inter> topspace T1)"
+    by auto
+  also have "... = (f o g)-`V \<inter> topspace T1"
+    using assms(2) by auto
+  also have "openin T1 (...)"
+    using assms(1) `openin T2 V` by auto
+  finally show "openin T1 (g -` U \<inter> topspace T1)" by simp
+next
+  fix x assume "x \<in> topspace T1"
+  have "(f o g) x \<in> topspace T2"
+    using assms(1) `x \<in> topspace T1` unfolding continuous_on_topo_def by auto
+  then have "g x \<in> f-`(topspace T2)"
+    unfolding comp_def by blast
+  moreover have "g x \<in> A" using assms(2) `x \<in> topspace T1` by blast
+  ultimately show "g x \<in> topspace (pullback_topology A f T2)"
+    unfolding topspace_pullback_topology by blast
+qed
+
+subsubsection {*Miscellaneous*}
+
+text {*The following could belong to \verb+Topology_Euclidean_Spaces.thy+, and will be needed
+below.*}
+lemma openin_INT [intro]:
+  assumes "finite I"
+          "\<And>i. i \<in> I \<Longrightarrow> openin T (U i)"
+  shows "openin T ((\<Inter>i \<in> I. U i) \<inter> topspace T)"
+using assms by (induct, auto simp add: inf_sup_aci(2) openin_Int)
+
+lemma openin_INT2 [intro]:
+  assumes "finite I" "I \<noteq> {}"
+          "\<And>i. i \<in> I \<Longrightarrow> openin T (U i)"
+  shows "openin T (\<Inter>i \<in> I. U i)"
+proof -
+  have "(\<Inter>i \<in> I. U i) \<subseteq> topspace T"
+    using `I \<noteq> {}` openin_subset[OF assms(3)] by auto
+  then show ?thesis
+    using openin_INT[of _ _ U, OF assms(1) assms(3)] by (simp add: inf.absorb2 inf_commute)
+qed
+
+
+subsection {*The product topology*}
+
+text {*We can now define the product topology, as generated by
+the sets which are products of open sets along finitely many coordinates, and the whole
+space along the other coordinates. Equivalently, it is generated by sets which are one open
+set along one single coordinate, and the whole space along other coordinates. In fact, this is only
+equivalent for nonempty products, but for the empty product the first formulation is better
+(the second one gives an empty product space, while an empty product should have exactly one
+point, equal to \verb+undefined+ along all coordinates.
+
+So, we use the first formulation, which moreover seems to give rise to more straightforward proofs.
+*}
+
+definition product_topology::"('i \<Rightarrow> ('a topology)) \<Rightarrow> ('i set) \<Rightarrow> (('i \<Rightarrow> 'a) topology)"
+  where "product_topology T I =
+    topology_generated_by {(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}}"
+
+text {*The total set of the product topology is the product of the total sets
+along each coordinate.*}
+
+lemma product_topology_topspace:
+  "topspace (product_topology T I) = (\<Pi>\<^sub>E i\<in>I. topspace(T i))"
+proof
+  show "topspace (product_topology T I) \<subseteq> (\<Pi>\<^sub>E i\<in>I. topspace (T i))"
+    unfolding product_topology_def apply (simp only: topology_generated_by_topspace)
+    unfolding topspace_def by auto
+  have "(\<Pi>\<^sub>E i\<in>I. topspace (T i)) \<in> {(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}}"
+    using openin_topspace not_finite_existsD by auto
+  then show "(\<Pi>\<^sub>E i\<in>I. topspace (T i)) \<subseteq> topspace (product_topology T I)"
+    unfolding product_topology_def using PiE_def by (auto simp add: topology_generated_by_topspace)
+qed
+
+lemma product_topology_basis:
+  assumes "\<And>i. openin (T i) (X i)" "finite {i. X i \<noteq> topspace (T i)}"
+  shows "openin (product_topology T I) (\<Pi>\<^sub>E i\<in>I. X i)"
+unfolding product_topology_def apply (rule topology_generated_by_Basis) using assms by auto
+
+lemma product_topology_open_contains_basis:
+  assumes "openin (product_topology T I) U"
+          "x \<in> U"
+  shows "\<exists>X. x \<in> (\<Pi>\<^sub>E i\<in>I. X i) \<and> (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)} \<and> (\<Pi>\<^sub>E i\<in>I. X i) \<subseteq> U"
+proof -
+  have "generate_topology_on {(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}} U"
+    using assms unfolding product_topology_def by (intro openin_topology_generated_by) auto
+  then have "\<And>x. x\<in>U \<Longrightarrow> \<exists>X. x \<in> (\<Pi>\<^sub>E i\<in>I. X i) \<and> (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)} \<and> (\<Pi>\<^sub>E i\<in>I. X i) \<subseteq> U"
+  proof induction
+    case (Int U V x)
+    then obtain XU XV where H:
+      "x \<in> Pi\<^sub>E I XU" "(\<forall>i. openin (T i) (XU i))" "finite {i. XU i \<noteq> topspace (T i)}" "Pi\<^sub>E I XU \<subseteq> U"
+      "x \<in> Pi\<^sub>E I XV" "(\<forall>i. openin (T i) (XV i))" "finite {i. XV i \<noteq> topspace (T i)}" "Pi\<^sub>E I XV \<subseteq> V"
+      by auto meson
+    define X where "X = (\<lambda>i. XU i \<inter> XV i)"
+    have "Pi\<^sub>E I X \<subseteq> Pi\<^sub>E I XU \<inter> Pi\<^sub>E I XV"
+      unfolding X_def by (auto simp add: PiE_iff)
+    then have "Pi\<^sub>E I X \<subseteq> U \<inter> V" using H by auto
+    moreover have "\<forall>i. openin (T i) (X i)"
+      unfolding X_def using H by auto
+    moreover have "finite {i. X i \<noteq> topspace (T i)}"
+      apply (rule rev_finite_subset[of "{i. XU i \<noteq> topspace (T i)} \<union> {i. XV i \<noteq> topspace (T i)}"])
+      unfolding X_def using H by auto
+    moreover have "x \<in> Pi\<^sub>E I X"
+      unfolding X_def using H by auto
+    ultimately show ?case
+      by auto
+  next
+    case (UN K x)
+    then obtain k where "k \<in> K" "x \<in> k" by auto
+    with UN have "\<exists>X. x \<in> Pi\<^sub>E I X \<and> (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)} \<and> Pi\<^sub>E I X \<subseteq> k"
+      by simp
+    then obtain X where "x \<in> Pi\<^sub>E I X \<and> (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)} \<and> Pi\<^sub>E I X \<subseteq> k"
+      by blast
+    then have "x \<in> Pi\<^sub>E I X \<and> (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)} \<and> Pi\<^sub>E I X \<subseteq> (\<Union>K)"
+      using `k \<in> K` by auto
+    then show ?case
+      by auto
+  qed auto
+  then show ?thesis using `x \<in> U` by auto
+qed
+
+
+text {*The basic property of the product topology is the continuity of projections:*}
+
+lemma continuous_on_topo_product_coordinates [simp]:
+  assumes "i \<in> I"
+  shows "continuous_on_topo (product_topology T I) (T i) (\<lambda>x. x i)"
+proof -
+  {
+    fix U assume "openin (T i) U"
+    define X where "X = (\<lambda>j. if j = i then U else topspace (T j))"
+    then have *: "(\<lambda>x. x i) -` U \<inter> (\<Pi>\<^sub>E i\<in>I. topspace (T i)) = (\<Pi>\<^sub>E j\<in>I. X j)"
+      unfolding X_def using assms openin_subset[OF `openin (T i) U`]
+      by (auto simp add: PiE_iff, auto, metis subsetCE)
+    have **: "(\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}"
+      unfolding X_def using `openin (T i) U` by auto
+    have "openin (product_topology T I) ((\<lambda>x. x i) -` U \<inter> (\<Pi>\<^sub>E i\<in>I. topspace (T i)))"
+      unfolding product_topology_def
+      apply (rule topology_generated_by_Basis)
+      apply (subst *)
+      using ** by auto
+  }
+  then show ?thesis unfolding continuous_on_topo_def
+    by (auto simp add: assms product_topology_topspace PiE_iff)
+qed
+
+lemma continuous_on_topo_coordinatewise_then_product [intro]:
+  assumes "\<And>i. i \<in> I \<Longrightarrow> continuous_on_topo T1 (T i) (\<lambda>x. f x i)"
+          "\<And>i x. i \<notin> I \<Longrightarrow> x \<in> topspace T1 \<Longrightarrow> f x i = undefined"
+  shows "continuous_on_topo T1 (product_topology T I) f"
+unfolding product_topology_def
+proof (rule continuous_on_generated_topo)
+  fix U assume "U \<in> {Pi\<^sub>E I X |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}}"
+  then obtain X where H: "U = Pi\<^sub>E I X" "\<And>i. openin (T i) (X i)" "finite {i. X i \<noteq> topspace (T i)}"
+    by blast
+  define J where "J = {i \<in> I. X i \<noteq> topspace (T i)}"
+  have "finite J" "J \<subseteq> I" unfolding J_def using H(3) by auto
+  have "(\<lambda>x. f x i)-`(topspace(T i)) \<inter> topspace T1 = topspace T1" if "i \<in> I" for i
+    using that assms(1) by (simp add: continuous_on_topo_preimage_topspace)
+  then have *: "(\<lambda>x. f x i)-`(X i) \<inter> topspace T1 = topspace T1" if "i \<in> I-J" for i
+    using that unfolding J_def by auto
+  have "f-`U \<inter> topspace T1 = (\<Inter>i\<in>I. (\<lambda>x. f x i)-`(X i) \<inter> topspace T1) \<inter> (topspace T1)"
+    by (subst H(1), auto simp add: PiE_iff assms)
+  also have "... = (\<Inter>i\<in>J. (\<lambda>x. f x i)-`(X i) \<inter> topspace T1) \<inter> (topspace T1)"
+    using * `J \<subseteq> I` by auto
+  also have "openin T1 (...)"
+    apply (rule openin_INT)
+    apply (simp add: `finite J`)
+    using H(2) assms(1) `J \<subseteq> I` by auto
+  ultimately show "openin T1 (f-`U \<inter> topspace T1)" by simp
+next
+  show "f `topspace T1 \<subseteq> \<Union>{Pi\<^sub>E I X |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}}"
+    apply (subst topology_generated_by_topspace[symmetric])
+    apply (subst product_topology_def[symmetric])
+    apply (simp only: product_topology_topspace)
+    apply (auto simp add: PiE_iff)
+    using assms unfolding continuous_on_topo_def by auto
+qed
+
+lemma continuous_on_topo_product_then_coordinatewise [intro]:
+  assumes "continuous_on_topo T1 (product_topology T I) f"
+  shows "\<And>i. i \<in> I \<Longrightarrow> continuous_on_topo T1 (T i) (\<lambda>x. f x i)"
+        "\<And>i x. i \<notin> I \<Longrightarrow> x \<in> topspace T1 \<Longrightarrow> f x i = undefined"
+proof -
+  fix i assume "i \<in> I"
+  have "(\<lambda>x. f x i) = (\<lambda>y. y i) o f" by auto
+  also have "continuous_on_topo T1 (T i) (...)"
+    apply (rule continuous_on_topo_compose[of _ "product_topology T I"])
+    using assms `i \<in> I` by auto
+  ultimately show "continuous_on_topo T1 (T i) (\<lambda>x. f x i)"
+    by simp
+next
+  fix i x assume "i \<notin> I" "x \<in> topspace T1"
+  have "f x \<in> topspace (product_topology T I)"
+    using assms `x \<in> topspace T1` unfolding continuous_on_topo_def by auto
+  then have "f x \<in> (\<Pi>\<^sub>E i\<in>I. topspace (T i))"
+    using product_topology_topspace by metis
+  then show "f x i = undefined"
+    using `i \<notin> I` by (auto simp add: PiE_iff extensional_def)
+qed
+
+lemma continuous_on_restrict:
+  assumes "J \<subseteq> I"
+  shows "continuous_on_topo (product_topology T I) (product_topology T J) (\<lambda>x. restrict x J)"
+proof (rule continuous_on_topo_coordinatewise_then_product)
+  fix i assume "i \<in> J"
+  then have "(\<lambda>x. restrict x J i) = (\<lambda>x. x i)" unfolding restrict_def by auto
+  then show "continuous_on_topo (product_topology T I) (T i) (\<lambda>x. restrict x J i)"
+    using `i \<in> J` `J \<subseteq> I` by auto
+next
+  fix i assume "i \<notin> J"
+  then show "restrict x J i = undefined" for x::"'a \<Rightarrow> 'b"
+    unfolding restrict_def by auto
+qed
+
+
+subsubsection {*Powers of a single topological space as a topological space, using type classes*}
+
+instantiation "fun" :: (type, topological_space) topological_space
+begin
+
+definition open_fun_def:
+  "open U = openin (product_topology (\<lambda>i. euclidean) UNIV) U"
+
+instance proof
+  have "topspace (product_topology (\<lambda>(i::'a). euclidean::('b topology)) UNIV) = UNIV"
+    unfolding product_topology_topspace topspace_euclidean by auto
+  then show "open (UNIV::('a \<Rightarrow> 'b) set)"
+    unfolding open_fun_def by (metis openin_topspace)
+qed (auto simp add: open_fun_def)
+
+end
+
+lemma euclidean_product_topology:
+  "euclidean = product_topology (\<lambda>i. euclidean::('b::topological_space) topology) UNIV"
+by (metis open_openin topology_eq open_fun_def)
+
+lemma product_topology_basis':
+  fixes x::"'i \<Rightarrow> 'a" and U::"'i \<Rightarrow> ('b::topological_space) set"
+  assumes "finite I" "\<And>i. i \<in> I \<Longrightarrow> open (U i)"
+  shows "open {f. \<forall>i\<in>I. f (x i) \<in> U i}"
+proof -
+  define J where "J = x`I"
+  define V where "V = (\<lambda>y. if y \<in> J then \<Inter>{U i|i. i\<in>I \<and> x i = y} else UNIV)"
+  define X where "X = (\<lambda>y. if y \<in> J then V y else UNIV)"
+  have *: "open (X i)" for i
+    unfolding X_def V_def using assms by auto
+  have **: "finite {i. X i \<noteq> UNIV}"
+    unfolding X_def V_def J_def using assms(1) by auto
+  have "open (Pi\<^sub>E UNIV X)"
+    unfolding open_fun_def apply (rule product_topology_basis)
+    using * ** unfolding open_openin topspace_euclidean by auto
+  moreover have "Pi\<^sub>E UNIV X = {f. \<forall>i\<in>I. f (x i) \<in> U i}"
+    apply (auto simp add: PiE_iff) unfolding X_def V_def J_def
+    proof (auto)
+      fix f :: "'a \<Rightarrow> 'b" and i :: 'i
+      assume a1: "i \<in> I"
+      assume a2: "\<forall>i. f i \<in> (if i \<in> x`I then if i \<in> x`I then \<Inter>{U ia |ia. ia \<in> I \<and> x ia = i} else UNIV else UNIV)"
+      have f3: "x i \<in> x`I"
+        using a1 by blast
+      have "U i \<in> {U ia |ia. ia \<in> I \<and> x ia = x i}"
+        using a1 by blast
+      then show "f (x i) \<in> U i"
+        using f3 a2 by (meson Inter_iff)
+    qed
+  ultimately show ?thesis by simp
+qed
+
+text {*The results proved in the general situation of products of possibly different
+spaces have their counterparts in this simpler setting.*}
+
+lemma continuous_on_product_coordinates [simp]:
+  "continuous_on UNIV (\<lambda>x. x i::('b::topological_space))"
+unfolding continuous_on_topo_UNIV euclidean_product_topology
+by (rule continuous_on_topo_product_coordinates, simp)
+
+lemma continuous_on_coordinatewise_then_product [intro, continuous_intros]:
+  assumes "\<And>i. continuous_on UNIV (\<lambda>x. f x i)"
+  shows "continuous_on UNIV f"
+using assms unfolding continuous_on_topo_UNIV euclidean_product_topology
+by (rule continuous_on_topo_coordinatewise_then_product, simp)
+
+lemma continuous_on_product_then_coordinatewise:
+  assumes "continuous_on UNIV f"
+  shows "continuous_on UNIV (\<lambda>x. f x i)"
+using assms unfolding continuous_on_topo_UNIV euclidean_product_topology
+by (rule continuous_on_topo_product_then_coordinatewise(1), simp)
+
+lemma continuous_on_product_coordinatewise_iff:
+  "continuous_on UNIV f \<longleftrightarrow> (\<forall>i. continuous_on UNIV (\<lambda>x. f x i))"
+by (auto intro: continuous_on_product_then_coordinatewise)
+
+subsubsection {*Topological countability for product spaces*}
+
+text {*The next two lemmas are useful to prove first or second countability
+of product spaces, but they have more to do with countability and could
+be put in the corresponding theory.*}
+
+lemma countable_nat_product_event_const:
+  fixes F::"'a set" and a::'a
+  assumes "a \<in> F" "countable F"
+  shows "countable {x::(nat \<Rightarrow> 'a). (\<forall>i. x i \<in> F) \<and> finite {i. x i \<noteq> a}}"
+proof -
+  have *: "{x::(nat \<Rightarrow> 'a). (\<forall>i. x i \<in> F) \<and> finite {i. x i \<noteq> a}}
+                  \<subseteq> (\<Union>N. {x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>N. x i = a)})"
+    using infinite_nat_iff_unbounded_le by fastforce
+  have "countable {x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>N. x i = a)}" for N::nat
+  proof (induction N)
+    case 0
+    have "{x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>(0::nat). x i = a)} = {(\<lambda>i. a)}"
+      using `a \<in> F` by auto
+    then show ?case by auto
+  next
+    case (Suc N)
+    define f::"((nat \<Rightarrow> 'a) \<times> 'a) \<Rightarrow> (nat \<Rightarrow> 'a)"
+      where "f = (\<lambda>(x, b). (\<lambda>i. if i = N then b else x i))"
+    have "{x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>Suc N. x i = a)} \<subseteq> f`({x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>N. x i = a)} \<times> F)"
+    proof (auto)
+      fix x assume H: "\<forall>i::nat. x i \<in> F" "\<forall>i\<ge>Suc N. x i = a"
+      define y where "y = (\<lambda>i. if i = N then a else x i)"
+      have "f (y, x N) = x"
+        unfolding f_def y_def by auto
+      moreover have "(y, x N) \<in> {x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>N. x i = a)} \<times> F"
+        unfolding y_def using H `a \<in> F` by auto
+      ultimately show "x \<in> f`({x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>N. x i = a)} \<times> F)"
+        by (metis (no_types, lifting) image_eqI)
+    qed
+    moreover have "countable ({x. (\<forall>i. x i \<in> F) \<and> (\<forall>i\<ge>N. x i = a)} \<times> F)"
+      using Suc.IH assms(2) by auto
+    ultimately show ?case
+      by (meson countable_image countable_subset)
+  qed
+  then show ?thesis using countable_subset[OF *] by auto
+qed
+
+lemma countable_product_event_const:
+  fixes F::"('a::countable) \<Rightarrow> 'b set" and b::'b
+  assumes "\<And>i. countable (F i)"
+  shows "countable {f::('a \<Rightarrow> 'b). (\<forall>i. f i \<in> F i) \<and> (finite {i. f i \<noteq> b})}"
+proof -
+  define G where "G = (\<Union>i. F i) \<union> {b}"
+  have "countable G" unfolding G_def using assms by auto
+  have "b \<in> G" unfolding G_def by auto
+  define pi where "pi = (\<lambda>(x::(nat \<Rightarrow> 'b)). (\<lambda> i::'a. x ((to_nat::('a \<Rightarrow> nat)) i)))"
+  have "{f::('a \<Rightarrow> 'b). (\<forall>i. f i \<in> F i) \<and> (finite {i. f i \<noteq> b})}
+        \<subseteq> pi`{g::(nat \<Rightarrow> 'b). (\<forall>j. g j \<in> G) \<and> (finite {j. g j \<noteq> b})}"
+  proof (auto)
+    fix f assume H: "\<forall>i. f i \<in> F i" "finite {i. f i \<noteq> b}"
+    define I where "I = {i. f i \<noteq> b}"
+    define g where "g = (\<lambda>j. if j \<in> to_nat`I then f (from_nat j) else b)"
+    have "{j. g j \<noteq> b} \<subseteq> to_nat`I" unfolding g_def by auto
+    then have "finite {j. g j \<noteq> b}"
+      unfolding I_def using H(2) using finite_surj by blast
+    moreover have "g j \<in> G" for j
+      unfolding g_def G_def using H by auto
+    ultimately have "g \<in> {g::(nat \<Rightarrow> 'b). (\<forall>j. g j \<in> G) \<and> (finite {j. g j \<noteq> b})}"
+      by auto
+    moreover have "f = pi g"
+      unfolding pi_def g_def I_def using H by fastforce
+    ultimately show "f \<in> pi`{g. (\<forall>j. g j \<in> G) \<and> finite {j. g j \<noteq> b}}"
+      by auto
+  qed
+  then show ?thesis
+    using countable_nat_product_event_const[OF `b \<in> G` `countable G`]
+    by (meson countable_image countable_subset)
+qed
+
+instance "fun" :: (countable, first_countable_topology) first_countable_topology
+proof
+  fix x::"'a \<Rightarrow> 'b"
+  have "\<exists>A::('b \<Rightarrow> nat \<Rightarrow> 'b set). \<forall>x. (\<forall>i. x \<in> A x i \<and> open (A x i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A x i \<subseteq> S))"
+    apply (rule choice) using first_countable_basis by auto
+  then obtain A::"('b \<Rightarrow> nat \<Rightarrow> 'b set)" where A: "\<And>x i. x \<in> A x i"
+                                                  "\<And>x i. open (A x i)"
+                                                  "\<And>x S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>i. A x i \<subseteq> S)"
+    by metis
+  text {*$B i$ is a countable basis of neighborhoods of $x_i$.*}
+  define B where "B = (\<lambda>i. (A (x i))`UNIV \<union> {UNIV})"
+  have "countable (B i)" for i unfolding B_def by auto
+
+  define K where "K = {Pi\<^sub>E UNIV X | X. (\<forall>i. X i \<in> B i) \<and> finite {i. X i \<noteq> UNIV}}"
+  have "Pi\<^sub>E UNIV (\<lambda>i. UNIV) \<in> K"
+    unfolding K_def B_def by auto
+  then have "K \<noteq> {}" by auto
+  have "countable {X. (\<forall>i. X i \<in> B i) \<and> finite {i. X i \<noteq> UNIV}}"
+    apply (rule countable_product_event_const) using `\<And>i. countable (B i)` by auto
+  moreover have "K = (\<lambda>X. Pi\<^sub>E UNIV X)`{X. (\<forall>i. X i \<in> B i) \<and> finite {i. X i \<noteq> UNIV}}"
+    unfolding K_def by auto
+  ultimately have "countable K" by auto
+  have "x \<in> k" if "k \<in> K" for k
+    using that unfolding K_def B_def apply auto using A(1) by auto
+  have "open k" if "k \<in> K" for k
+    using that unfolding open_fun_def K_def B_def apply (auto)
+    apply (rule product_topology_basis)
+    unfolding topspace_euclidean by (auto, metis imageE open_UNIV A(2))
+
+  have Inc: "\<exists>k\<in>K. k \<subseteq> U" if "open U \<and> x \<in> U" for U
+  proof -
+    have "openin (product_topology (\<lambda>i. euclidean) UNIV) U" "x \<in> U"
+      using `open U \<and> x \<in> U` unfolding open_fun_def by auto
+    with product_topology_open_contains_basis[OF this]
+    have "\<exists>X. x \<in> (\<Pi>\<^sub>E i\<in>UNIV. X i) \<and> (\<forall>i. open (X i)) \<and> finite {i. X i \<noteq> UNIV} \<and> (\<Pi>\<^sub>E i\<in>UNIV. X i) \<subseteq> U"
+      unfolding topspace_euclidean open_openin by simp
+    then obtain X where H: "x \<in> (\<Pi>\<^sub>E i\<in>UNIV. X i)"
+                           "\<And>i. open (X i)"
+                           "finite {i. X i \<noteq> UNIV}"
+                           "(\<Pi>\<^sub>E i\<in>UNIV. X i) \<subseteq> U"
+      by auto
+    define I where "I = {i. X i \<noteq> UNIV}"
+    define Y where "Y = (\<lambda>i. if i \<in> I then (SOME y. y \<in> B i \<and> y \<subseteq> X i) else UNIV)"
+    have *: "\<exists>y. y \<in> B i \<and> y \<subseteq> X i" for i
+      unfolding B_def using A(3)[OF H(2)] H(1) by (metis PiE_E UNIV_I UnCI image_iff)
+    have **: "Y i \<in> B i \<and> Y i \<subseteq> X i" for i
+      apply (cases "i \<in> I")
+      unfolding Y_def using * that apply (auto)
+      apply (metis (no_types, lifting) someI, metis (no_types, lifting) someI_ex subset_iff)
+      unfolding B_def apply simp
+      unfolding I_def apply auto
+      done
+    have "{i. Y i \<noteq> UNIV} \<subseteq> I"
+      unfolding Y_def by auto
+    then have ***: "finite {i. Y i \<noteq> UNIV}"
+      unfolding I_def using H(3) rev_finite_subset by blast
+    have "(\<forall>i. Y i \<in> B i) \<and> finite {i. Y i \<noteq> UNIV}"
+      using ** *** by auto
+    then have "Pi\<^sub>E UNIV Y \<in> K"
+      unfolding K_def by auto
+
+    have "Y i \<subseteq> X i" for i
+      apply (cases "i \<in> I") using ** apply simp unfolding Y_def I_def by auto
+    then have "Pi\<^sub>E UNIV Y \<subseteq> Pi\<^sub>E UNIV X" by auto
+    then have "Pi\<^sub>E UNIV Y \<subseteq> U" using H(4) by auto
+    then show ?thesis using `Pi\<^sub>E UNIV Y \<in> K` by auto
+  qed
+
+  show "\<exists>L. (\<forall>(i::nat). x \<in> L i \<and> open (L i)) \<and> (\<forall>U. open U \<and> x \<in> U \<longrightarrow> (\<exists>i. L i \<subseteq> U))"
+    apply (rule first_countableI[of K])
+    using `countable K` `\<And>k. k \<in> K \<Longrightarrow> x \<in> k` `\<And>k. k \<in> K \<Longrightarrow> open k` Inc by auto
+qed
+
+lemma product_topology_countable_basis:
+  shows "\<exists>K::(('a::countable \<Rightarrow> 'b::second_countable_topology) set set).
+          topological_basis K \<and> countable K \<and>
+          (\<forall>k\<in>K. \<exists>X. (k = PiE UNIV X) \<and> (\<forall>i. open (X i)) \<and> finite {i. X i \<noteq> UNIV})"
+proof -
+  obtain B::"'b set set" where B: "countable B \<and> topological_basis B"
+    using ex_countable_basis by auto
+  then have "B \<noteq> {}" by (meson UNIV_I empty_iff open_UNIV topological_basisE)
+  define B2 where "B2 = B \<union> {UNIV}"
+  have "countable B2"
+    unfolding B2_def using B by auto
+  have "open U" if "U \<in> B2" for U
+    using that unfolding B2_def using B topological_basis_open by auto
+
+  define K where "K = {Pi\<^sub>E UNIV X | X. (\<forall>i::'a. X i \<in> B2) \<and> finite {i. X i \<noteq> UNIV}}"
+  have i: "\<forall>k\<in>K. \<exists>X. (k = PiE UNIV X) \<and> (\<forall>i. open (X i)) \<and> finite {i. X i \<noteq> UNIV}"
+    unfolding K_def using `\<And>U. U \<in> B2 \<Longrightarrow> open U` by auto
+
+  have "countable {X. (\<forall>(i::'a). X i \<in> B2) \<and> finite {i. X i \<noteq> UNIV}}"
+    apply (rule countable_product_event_const) using `countable B2` by auto
+  moreover have "K = (\<lambda>X. Pi\<^sub>E UNIV X)`{X. (\<forall>i. X i \<in> B2) \<and> finite {i. X i \<noteq> UNIV}}"
+    unfolding K_def by auto
+  ultimately have ii: "countable K" by auto
+
+  have iii: "topological_basis K"
+  proof (rule topological_basisI)
+    fix U and x::"'a\<Rightarrow>'b" assume "open U" "x \<in> U"
+    then have "openin (product_topology (\<lambda>i. euclidean) UNIV) U"
+      unfolding open_fun_def by auto
+    with product_topology_open_contains_basis[OF this `x \<in> U`]
+    have "\<exists>X. x \<in> (\<Pi>\<^sub>E i\<in>UNIV. X i) \<and> (\<forall>i. open (X i)) \<and> finite {i. X i \<noteq> UNIV} \<and> (\<Pi>\<^sub>E i\<in>UNIV. X i) \<subseteq> U"
+      unfolding topspace_euclidean open_openin by simp
+    then obtain X where H: "x \<in> (\<Pi>\<^sub>E i\<in>UNIV. X i)"
+                           "\<And>i. open (X i)"
+                           "finite {i. X i \<noteq> UNIV}"
+                           "(\<Pi>\<^sub>E i\<in>UNIV. X i) \<subseteq> U"
+      by auto
+    then have "x i \<in> X i" for i by auto
+    define I where "I = {i. X i \<noteq> UNIV}"
+    define Y where "Y = (\<lambda>i. if i \<in> I then (SOME y. y \<in> B2 \<and> y \<subseteq> X i \<and> x i \<in> y) else UNIV)"
+    have *: "\<exists>y. y \<in> B2 \<and> y \<subseteq> X i \<and> x i \<in> y" for i
+      unfolding B2_def using B `open (X i)` `x i \<in> X i` by (meson UnCI topological_basisE)
+    have **: "Y i \<in> B2 \<and> Y i \<subseteq> X i \<and> x i \<in> Y i" for i
+      using someI_ex[OF *]
+      apply (cases "i \<in> I")
+      unfolding Y_def using * apply (auto)
+      unfolding B2_def I_def by auto
+    have "{i. Y i \<noteq> UNIV} \<subseteq> I"
+      unfolding Y_def by auto
+    then have ***: "finite {i. Y i \<noteq> UNIV}"
+      unfolding I_def using H(3) rev_finite_subset by blast
+    have "(\<forall>i. Y i \<in> B2) \<and> finite {i. Y i \<noteq> UNIV}"
+      using ** *** by auto
+    then have "Pi\<^sub>E UNIV Y \<in> K"
+      unfolding K_def by auto
+
+    have "Y i \<subseteq> X i" for i
+      apply (cases "i \<in> I") using ** apply simp unfolding Y_def I_def by auto
+    then have "Pi\<^sub>E UNIV Y \<subseteq> Pi\<^sub>E UNIV X" by auto
+    then have "Pi\<^sub>E UNIV Y \<subseteq> U" using H(4) by auto
+
+    have "x \<in> Pi\<^sub>E UNIV Y"
+      using ** by auto
+
+    show "\<exists>V\<in>K. x \<in> V \<and> V \<subseteq> U"
+      using `Pi\<^sub>E UNIV Y \<in> K` `Pi\<^sub>E UNIV Y \<subseteq> U` `x \<in> Pi\<^sub>E UNIV Y` by auto
+  next
+    fix U assume "U \<in> K"
+    show "open U"
+      using `U \<in> K` unfolding open_fun_def K_def apply (auto)
+      apply (rule product_topology_basis)
+      using `\<And>V. V \<in> B2 \<Longrightarrow> open V` open_UNIV unfolding topspace_euclidean open_openin[symmetric]
+      by auto
+  qed
+
+  show ?thesis using i ii iii by auto
+qed
+
+instance "fun" :: (countable, second_countable_topology) second_countable_topology
+  apply standard
+  using product_topology_countable_basis topological_basis_imp_subbasis by auto
+
+
+subsection {*The strong operator topology on continuous linear operators*}
+
+text {*Let 'a and 'b be two normed real vector spaces. Then the space of linear continuous
+operators from 'a to 'b has a canonical norm, and therefore a canonical corresponding topology
+(the type classes instantiation are given in \verb+Bounded_Linear_Function.thy+).
+
+However, there is another topology on this space, the strong operator topology, where $T_n$ tends to
+$T$ iff, for all $x$ in 'a, then $T_n x$ tends to $T x$. This is precisely the product topology
+where the target space is endowed with the norm topology. It is especially useful when 'b is the set
+of real numbers, since then this topology is compact.
+
+We can not implement it using type classes as there is already a topology, but at least we
+can define it as a topology.
+
+Note that there is yet another (common and useful) topology on operator spaces, the weak operator
+topology, defined analogously using the product topology, but where the target space is given the
+weak-* topology, i.e., the pullback of the weak topology on the bidual of the space under the
+canonical embedding of a space into its bidual. We do not define it there, although it could also be
+defined analogously.
+*}
+
+definition strong_operator_topology::"('a::real_normed_vector \<Rightarrow>\<^sub>L'b::real_normed_vector) topology"
+where "strong_operator_topology = pullback_topology UNIV blinfun_apply euclidean"
+
+lemma strong_operator_topology_topspace:
+  "topspace strong_operator_topology = UNIV"
+unfolding strong_operator_topology_def topspace_pullback_topology topspace_euclidean by auto
+
+lemma strong_operator_topology_basis:
+  fixes f::"('a::real_normed_vector \<Rightarrow>\<^sub>L'b::real_normed_vector)" and U::"'i \<Rightarrow> 'b set" and x::"'i \<Rightarrow> 'a"
+  assumes "finite I" "\<And>i. i \<in> I \<Longrightarrow> open (U i)"
+  shows "openin strong_operator_topology {f. \<forall>i\<in>I. blinfun_apply f (x i) \<in> U i}"
+proof -
+  have "open {g::('a\<Rightarrow>'b). \<forall>i\<in>I. g (x i) \<in> U i}"
+    by (rule product_topology_basis'[OF assms])
+  moreover have "{f. \<forall>i\<in>I. blinfun_apply f (x i) \<in> U i}
+                = blinfun_apply-`{g::('a\<Rightarrow>'b). \<forall>i\<in>I. g (x i) \<in> U i} \<inter> UNIV"
+    by auto
+  ultimately show ?thesis
+    unfolding strong_operator_topology_def open_openin apply (subst openin_pullback_topology) by auto
+qed
+
+lemma strong_operator_topology_continuous_evaluation:
+  "continuous_on_topo strong_operator_topology euclidean (\<lambda>f. blinfun_apply f x)"
+proof -
+  have "continuous_on_topo strong_operator_topology euclidean ((\<lambda>f. f x) o blinfun_apply)"
+    unfolding strong_operator_topology_def apply (rule continuous_on_topo_pullback)
+    using continuous_on_topo_UNIV continuous_on_product_coordinates by fastforce
+  then show ?thesis unfolding comp_def by simp
+qed
+
+lemma continuous_on_strong_operator_topo_iff_coordinatewise:
+  "continuous_on_topo T strong_operator_topology f
+    \<longleftrightarrow> (\<forall>x. continuous_on_topo T euclidean (\<lambda>y. blinfun_apply (f y) x))"
+proof (auto)
+  fix x::"'b"
+  assume "continuous_on_topo T strong_operator_topology f"
+  with continuous_on_topo_compose[OF this strong_operator_topology_continuous_evaluation]
+  have "continuous_on_topo T euclidean ((\<lambda>z. blinfun_apply z x) o f)"
+    by simp
+  then show "continuous_on_topo T euclidean (\<lambda>y. blinfun_apply (f y) x)"
+    unfolding comp_def by auto
+next
+  assume *: "\<forall>x. continuous_on_topo T euclidean (\<lambda>y. blinfun_apply (f y) x)"
+  have "continuous_on_topo T euclidean (blinfun_apply o f)"
+    unfolding euclidean_product_topology
+    apply (rule continuous_on_topo_coordinatewise_then_product, auto)
+    using * unfolding comp_def by auto
+  show "continuous_on_topo T strong_operator_topology f"
+    unfolding strong_operator_topology_def
+    apply (rule continuous_on_topo_pullback')
+    by (auto simp add: `continuous_on_topo T euclidean (blinfun_apply o f)`)
+qed
+
+lemma strong_operator_topology_weaker_than_euclidean:
+  "continuous_on_topo euclidean strong_operator_topology (\<lambda>f. f)"
+by (subst continuous_on_strong_operator_topo_iff_coordinatewise,
+    auto simp add: continuous_on_topo_UNIV[symmetric] linear_continuous_on)
+
+
+subsection {*Metrics on product spaces*}
+
+
+text {*In general, the product topology is not metrizable, unless the index set is countable.
+When the index set is countable, essentially any (convergent) combination of the metrics on the
+factors will do. We use below the simplest one, based on $L^1$, but $L^2$ would also work,
+for instance.
+
+What is not completely trivial is that the distance thus defined induces the same topology
+as the product topology. This is what we have to prove to show that we have an instance
+of \verb+metric_space+.
+
+The proofs below would work verbatim for general countable products of metric spaces. However,
+since distances are only implemented in terms of type classes, we only develop the theory
+for countable products of the same space.*}
+
+instantiation "fun" :: (countable, metric_space) metric_space
+begin
+
+definition dist_fun_def:
+  "dist x y = (\<Sum>n. (1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1)"
+
+definition uniformity_fun_def:
+  "(uniformity::(('a \<Rightarrow> 'b) \<times> ('a \<Rightarrow> 'b)) filter) = (INF e:{0<..}. principal {(x, y). dist (x::('a\<Rightarrow>'b)) y < e})"
+
+text {*Except for the first one, the auxiliary lemmas below are only useful when proving the
+instance: once it is proved, they become trivial consequences of the general theory of metric
+spaces. It would thus be desirable to hide them once the instance is proved, but I do not know how
+to do this.*}
+
+lemma dist_fun_le_dist_first_terms:
+  "dist x y \<le> 2 * Max {dist (x (from_nat n)) (y (from_nat n))|n. n \<le> N} + (1/2)^N"
+proof -
+  have "(\<Sum>n. (1 / 2) ^ (n+Suc N) * min (dist (x (from_nat (n+Suc N))) (y (from_nat (n+Suc N)))) 1)
+          = (\<Sum>n. (1 / 2) ^ (Suc N) * ((1/2) ^ n * min (dist (x (from_nat (n+Suc N))) (y (from_nat (n+Suc N)))) 1))"
+    by (rule suminf_cong, simp add: power_add)
+  also have "... = (1/2)^(Suc N) * (\<Sum>n. (1 / 2) ^ n * min (dist (x (from_nat (n+Suc N))) (y (from_nat (n+Suc N)))) 1)"
+    apply (rule suminf_mult)
+    by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+  also have "... \<le> (1/2)^(Suc N) * (\<Sum>n. (1 / 2) ^ n)"
+    apply (simp, rule suminf_le, simp)
+    by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+  also have "... = (1/2)^(Suc N) * 2"
+    using suminf_geometric[of "1/2"] by auto
+  also have "... = (1/2)^N"
+    by auto
+  finally have *: "(\<Sum>n. (1 / 2) ^ (n+Suc N) * min (dist (x (from_nat (n+Suc N))) (y (from_nat (n+Suc N)))) 1) \<le> (1/2)^N"
+    by simp
+
+  define M where "M = Max {dist (x (from_nat n)) (y (from_nat n))|n. n \<le> N}"
+  have "dist (x (from_nat 0)) (y (from_nat 0)) \<le> M"
+    unfolding M_def by (rule Max_ge, auto)
+  then have [simp]: "M \<ge> 0" by (meson dual_order.trans zero_le_dist)
+  have "dist (x (from_nat n)) (y (from_nat n)) \<le> M" if "n\<le>N" for n
+    unfolding M_def apply (rule Max_ge) using that by auto
+  then have i: "min (dist (x (from_nat n)) (y (from_nat n))) 1 \<le> M" if "n\<le>N" for n
+    using that by force
+  have "(\<Sum>n< Suc N. (1 / 2) ^ n * min (dist (x (from_nat n)) (y (from_nat n))) 1) \<le>
+      (\<Sum>n< Suc N. M * (1 / 2) ^ n)"
+    by (rule sum_mono, simp add: i)
+  also have "... = M * (\<Sum>n<Suc N. (1 / 2) ^ n)"
+    by (rule sum_distrib_left[symmetric])
+  also have "... \<le> M * (\<Sum>n. (1 / 2) ^ n)"
+    by (rule mult_left_mono, rule sum_le_suminf, auto simp add: summable_geometric_iff)
+  also have "... = M * 2"
+    using suminf_geometric[of "1/2"] by auto
+  finally have **: "(\<Sum>n< Suc N. (1 / 2) ^ n * min (dist (x (from_nat n)) (y (from_nat n))) 1) \<le> 2 * M"
+    by simp
+
+  have "dist x y = (\<Sum>n. (1 / 2) ^ n * min (dist (x (from_nat n)) (y (from_nat n))) 1)"
+    unfolding dist_fun_def by simp
+  also have "... = (\<Sum>n. (1 / 2) ^ (n+Suc N) * min (dist (x (from_nat (n+Suc N))) (y (from_nat (n+Suc N)))) 1)
+                  + (\<Sum>n<Suc N. (1 / 2) ^ n * min (dist (x (from_nat n)) (y (from_nat n))) 1)"
+    apply (rule suminf_split_initial_segment)
+    by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+  also have "... \<le> 2 * M + (1/2)^N"
+    using * ** by auto
+  finally show ?thesis unfolding M_def by simp
+qed
+
+lemma open_fun_contains_ball_aux:
+  assumes "open (U::(('a \<Rightarrow> 'b) set))"
+          "x \<in> U"
+  shows "\<exists>e>0. {y. dist x y < e} \<subseteq> U"
+proof -
+  have *: "openin (product_topology (\<lambda>i. euclidean) UNIV) U"
+    using open_fun_def assms by auto
+  obtain X where H: "Pi\<^sub>E UNIV X \<subseteq> U"
+                    "\<And>i. openin euclidean (X i)"
+                    "finite {i. X i \<noteq> topspace euclidean}"
+                    "x \<in> Pi\<^sub>E UNIV X"
+    using product_topology_open_contains_basis[OF * `x \<in> U`] by auto
+  define I where "I = {i. X i \<noteq> topspace euclidean}"
+  have "finite I" unfolding I_def using H(3) by auto
+  {
+    fix i
+    have "x i \<in> X i" using `x \<in> U` H by auto
+    then have "\<exists>e. e>0 \<and> ball (x i) e \<subseteq> X i"
+      using `openin euclidean (X i)` open_openin open_contains_ball by blast
+    then obtain e where "e>0" "ball (x i) e \<subseteq> X i" by blast
+    define f where "f = min e (1/2)"
+    have "f>0" "f<1" unfolding f_def using `e>0` by auto
+    moreover have "ball (x i) f \<subseteq> X i" unfolding f_def using `ball (x i) e \<subseteq> X i` by auto
+    ultimately have "\<exists>f. f > 0 \<and> f < 1 \<and> ball (x i) f \<subseteq> X i" by auto
+  } note * = this
+  have "\<exists>e. \<forall>i. e i > 0 \<and> e i < 1 \<and> ball (x i) (e i) \<subseteq> X i"
+    by (rule choice, auto simp add: *)
+  then obtain e where "\<And>i. e i > 0" "\<And>i. e i < 1" "\<And>i. ball (x i) (e i) \<subseteq> X i"
+    by blast
+  define m where "m = Min {(1/2)^(to_nat i) * e i|i. i \<in> I}"
+  have "m > 0" if "I\<noteq>{}"
+    unfolding m_def apply (rule Min_grI) using `finite I` `I \<noteq> {}` `\<And>i. e i > 0` by auto
+  moreover have "{y. dist x y < m} \<subseteq> U"
+  proof (auto)
+    fix y assume "dist x y < m"
+    have "y i \<in> X i" if "i \<in> I" for i
+    proof -
+      have *: "summable (\<lambda>n. (1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1)"
+        by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+      define n where "n = to_nat i"
+      have "(1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1 < m"
+        using `dist x y < m` unfolding dist_fun_def using sum_le_suminf[OF *, of "{n}"] by auto
+      then have "(1/2)^(to_nat i) * min (dist (x i) (y i)) 1 < m"
+        using `n = to_nat i` by auto
+      also have "... \<le> (1/2)^(to_nat i) * e i"
+        unfolding m_def apply (rule Min_le) using `finite I` `i \<in> I` by auto
+      ultimately have "min (dist (x i) (y i)) 1 < e i"
+        by (auto simp add: divide_simps)
+      then have "dist (x i) (y i) < e i"
+        using `e i < 1` by auto
+      then show "y i \<in> X i" using `ball (x i) (e i) \<subseteq> X i` by auto
+    qed
+    then have "y \<in> Pi\<^sub>E UNIV X" using H(1) unfolding I_def topspace_euclidean by (auto simp add: PiE_iff)
+    then show "y \<in> U" using `Pi\<^sub>E UNIV X \<subseteq> U` by auto
+  qed
+  ultimately have *: "\<exists>m>0. {y. dist x y < m} \<subseteq> U" if "I \<noteq> {}" using that by auto
+
+  have "U = UNIV" if "I = {}"
+    using that H(1) unfolding I_def topspace_euclidean by (auto simp add: PiE_iff)
+  then have "\<exists>m>0. {y. dist x y < m} \<subseteq> U" if "I = {}" using that zero_less_one by blast
+  then show "\<exists>m>0. {y. dist x y < m} \<subseteq> U" using * by blast
+qed
+
+lemma ball_fun_contains_open_aux:
+  fixes x::"('a \<Rightarrow> 'b)" and e::real
+  assumes "e>0"
+  shows "\<exists>U. open U \<and> x \<in> U \<and> U \<subseteq> {y. dist x y < e}"
+proof -
+  have "\<exists>N::nat. 2^N > 8/e"
+    by (simp add: real_arch_pow)
+  then obtain N::nat where "2^N > 8/e" by auto
+  define f where "f = e/4"
+  have [simp]: "e>0" "f > 0" unfolding f_def using assms by auto
+  define X::"('a \<Rightarrow> 'b set)" where "X = (\<lambda>i. if (\<exists>n\<le>N. i = from_nat n) then {z. dist (x i) z < f} else UNIV)"
+  have "{i. X i \<noteq> UNIV} \<subseteq> from_nat`{0..N}"
+    unfolding X_def by auto
+  then have "finite {i. X i \<noteq> topspace euclidean}"
+    unfolding topspace_euclidean using finite_surj by blast
+  have "\<And>i. open (X i)"
+    unfolding X_def using metric_space_class.open_ball open_UNIV by auto
+  then have "\<And>i. openin euclidean (X i)"
+    using open_openin by auto
+  define U where "U = Pi\<^sub>E UNIV X"
+  have "open U"
+    unfolding open_fun_def product_topology_def apply (rule topology_generated_by_Basis)
+    unfolding U_def using `\<And>i. openin euclidean (X i)` `finite {i. X i \<noteq> topspace euclidean}`
+    by auto
+  moreover have "x \<in> U"
+    unfolding U_def X_def by (auto simp add: PiE_iff)
+  moreover have "dist x y < e" if "y \<in> U" for y
+  proof -
+    have *: "dist (x (from_nat n)) (y (from_nat n)) \<le> f" if "n \<le> N" for n
+      using `y \<in> U` unfolding U_def apply (auto simp add: PiE_iff)
+      unfolding X_def using that by (metis less_imp_le mem_Collect_eq)
+    have **: "Max {dist (x (from_nat n)) (y (from_nat n))|n. n \<le> N} \<le> f"
+      apply (rule Max.boundedI) using * by auto
+
+    have "dist x y \<le> 2 * Max {dist (x (from_nat n)) (y (from_nat n))|n. n \<le> N} + (1/2)^N"
+      by (rule dist_fun_le_dist_first_terms)
+    also have "... \<le> 2 * f + e / 8"
+      apply (rule add_mono) using ** `2^N > 8/e` by(auto simp add: algebra_simps divide_simps)
+    also have "... \<le> e/2 + e/8"
+      unfolding f_def by auto
+    also have "... < e"
+      by auto
+    finally show "dist x y < e" by simp
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma fun_open_ball_aux:
+  fixes U::"('a \<Rightarrow> 'b) set"
+  shows "open U \<longleftrightarrow> (\<forall>x\<in>U. \<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> y \<in> U)"
+proof (auto)
+  assume "open U"
+  fix x assume "x \<in> U"
+  then show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> y \<in> U"
+    using open_fun_contains_ball_aux[OF `open U` `x \<in> U`] by auto
+next
+  assume H: "\<forall>x\<in>U. \<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> y \<in> U"
+  define K where "K = {V. open V \<and> V \<subseteq> U}"
+  {
+    fix x assume "x \<in> U"
+    then obtain e where e: "e>0" "{y. dist x y < e} \<subseteq> U" using H by blast
+    then obtain V where V: "open V" "x \<in> V" "V \<subseteq> {y. dist x y < e}"
+      using ball_fun_contains_open_aux[OF `e>0`, of x] by auto
+    have "V \<in> K"
+      unfolding K_def using e(2) V(1) V(3) by auto
+    then have "x \<in> (\<Union>K)" using `x \<in> V` by auto
+  }
+  then have "(\<Union>K) = U"
+    unfolding K_def by auto
+  moreover have "open (\<Union>K)"
+    unfolding K_def by auto
+  ultimately show "open U" by simp
+qed
+
+instance proof
+  fix x y::"'a \<Rightarrow> 'b" show "(dist x y = 0) = (x = y)"
+  proof
+    assume "x = y"
+    then show "dist x y = 0" unfolding dist_fun_def using `x = y` by auto
+  next
+    assume "dist x y = 0"
+    have *: "summable (\<lambda>n. (1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1)"
+      by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+    have "(1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1 = 0" for n
+      using `dist x y = 0` unfolding dist_fun_def by (simp add: "*" suminf_eq_zero_iff)
+    then have "dist (x (from_nat n)) (y (from_nat n)) = 0" for n
+      by (metis div_0 min_def nonzero_mult_div_cancel_left power_eq_0_iff
+                zero_eq_1_divide_iff zero_neq_numeral)
+    then have "x (from_nat n) = y (from_nat n)" for n
+      by auto
+    then have "x i = y i" for i
+      by (metis from_nat_to_nat)
+    then show "x = y"
+      by auto
+  qed
+next
+  text{*The proof of the triangular inequality is trivial, modulo the fact that we are dealing
+        with infinite series, hence we should justify the convergence at each step. In this
+        respect, the following simplification rule is extremely handy.*}
+  have [simp]: "summable (\<lambda>n. (1/2)^n * min (dist (u (from_nat n)) (v (from_nat n))) 1)" for u v::"'a \<Rightarrow> 'b"
+    by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+  fix x y z::"'a \<Rightarrow> 'b"
+  {
+    fix n
+    have *: "dist (x (from_nat n)) (y (from_nat n)) \<le>
+            dist (x (from_nat n)) (z (from_nat n)) + dist (y (from_nat n)) (z (from_nat n))"
+      by (simp add: dist_triangle2)
+    have "0 \<le> dist (y (from_nat n)) (z (from_nat n))"
+      using zero_le_dist by blast
+    moreover
+    {
+      assume "min (dist (y (from_nat n)) (z (from_nat n))) 1 \<noteq> dist (y (from_nat n)) (z (from_nat n))"
+      then have "1 \<le> min (dist (x (from_nat n)) (z (from_nat n))) 1 + min (dist (y (from_nat n)) (z (from_nat n))) 1"
+        by (metis (no_types) diff_le_eq diff_self min_def zero_le_dist zero_le_one)
+    }
+    ultimately have "min (dist (x (from_nat n)) (y (from_nat n))) 1 \<le>
+            min (dist (x (from_nat n)) (z (from_nat n))) 1 + min (dist (y (from_nat n)) (z (from_nat n))) 1"
+      using * by linarith
+  } note ineq = this
+  have "dist x y = (\<Sum>n. (1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1)"
+    unfolding dist_fun_def by simp
+  also have "... \<le> (\<Sum>n. (1/2)^n * min (dist (x (from_nat n)) (z (from_nat n))) 1
+                        + (1/2)^n * min (dist (y (from_nat n)) (z (from_nat n))) 1)"
+    apply (rule suminf_le)
+    using ineq apply (metis (no_types, hide_lams) add.right_neutral distrib_left
+      le_divide_eq_numeral1(1) mult_2_right mult_left_mono zero_le_one zero_le_power)
+    by (auto simp add: summable_add)
+  also have "... = (\<Sum>n. (1/2)^n * min (dist (x (from_nat n)) (z (from_nat n))) 1)
+                  + (\<Sum>n. (1/2)^n * min (dist (y (from_nat n)) (z (from_nat n))) 1)"
+    by (rule suminf_add[symmetric], auto)
+  also have "... = dist x z + dist y z"
+    unfolding dist_fun_def by simp
+  finally show "dist x y \<le> dist x z + dist y z"
+    by simp
+next
+  text{*Finally, we show that the topology generated by the distance and the product
+        topology coincide. This is essentially contained in Lemma \verb+fun_open_ball_aux+,
+        except that the condition to prove is expressed with filters. To deal with this,
+        we copy some mumbo jumbo from Lemma \verb+eventually_uniformity_metric+ in
+        \verb+Real_Vector_Spaces.thy+*}
+  fix U::"('a \<Rightarrow> 'b) set"
+  have "eventually P uniformity \<longleftrightarrow> (\<exists>e>0. \<forall>x (y::('a \<Rightarrow> 'b)). dist x y < e \<longrightarrow> P (x, y))" for P
+  unfolding uniformity_fun_def apply (subst eventually_INF_base)
+    by (auto simp: eventually_principal subset_eq intro: bexI[of _ "min _ _"])
+  then show "open U = (\<forall>x\<in>U. \<forall>\<^sub>F (x', y) in uniformity. x' = x \<longrightarrow> y \<in> U)"
+    unfolding fun_open_ball_aux by simp
+qed (simp add: uniformity_fun_def)
+
+end
+
+text {*Nice properties of spaces are preserved under countable products. In addition
+to first countability, second countability and metrizability, as we have seen above,
+completeness is also preserved, and therefore being Polish.*}
+
+instance "fun" :: (countable, complete_space) complete_space
+proof
+  fix u::"nat \<Rightarrow> ('a \<Rightarrow> 'b)" assume "Cauchy u"
+  have "Cauchy (\<lambda>n. u n i)" for i
+  unfolding cauchy_def proof (intro impI allI)
+    fix e assume "e>(0::real)"
+    obtain k where "i = from_nat k"
+      using from_nat_to_nat[of i] by metis
+    have "(1/2)^k * min e 1 > 0" using `e>0` by auto
+    then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (u m) (u n) < (1/2)^k * min e 1"
+      using `Cauchy u` unfolding cauchy_def by blast
+    then obtain N::nat where C: "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (u m) (u n) < (1/2)^k * min e 1"
+      by blast
+    have "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (u m i) (u n i) < e"
+    proof (auto)
+      fix m n::nat assume "m \<ge> N" "n \<ge> N"
+      have "(1/2)^k * min (dist (u m i) (u n i)) 1
+              = sum (\<lambda>p. (1/2)^p * min (dist (u m (from_nat p)) (u n (from_nat p))) 1) {k}"
+        using `i = from_nat k` by auto
+      also have "... \<le> (\<Sum>p. (1/2)^p * min (dist (u m (from_nat p)) (u n (from_nat p))) 1)"
+        apply (rule sum_le_suminf)
+        by (rule summable_comparison_test'[of "\<lambda>n. (1/2)^n"], auto simp add: summable_geometric_iff)
+      also have "... = dist (u m) (u n)"
+        unfolding dist_fun_def by auto
+      also have "... < (1/2)^k * min e 1"
+        using C `m \<ge> N` `n \<ge> N` by auto
+      finally have "min (dist (u m i) (u n i)) 1 < min e 1"
+        by (auto simp add: algebra_simps divide_simps)
+      then show "dist (u m i) (u n i) < e" by auto
+    qed
+    then show "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (u m i) (u n i) < e"
+      by blast
+  qed
+  then have "\<exists>x. (\<lambda>n. u n i) \<longlonglongrightarrow> x" for i
+    using Cauchy_convergent convergent_def by auto
+  then have "\<exists>x. \<forall>i. (\<lambda>n. u n i) \<longlonglongrightarrow> x i"
+    using choice by force
+  then obtain x where *: "\<And>i. (\<lambda>n. u n i) \<longlonglongrightarrow> x i" by blast
+  have "u \<longlonglongrightarrow> x"
+  proof (rule metric_LIMSEQ_I)
+    fix e assume [simp]: "e>(0::real)"
+    have i: "\<exists>K. \<forall>n\<ge>K. dist (u n i) (x i) < e/4" for i
+      by (rule metric_LIMSEQ_D, auto simp add: *)
+    have "\<exists>K. \<forall>i. \<forall>n\<ge>K i. dist (u n i) (x i) < e/4"
+      apply (rule choice) using i by auto
+    then obtain K where K: "\<And>i n. n \<ge> K i \<Longrightarrow> dist (u n i) (x i) < e/4"
+      by blast
+
+    have "\<exists>N::nat. 2^N > 4/e"
+      by (simp add: real_arch_pow)
+    then obtain N::nat where "2^N > 4/e" by auto
+    define L where "L = Max {K (from_nat n)|n. n \<le> N}"
+    have "dist (u k) x < e" if "k \<ge> L" for k
+    proof -
+      have *: "dist (u k (from_nat n)) (x (from_nat n)) \<le> e / 4" if "n \<le> N" for n
+      proof -
+        have "K (from_nat n) \<le> L"
+          unfolding L_def apply (rule Max_ge) using `n \<le> N` by auto
+        then have "k \<ge> K (from_nat n)" using `k \<ge> L` by auto
+        then show ?thesis using K less_imp_le by auto
+      qed
+      have **: "Max {dist (u k (from_nat n)) (x (from_nat n)) |n. n \<le> N} \<le> e/4"
+        apply (rule Max.boundedI) using * by auto
+      have "dist (u k) x \<le> 2 * Max {dist (u k (from_nat n)) (x (from_nat n)) |n. n \<le> N} + (1/2)^N"
+        using dist_fun_le_dist_first_terms by auto
+      also have "... \<le> 2 * e/4 + e/4"
+        apply (rule add_mono)
+        using ** `2^N > 4/e` less_imp_le by (auto simp add: algebra_simps divide_simps)
+      also have "... < e" by auto
+      finally show ?thesis by simp
+    qed
+    then show "\<exists>L. \<forall>k\<ge>L. dist (u k) x < e" by blast
+  qed
+  then show "convergent u" using convergent_def by blast
+qed
+
+instance "fun" :: (countable, polish_space) polish_space
+by standard
+
+
+subsection {*Measurability*}
+
+text {*There are two natural sigma-algebras on a product space: the borel sigma algebra,
+generated by open sets in the product, and the product sigma algebra, countably generated by
+products of measurable sets along finitely many coordinates. The second one is defined and studied
+in \verb+Finite_Product_Measure.thy+.
+
+These sigma-algebra share a lot of natural properties (measurability of coordinates, for instance),
+but there is a fundamental difference: open sets are generated by arbitrary unions, not only
+countable ones, so typically many open sets will not be measurable with respect to the product sigma
+algebra (while all sets in the product sigma algebra are borel). The two sigma algebras coincide
+only when everything is countable (i.e., the product is countable, and the borel sigma algebra in
+the factor is countably generated).
+
+In this paragraph, we develop basic measurability properties for the borel sigma algebra, and
+compare it with the product sigma algebra as explained above.
+*}
+
+lemma measurable_product_coordinates [measurable (raw)]:
+  "(\<lambda>x. x i) \<in> measurable borel borel"
+by (rule borel_measurable_continuous_on1[OF continuous_on_product_coordinates])
+
+lemma measurable_product_then_coordinatewise:
+  fixes f::"'a \<Rightarrow> 'b \<Rightarrow> ('c::topological_space)"
+  assumes [measurable]: "f \<in> borel_measurable M"
+  shows "(\<lambda>x. f x i) \<in> borel_measurable M"
+proof -
+  have "(\<lambda>x. f x i) = (\<lambda>y. y i) o f"
+    unfolding comp_def by auto
+  then show ?thesis by simp
+qed
+
+text {*To compare the Borel sigma algebra with the product sigma algebra, we give a presentation
+of the product sigma algebra that is more similar to the one we used above for the product
+topology.*}
+
+lemma sets_PiM_finite:
+  "sets (Pi\<^sub>M I M) = sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i))
+        {(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. X i \<in> sets (M i)) \<and> finite {i. X i \<noteq> space (M i)}}"
+proof
+  have "{(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. X i \<in> sets (M i)) \<and> finite {i. X i \<noteq> space (M i)}} \<subseteq> sets (Pi\<^sub>M I M)"
+  proof (auto)
+    fix X assume H: "\<forall>i. X i \<in> sets (M i)" "finite {i. X i \<noteq> space (M i)}"
+    then have *: "X i \<in> sets (M i)" for i by simp
+    define J where "J = {i \<in> I. X i \<noteq> space (M i)}"
+    have "finite J" "J \<subseteq> I" unfolding J_def using H by auto
+    define Y where "Y = (\<Pi>\<^sub>E j\<in>J. X j)"
+    have "prod_emb I M J Y \<in> sets (Pi\<^sub>M I M)"
+      unfolding Y_def apply (rule sets_PiM_I) using `finite J` `J \<subseteq> I` * by auto
+    moreover have "prod_emb I M J Y = (\<Pi>\<^sub>E i\<in>I. X i)"
+      unfolding prod_emb_def Y_def J_def using H sets.sets_into_space[OF *]
+      by (auto simp add: PiE_iff, blast)
+    ultimately show "Pi\<^sub>E I X \<in> sets (Pi\<^sub>M I M)" by simp
+  qed
+  then show "sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) {(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. X i \<in> sets (M i)) \<and> finite {i. X i \<noteq> space (M i)}}
+              \<subseteq> sets (Pi\<^sub>M I M)"
+    by (metis (mono_tags, lifting) sets.sigma_sets_subset' sets.top space_PiM)
+
+  have *: "\<exists>X. {f. (\<forall>i\<in>I. f i \<in> space (M i)) \<and> f \<in> extensional I \<and> f i \<in> A} = Pi\<^sub>E I X \<and>
+                (\<forall>i. X i \<in> sets (M i)) \<and> finite {i. X i \<noteq> space (M i)}"
+    if "i \<in> I" "A \<in> sets (M i)" for i A
+  proof -
+    define X where "X = (\<lambda>j. if j = i then A else space (M j))"
+    have "{f. (\<forall>i\<in>I. f i \<in> space (M i)) \<and> f \<in> extensional I \<and> f i \<in> A} = Pi\<^sub>E I X"
+      unfolding X_def using sets.sets_into_space[OF `A \<in> sets (M i)`] `i \<in> I`
+      by (auto simp add: PiE_iff extensional_def, metis subsetCE, metis)
+    moreover have "X j \<in> sets (M j)" for j
+      unfolding X_def using `A \<in> sets (M i)` by auto
+    moreover have "finite {j. X j \<noteq> space (M j)}"
+      unfolding X_def by simp
+    ultimately show ?thesis by auto
+  qed
+  show "sets (Pi\<^sub>M I M) \<subseteq> sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) {(\<Pi>\<^sub>E i\<in>I. X i) |X. (\<forall>i. X i \<in> sets (M i)) \<and> finite {i. X i \<noteq> space (M i)}}"
+    unfolding sets_PiM_single
+    apply (rule sigma_sets_mono')
+    apply (auto simp add: PiE_iff *)
+    done
+qed
+
+lemma sets_PiM_subset_borel:
+  "sets (Pi\<^sub>M UNIV (\<lambda>_. borel)) \<subseteq> sets borel"
+proof -
+  have *: "Pi\<^sub>E UNIV X \<in> sets borel" if [measurable]: "\<And>i. X i \<in> sets borel" "finite {i. X i \<noteq> UNIV}" for X::"'a \<Rightarrow> 'b set"
+  proof -
+    define I where "I = {i. X i \<noteq> UNIV}"
+    have "finite I" unfolding I_def using that by simp
+    have "Pi\<^sub>E UNIV X = (\<Inter>i\<in>I. (\<lambda>x. x i)-`(X i) \<inter> space borel) \<inter> space borel"
+      unfolding I_def by auto
+    also have "... \<in> sets borel"
+      using that `finite I` by measurable
+    finally show ?thesis by simp
+  qed
+  then have "{(\<Pi>\<^sub>E i\<in>UNIV. X i) |X::('a \<Rightarrow> 'b set). (\<forall>i. X i \<in> sets borel) \<and> finite {i. X i \<noteq> space borel}} \<subseteq> sets borel"
+    by auto
+  then show ?thesis unfolding sets_PiM_finite space_borel
+    by (simp add: * sets.sigma_sets_subset')
+qed
+
+lemma sets_PiM_equal_borel:
+  "sets (Pi\<^sub>M UNIV (\<lambda>i::('a::countable). borel::('b::second_countable_topology measure))) = sets borel"
+proof
+  obtain K::"('a \<Rightarrow> 'b) set set" where K: "topological_basis K" "countable K"
+            "\<And>k. k \<in> K \<Longrightarrow> \<exists>X. (k = PiE UNIV X) \<and> (\<forall>i. open (X i)) \<and> finite {i. X i \<noteq> UNIV}"
+    using product_topology_countable_basis by fast
+  have *: "k \<in> sets (Pi\<^sub>M UNIV (\<lambda>_. borel))" if "k \<in> K" for k
+  proof -
+    obtain X where H: "k = PiE UNIV X" "\<And>i. open (X i)" "finite {i. X i \<noteq> UNIV}"
+      using K(3)[OF `k \<in> K`] by blast
+    show ?thesis unfolding H(1) sets_PiM_finite space_borel using borel_open[OF H(2)] H(3) by auto
+  qed
+  have **: "U \<in> sets (Pi\<^sub>M UNIV (\<lambda>_. borel))" if "open U" for U::"('a \<Rightarrow> 'b) set"
+  proof -
+    obtain B where "B \<subseteq> K" "U = (\<Union>B)"
+      using `open U` `topological_basis K` by (metis topological_basis_def)
+    have "countable B" using `B \<subseteq> K` `countable K` countable_subset by blast
+    moreover have "k \<in> sets (Pi\<^sub>M UNIV (\<lambda>_. borel))" if "k \<in> B" for k
+      using `B \<subseteq> K` * that by auto
+    ultimately show ?thesis unfolding `U = (\<Union>B)` by auto
+  qed
+  have "sigma_sets UNIV (Collect open) \<subseteq> sets (Pi\<^sub>M UNIV (\<lambda>i::'a. (borel::('b measure))))"
+    apply (rule sets.sigma_sets_subset') using ** by auto
+  then show "sets (borel::('a \<Rightarrow> 'b) measure) \<subseteq> sets (Pi\<^sub>M UNIV (\<lambda>_. borel))"
+    unfolding borel_def by auto
+qed (simp add: sets_PiM_subset_borel)
+
+lemma measurable_coordinatewise_then_product:
+  fixes f::"'a \<Rightarrow> ('b::countable) \<Rightarrow> ('c::second_countable_topology)"
+  assumes [measurable]: "\<And>i. (\<lambda>x. f x i) \<in> borel_measurable M"
+  shows "f \<in> borel_measurable M"
+proof -
+  have "f \<in> measurable M (Pi\<^sub>M UNIV (\<lambda>_. borel))"
+    by (rule measurable_PiM_single', auto simp add: assms)
+  then show ?thesis using sets_PiM_equal_borel measurable_cong_sets by blast
+qed
+
+end
--- a/src/HOL/Analysis/FurtherTopology.thy	Tue Oct 18 16:05:24 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,3098 +0,0 @@
-section \<open>Extending Continous Maps, Invariance of Domain, etc..\<close>
-
-text\<open>Ported from HOL Light (moretop.ml) by L C Paulson\<close>
-
-theory "FurtherTopology"
-  imports Equivalence_Lebesgue_Henstock_Integration Weierstrass_Theorems Polytope Complex_Transcendental
-
-begin
-
-subsection\<open>A map from a sphere to a higher dimensional sphere is nullhomotopic\<close>
-
-lemma spheremap_lemma1:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
-  assumes "subspace S" "subspace T" and dimST: "dim S < dim T"
-      and "S \<subseteq> T"
-      and diff_f: "f differentiable_on sphere 0 1 \<inter> S"
-    shows "f ` (sphere 0 1 \<inter> S) \<noteq> sphere 0 1 \<inter> T"
-proof
-  assume fim: "f ` (sphere 0 1 \<inter> S) = sphere 0 1 \<inter> T"
-  have inS: "\<And>x. \<lbrakk>x \<in> S; x \<noteq> 0\<rbrakk> \<Longrightarrow> (x /\<^sub>R norm x) \<in> S"
-    using subspace_mul \<open>subspace S\<close> by blast
-  have subS01: "(\<lambda>x. x /\<^sub>R norm x) ` (S - {0}) \<subseteq> sphere 0 1 \<inter> S"
-    using \<open>subspace S\<close> subspace_mul by fastforce
-  then have diff_f': "f differentiable_on (\<lambda>x. x /\<^sub>R norm x) ` (S - {0})"
-    by (rule differentiable_on_subset [OF diff_f])
-  define g where "g \<equiv> \<lambda>x. norm x *\<^sub>R f(inverse(norm x) *\<^sub>R x)"
-  have gdiff: "g differentiable_on S - {0}"
-    unfolding g_def
-    by (rule diff_f' derivative_intros differentiable_on_compose [where f=f] | force)+
-  have geq: "g ` (S - {0}) = T - {0}"
-  proof
-    have "g ` (S - {0}) \<subseteq> T"
-      apply (auto simp: g_def subspace_mul [OF \<open>subspace T\<close>])
-      apply (metis (mono_tags, lifting) DiffI subS01 subspace_mul [OF \<open>subspace T\<close>] fim image_subset_iff inf_le2 singletonD)
-      done
-    moreover have "g ` (S - {0}) \<subseteq> UNIV - {0}"
-    proof (clarsimp simp: g_def)
-      fix y
-      assume "y \<in> S" and f0: "f (y /\<^sub>R norm y) = 0"
-      then have "y \<noteq> 0 \<Longrightarrow> y /\<^sub>R norm y \<in> sphere 0 1 \<inter> S"
-        by (auto simp: subspace_mul [OF \<open>subspace S\<close>])
-      then show "y = 0"
-        by (metis fim f0 Int_iff image_iff mem_sphere_0 norm_eq_zero zero_neq_one)
-    qed
-    ultimately show "g ` (S - {0}) \<subseteq> T - {0}"
-      by auto
-  next
-    have *: "sphere 0 1 \<inter> T \<subseteq> f ` (sphere 0 1 \<inter> S)"
-      using fim by (simp add: image_subset_iff)
-    have "x \<in> (\<lambda>x. norm x *\<^sub>R f (x /\<^sub>R norm x)) ` (S - {0})"
-          if "x \<in> T" "x \<noteq> 0" for x
-    proof -
-      have "x /\<^sub>R norm x \<in> T"
-        using \<open>subspace T\<close> subspace_mul that by blast
-      then show ?thesis
-        using * [THEN subsetD, of "x /\<^sub>R norm x"] that apply clarsimp
-        apply (rule_tac x="norm x *\<^sub>R xa" in image_eqI, simp)
-        apply (metis norm_eq_zero right_inverse scaleR_one scaleR_scaleR)
-        using \<open>subspace S\<close> subspace_mul apply force
-        done
-    qed
-    then have "T - {0} \<subseteq> (\<lambda>x. norm x *\<^sub>R f (x /\<^sub>R norm x)) ` (S - {0})"
-      by force
-    then show "T - {0} \<subseteq> g ` (S - {0})"
-      by (simp add: g_def)
-  qed
-  define T' where "T' \<equiv> {y. \<forall>x \<in> T. orthogonal x y}"
-  have "subspace T'"
-    by (simp add: subspace_orthogonal_to_vectors T'_def)
-  have dim_eq: "dim T' + dim T = DIM('a)"
-    using dim_subspace_orthogonal_to_vectors [of T UNIV] \<open>subspace T\<close>
-    by (simp add: dim_UNIV T'_def)
-  have "\<exists>v1 v2. v1 \<in> span T \<and> (\<forall>w \<in> span T. orthogonal v2 w) \<and> x = v1 + v2" for x
-    by (force intro: orthogonal_subspace_decomp_exists [of T x])
-  then obtain p1 p2 where p1span: "p1 x \<in> span T"
-                      and "\<And>w. w \<in> span T \<Longrightarrow> orthogonal (p2 x) w"
-                      and eq: "p1 x + p2 x = x" for x
-    by metis
-  then have p1: "\<And>z. p1 z \<in> T" and ortho: "\<And>w. w \<in> T \<Longrightarrow> orthogonal (p2 x) w" for x
-    using span_eq \<open>subspace T\<close> by blast+
-  then have p2: "\<And>z. p2 z \<in> T'"
-    by (simp add: T'_def orthogonal_commute)
-  have p12_eq: "\<And>x y. \<lbrakk>x \<in> T; y \<in> T'\<rbrakk> \<Longrightarrow> p1(x + y) = x \<and> p2(x + y) = y"
-  proof (rule orthogonal_subspace_decomp_unique [OF eq p1span, where T=T'])
-    show "\<And>x y. \<lbrakk>x \<in> T; y \<in> T'\<rbrakk> \<Longrightarrow> p2 (x + y) \<in> span T'"
-      using span_eq p2 \<open>subspace T'\<close> by blast
-    show "\<And>a b. \<lbrakk>a \<in> T; b \<in> T'\<rbrakk> \<Longrightarrow> orthogonal a b"
-      using T'_def by blast
-  qed (auto simp: span_superset)
-  then have "\<And>c x. p1 (c *\<^sub>R x) = c *\<^sub>R p1 x \<and> p2 (c *\<^sub>R x) = c *\<^sub>R p2 x"
-    by (metis eq \<open>subspace T\<close> \<open>subspace T'\<close> p1 p2 scaleR_add_right subspace_mul)
-  moreover have lin_add: "\<And>x y. p1 (x + y) = p1 x + p1 y \<and> p2 (x + y) = p2 x + p2 y"
-  proof (rule orthogonal_subspace_decomp_unique [OF _ p1span, where T=T'])
-    show "\<And>x y. p1 (x + y) + p2 (x + y) = p1 x + p1 y + (p2 x + p2 y)"
-      by (simp add: add.assoc add.left_commute eq)
-    show  "\<And>a b. \<lbrakk>a \<in> T; b \<in> T'\<rbrakk> \<Longrightarrow> orthogonal a b"
-      using T'_def by blast
-  qed (auto simp: p1span p2 span_superset subspace_add)
-  ultimately have "linear p1" "linear p2"
-    by unfold_locales auto
-  have "(\<lambda>z. g (p1 z)) differentiable_on {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
-    apply (rule differentiable_on_compose [where f=g])
-    apply (rule linear_imp_differentiable_on [OF \<open>linear p1\<close>])
-    apply (rule differentiable_on_subset [OF gdiff])
-    using p12_eq \<open>S \<subseteq> T\<close> apply auto
-    done
-  then have diff: "(\<lambda>x. g (p1 x) + p2 x) differentiable_on {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
-    by (intro derivative_intros linear_imp_differentiable_on [OF \<open>linear p2\<close>])
-  have "dim {x + y |x y. x \<in> S - {0} \<and> y \<in> T'} \<le> dim {x + y |x y. x \<in> S  \<and> y \<in> T'}"
-    by (blast intro: dim_subset)
-  also have "... = dim S + dim T' - dim (S \<inter> T')"
-    using dim_sums_Int [OF \<open>subspace S\<close> \<open>subspace T'\<close>]
-    by (simp add: algebra_simps)
-  also have "... < DIM('a)"
-    using dimST dim_eq by auto
-  finally have neg: "negligible {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
-    by (rule negligible_lowdim)
-  have "negligible ((\<lambda>x. g (p1 x) + p2 x) ` {x + y |x y. x \<in> S - {0} \<and> y \<in> T'})"
-    by (rule negligible_differentiable_image_negligible [OF order_refl neg diff])
-  then have "negligible {x + y |x y. x \<in> g ` (S - {0}) \<and> y \<in> T'}"
-  proof (rule negligible_subset)
-    have "\<lbrakk>t' \<in> T'; s \<in> S; s \<noteq> 0\<rbrakk>
-          \<Longrightarrow> g s + t' \<in> (\<lambda>x. g (p1 x) + p2 x) `
-                         {x + t' |x t'. x \<in> S \<and> x \<noteq> 0 \<and> t' \<in> T'}" for t' s
-      apply (rule_tac x="s + t'" in image_eqI)
-      using \<open>S \<subseteq> T\<close> p12_eq by auto
-    then show "{x + y |x y. x \<in> g ` (S - {0}) \<and> y \<in> T'}
-          \<subseteq> (\<lambda>x. g (p1 x) + p2 x) ` {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
-      by auto
-  qed
-  moreover have "- T' \<subseteq> {x + y |x y. x \<in> g ` (S - {0}) \<and> y \<in> T'}"
-  proof clarsimp
-    fix z assume "z \<notin> T'"
-    show "\<exists>x y. z = x + y \<and> x \<in> g ` (S - {0}) \<and> y \<in> T'"
-      apply (rule_tac x="p1 z" in exI)
-      apply (rule_tac x="p2 z" in exI)
-      apply (simp add: p1 eq p2 geq)
-      by (metis \<open>z \<notin> T'\<close> add.left_neutral eq p2)
-  qed
-  ultimately have "negligible (-T')"
-    using negligible_subset by blast
-  moreover have "negligible T'"
-    using negligible_lowdim
-    by (metis add.commute assms(3) diff_add_inverse2 diff_self_eq_0 dim_eq le_add1 le_antisym linordered_semidom_class.add_diff_inverse not_less0)
-  ultimately have  "negligible (-T' \<union> T')"
-    by (metis negligible_Un_eq)
-  then show False
-    using negligible_Un_eq non_negligible_UNIV by simp
-qed
-
-
-lemma spheremap_lemma2:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
-  assumes ST: "subspace S" "subspace T" "dim S < dim T"
-      and "S \<subseteq> T"
-      and contf: "continuous_on (sphere 0 1 \<inter> S) f"
-      and fim: "f ` (sphere 0 1 \<inter> S) \<subseteq> sphere 0 1 \<inter> T"
-    shows "\<exists>c. homotopic_with (\<lambda>x. True) (sphere 0 1 \<inter> S) (sphere 0 1 \<inter> T) f (\<lambda>x. c)"
-proof -
-  have [simp]: "\<And>x. \<lbrakk>norm x = 1; x \<in> S\<rbrakk> \<Longrightarrow> norm (f x) = 1"
-    using fim by (simp add: image_subset_iff)
-  have "compact (sphere 0 1 \<inter> S)"
-    by (simp add: \<open>subspace S\<close> closed_subspace compact_Int_closed)
-  then obtain g where pfg: "polynomial_function g" and gim: "g ` (sphere 0 1 \<inter> S) \<subseteq> T"
-                and g12: "\<And>x. x \<in> sphere 0 1 \<inter> S \<Longrightarrow> norm(f x - g x) < 1/2"
-    apply (rule Stone_Weierstrass_polynomial_function_subspace [OF _ contf _ \<open>subspace T\<close>, of "1/2"])
-    using fim apply auto
-    done
-  have gnz: "g x \<noteq> 0" if "x \<in> sphere 0 1 \<inter> S" for x
-  proof -
-    have "norm (f x) = 1"
-      using fim that by (simp add: image_subset_iff)
-    then show ?thesis
-      using g12 [OF that] by auto
-  qed
-  have diffg: "g differentiable_on sphere 0 1 \<inter> S"
-    by (metis pfg differentiable_on_polynomial_function)
-  define h where "h \<equiv> \<lambda>x. inverse(norm(g x)) *\<^sub>R g x"
-  have h: "x \<in> sphere 0 1 \<inter> S \<Longrightarrow> h x \<in> sphere 0 1 \<inter> T" for x
-    unfolding h_def
-    using gnz [of x]
-    by (auto simp: subspace_mul [OF \<open>subspace T\<close>] subsetD [OF gim])
-  have diffh: "h differentiable_on sphere 0 1 \<inter> S"
-    unfolding h_def
-    apply (intro derivative_intros diffg differentiable_on_compose [OF diffg])
-    using gnz apply auto
-    done
-  have homfg: "homotopic_with (\<lambda>z. True) (sphere 0 1 \<inter> S) (T - {0}) f g"
-  proof (rule homotopic_with_linear [OF contf])
-    show "continuous_on (sphere 0 1 \<inter> S) g"
-      using pfg by (simp add: differentiable_imp_continuous_on diffg)
-  next
-    have non0fg: "0 \<notin> closed_segment (f x) (g x)" if "norm x = 1" "x \<in> S" for x
-    proof -
-      have "f x \<in> sphere 0 1"
-        using fim that by (simp add: image_subset_iff)
-      moreover have "norm(f x - g x) < 1/2"
-        apply (rule g12)
-        using that by force
-      ultimately show ?thesis
-        by (auto simp: norm_minus_commute dest: segment_bound)
-    qed
-    show "\<And>x. x \<in> sphere 0 1 \<inter> S \<Longrightarrow> closed_segment (f x) (g x) \<subseteq> T - {0}"
-      apply (simp add: subset_Diff_insert non0fg)
-      apply (simp add: segment_convex_hull)
-      apply (rule hull_minimal)
-       using fim image_eqI gim apply force
-      apply (rule subspace_imp_convex [OF \<open>subspace T\<close>])
-      done
-  qed
-  obtain d where d: "d \<in> (sphere 0 1 \<inter> T) - h ` (sphere 0 1 \<inter> S)"
-    using h spheremap_lemma1 [OF ST \<open>S \<subseteq> T\<close> diffh] by force
-  then have non0hd: "0 \<notin> closed_segment (h x) (- d)" if "norm x = 1" "x \<in> S" for x
-    using midpoint_between [of 0 "h x" "-d"] that h [of x]
-    by (auto simp: between_mem_segment midpoint_def)
-  have conth: "continuous_on (sphere 0 1 \<inter> S) h"
-    using differentiable_imp_continuous_on diffh by blast
-  have hom_hd: "homotopic_with (\<lambda>z. True) (sphere 0 1 \<inter> S) (T - {0}) h (\<lambda>x. -d)"
-    apply (rule homotopic_with_linear [OF conth continuous_on_const])
-    apply (simp add: subset_Diff_insert non0hd)
-    apply (simp add: segment_convex_hull)
-    apply (rule hull_minimal)
-     using h d apply (force simp: subspace_neg [OF \<open>subspace T\<close>])
-    apply (rule subspace_imp_convex [OF \<open>subspace T\<close>])
-    done
-  have conT0: "continuous_on (T - {0}) (\<lambda>y. inverse(norm y) *\<^sub>R y)"
-    by (intro continuous_intros) auto
-  have sub0T: "(\<lambda>y. y /\<^sub>R norm y) ` (T - {0}) \<subseteq> sphere 0 1 \<inter> T"
-    by (fastforce simp: assms(2) subspace_mul)
-  obtain c where homhc: "homotopic_with (\<lambda>z. True) (sphere 0 1 \<inter> S) (sphere 0 1 \<inter> T) h (\<lambda>x. c)"
-    apply (rule_tac c="-d" in that)
-    apply (rule homotopic_with_eq)
-       apply (rule homotopic_compose_continuous_left [OF hom_hd conT0 sub0T])
-    using d apply (auto simp: h_def)
-    done
-  show ?thesis
-    apply (rule_tac x=c in exI)
-    apply (rule homotopic_with_trans [OF _ homhc])
-    apply (rule homotopic_with_eq)
-       apply (rule homotopic_compose_continuous_left [OF homfg conT0 sub0T])
-      apply (auto simp: h_def)
-    done
-qed
-
-
-lemma spheremap_lemma3:
-  assumes "bounded S" "convex S" "subspace U" and affSU: "aff_dim S \<le> dim U"
-  obtains T where "subspace T" "T \<subseteq> U" "S \<noteq> {} \<Longrightarrow> aff_dim T = aff_dim S"
-                  "(rel_frontier S) homeomorphic (sphere 0 1 \<inter> T)"
-proof (cases "S = {}")
-  case True
-  with \<open>subspace U\<close> subspace_0 show ?thesis
-    by (rule_tac T = "{0}" in that) auto
-next
-  case False
-  then obtain a where "a \<in> S"
-    by auto
-  then have affS: "aff_dim S = int (dim ((\<lambda>x. -a+x) ` S))"
-    by (metis hull_inc aff_dim_eq_dim)
-  with affSU have "dim ((\<lambda>x. -a+x) ` S) \<le> dim U"
-    by linarith
-  with choose_subspace_of_subspace
-  obtain T where "subspace T" "T \<subseteq> span U" and dimT: "dim T = dim ((\<lambda>x. -a+x) ` S)" .
-  show ?thesis
-  proof (rule that [OF \<open>subspace T\<close>])
-    show "T \<subseteq> U"
-      using span_eq \<open>subspace U\<close> \<open>T \<subseteq> span U\<close> by blast
-    show "aff_dim T = aff_dim S"
-      using dimT \<open>subspace T\<close> affS aff_dim_subspace by fastforce
-    show "rel_frontier S homeomorphic sphere 0 1 \<inter> T"
-    proof -
-      have "aff_dim (ball 0 1 \<inter> T) = aff_dim (T)"
-        by (metis IntI interior_ball \<open>subspace T\<close> aff_dim_convex_Int_nonempty_interior centre_in_ball empty_iff inf_commute subspace_0 subspace_imp_convex zero_less_one)
-      then have affS_eq: "aff_dim S = aff_dim (ball 0 1 \<inter> T)"
-        using \<open>aff_dim T = aff_dim S\<close> by simp
-      have "rel_frontier S homeomorphic rel_frontier(ball 0 1 \<inter> T)"
-        apply (rule homeomorphic_rel_frontiers_convex_bounded_sets [OF \<open>convex S\<close> \<open>bounded S\<close>])
-          apply (simp add: \<open>subspace T\<close> convex_Int subspace_imp_convex)
-         apply (simp add: bounded_Int)
-        apply (rule affS_eq)
-        done
-      also have "... = frontier (ball 0 1) \<inter> T"
-        apply (rule convex_affine_rel_frontier_Int [OF convex_ball])
-         apply (simp add: \<open>subspace T\<close> subspace_imp_affine)
-        using \<open>subspace T\<close> subspace_0 by force
-      also have "... = sphere 0 1 \<inter> T"
-        by auto
-      finally show ?thesis .
-    qed
-  qed
-qed
-
-
-proposition inessential_spheremap_lowdim_gen:
-  fixes f :: "'M::euclidean_space \<Rightarrow> 'a::euclidean_space"
-  assumes "convex S" "bounded S" "convex T" "bounded T"
-      and affST: "aff_dim S < aff_dim T"
-      and contf: "continuous_on (rel_frontier S) f"
-      and fim: "f ` (rel_frontier S) \<subseteq> rel_frontier T"
-  obtains c where "homotopic_with (\<lambda>z. True) (rel_frontier S) (rel_frontier T) f (\<lambda>x. c)"
-proof (cases "S = {}")
-  case True
-  then show ?thesis
-    by (simp add: that)
-next
-  case False
-  then show ?thesis
-  proof (cases "T = {}")
-    case True
-    then show ?thesis
-      using fim that by auto
-  next
-    case False
-    obtain T':: "'a set"
-      where "subspace T'" and affT': "aff_dim T' = aff_dim T"
-        and homT: "rel_frontier T homeomorphic sphere 0 1 \<inter> T'"
-      apply (rule spheremap_lemma3 [OF \<open>bounded T\<close> \<open>convex T\<close> subspace_UNIV, where 'b='a])
-       apply (simp add: dim_UNIV aff_dim_le_DIM)
-      using \<open>T \<noteq> {}\<close> by blast
-    with homeomorphic_imp_homotopy_eqv
-    have relT: "sphere 0 1 \<inter> T'  homotopy_eqv rel_frontier T"
-      using homotopy_eqv_sym by blast
-    have "aff_dim S \<le> int (dim T')"
-      using affT' \<open>subspace T'\<close> affST aff_dim_subspace by force
-    with spheremap_lemma3 [OF \<open>bounded S\<close> \<open>convex S\<close> \<open>subspace T'\<close>] \<open>S \<noteq> {}\<close>
-    obtain S':: "'a set" where "subspace S'" "S' \<subseteq> T'"
-       and affS': "aff_dim S' = aff_dim S"
-       and homT: "rel_frontier S homeomorphic sphere 0 1 \<inter> S'"
-        by metis
-    with homeomorphic_imp_homotopy_eqv
-    have relS: "sphere 0 1 \<inter> S'  homotopy_eqv rel_frontier S"
-      using homotopy_eqv_sym by blast
-    have dimST': "dim S' < dim T'"
-      by (metis \<open>S' \<subseteq> T'\<close> \<open>subspace S'\<close> \<open>subspace T'\<close> affS' affST affT' less_irrefl not_le subspace_dim_equal)
-    have "\<exists>c. homotopic_with (\<lambda>z. True) (rel_frontier S) (rel_frontier T) f (\<lambda>x. c)"
-      apply (rule homotopy_eqv_homotopic_triviality_null_imp [OF relT contf fim])
-      apply (rule homotopy_eqv_cohomotopic_triviality_null[OF relS, THEN iffD1, rule_format])
-       apply (metis dimST' \<open>subspace S'\<close>  \<open>subspace T'\<close>  \<open>S' \<subseteq> T'\<close> spheremap_lemma2, blast)
-      done
-    with that show ?thesis by blast
-  qed
-qed
-
-lemma inessential_spheremap_lowdim:
-  fixes f :: "'M::euclidean_space \<Rightarrow> 'a::euclidean_space"
-  assumes
-   "DIM('M) < DIM('a)" and f: "continuous_on (sphere a r) f" "f ` (sphere a r) \<subseteq> (sphere b s)"
-   obtains c where "homotopic_with (\<lambda>z. True) (sphere a r) (sphere b s) f (\<lambda>x. c)"
-proof (cases "s \<le> 0")
-  case True then show ?thesis
-    by (meson nullhomotopic_into_contractible f contractible_sphere that)
-next
-  case False
-  show ?thesis
-  proof (cases "r \<le> 0")
-    case True then show ?thesis
-      by (meson f nullhomotopic_from_contractible contractible_sphere that)
-  next
-    case False
-    with \<open>~ s \<le> 0\<close> have "r > 0" "s > 0" by auto
-    show ?thesis
-      apply (rule inessential_spheremap_lowdim_gen [of "cball a r" "cball b s" f])
-      using  \<open>0 < r\<close> \<open>0 < s\<close> assms(1)
-             apply (simp_all add: f aff_dim_cball)
-      using that by blast
-  qed
-qed
-
-
-
-subsection\<open> Some technical lemmas about extending maps from cell complexes.\<close>
-
-lemma extending_maps_Union_aux:
-  assumes fin: "finite \<F>"
-      and "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
-      and "\<And>S T. \<lbrakk>S \<in> \<F>; T \<in> \<F>; S \<noteq> T\<rbrakk> \<Longrightarrow> S \<inter> T \<subseteq> K"
-      and "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>g. continuous_on S g \<and> g ` S \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
-   shows "\<exists>g. continuous_on (\<Union>\<F>) g \<and> g ` (\<Union>\<F>) \<subseteq> T \<and> (\<forall>x \<in> \<Union>\<F> \<inter> K. g x = h x)"
-using assms
-proof (induction \<F>)
-  case empty show ?case by simp
-next
-  case (insert S \<F>)
-  then obtain f where contf: "continuous_on (S) f" and fim: "f ` S \<subseteq> T" and feq: "\<forall>x \<in> S \<inter> K. f x = h x"
-    by (meson insertI1)
-  obtain g where contg: "continuous_on (\<Union>\<F>) g" and gim: "g ` \<Union>\<F> \<subseteq> T" and geq: "\<forall>x \<in> \<Union>\<F> \<inter> K. g x = h x"
-    using insert by auto
-  have fg: "f x = g x" if "x \<in> T" "T \<in> \<F>" "x \<in> S" for x T
-  proof -
-    have "T \<inter> S \<subseteq> K \<or> S = T"
-      using that by (metis (no_types) insert.prems(2) insertCI)
-    then show ?thesis
-      using UnionI feq geq \<open>S \<notin> \<F>\<close> subsetD that by fastforce
-  qed
-  show ?case
-    apply (rule_tac x="\<lambda>x. if x \<in> S then f x else g x" in exI, simp)
-    apply (intro conjI continuous_on_cases)
-    apply (simp_all add: insert closed_Union contf contg)
-    using fim gim feq geq
-    apply (force simp: insert closed_Union contf contg inf_commute intro: fg)+
-    done
-qed
-
-lemma extending_maps_Union:
-  assumes fin: "finite \<F>"
-      and "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>g. continuous_on S g \<and> g ` S \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
-      and "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
-      and K: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>; ~ X \<subseteq> Y; ~ Y \<subseteq> X\<rbrakk> \<Longrightarrow> X \<inter> Y \<subseteq> K"
-    shows "\<exists>g. continuous_on (\<Union>\<F>) g \<and> g ` (\<Union>\<F>) \<subseteq> T \<and> (\<forall>x \<in> \<Union>\<F> \<inter> K. g x = h x)"
-apply (simp add: Union_maximal_sets [OF fin, symmetric])
-apply (rule extending_maps_Union_aux)
-apply (simp_all add: Union_maximal_sets [OF fin] assms)
-by (metis K psubsetI)
-
-
-lemma extend_map_lemma:
-  assumes "finite \<F>" "\<G> \<subseteq> \<F>" "convex T" "bounded T"
-      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
-      and aff: "\<And>X. X \<in> \<F> - \<G> \<Longrightarrow> aff_dim X < aff_dim T"
-      and face: "\<And>S T. \<lbrakk>S \<in> \<F>; T \<in> \<F>\<rbrakk> \<Longrightarrow> (S \<inter> T) face_of S \<and> (S \<inter> T) face_of T"
-      and contf: "continuous_on (\<Union>\<G>) f" and fim: "f ` (\<Union>\<G>) \<subseteq> rel_frontier T"
-  obtains g where "continuous_on (\<Union>\<F>) g" "g ` (\<Union>\<F>) \<subseteq> rel_frontier T" "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> g x = f x"
-proof (cases "\<F> - \<G> = {}")
-  case True
-  then have "\<Union>\<F> \<subseteq> \<Union>\<G>"
-    by (simp add: Union_mono)
-  then show ?thesis
-    apply (rule_tac g=f in that)
-      using contf continuous_on_subset apply blast
-     using fim apply blast
-    by simp
-next
-  case False
-  then have "0 \<le> aff_dim T"
-    by (metis aff aff_dim_empty aff_dim_geq aff_dim_negative_iff all_not_in_conv not_less)
-  then obtain i::nat where i: "int i = aff_dim T"
-    by (metis nonneg_eq_int)
-  have Union_empty_eq: "\<Union>{D. D = {} \<and> P D} = {}" for P :: "'a set \<Rightarrow> bool"
-    by auto
-  have extendf: "\<exists>g. continuous_on (\<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < i})) g \<and>
-                     g ` (\<Union> (\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < i})) \<subseteq> rel_frontier T \<and>
-                     (\<forall>x \<in> \<Union>\<G>. g x = f x)"
-       if "i \<le> aff_dim T" for i::nat
-  using that
-  proof (induction i)
-    case 0 then show ?case
-      apply (simp add: Union_empty_eq)
-      apply (rule_tac x=f in exI)
-      apply (intro conjI)
-      using contf continuous_on_subset apply blast
-      using fim apply blast
-      by simp
-  next
-    case (Suc p)
-    with \<open>bounded T\<close> have "rel_frontier T \<noteq> {}"
-      by (auto simp: rel_frontier_eq_empty affine_bounded_eq_lowdim [of T])
-    then obtain t where t: "t \<in> rel_frontier T" by auto
-    have ple: "int p \<le> aff_dim T" using Suc.prems by force
-    obtain h where conth: "continuous_on (\<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p})) h"
-               and him: "h ` (\<Union> (\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}))
-                         \<subseteq> rel_frontier T"
-               and heq: "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> h x = f x"
-      using Suc.IH [OF ple] by auto
-    let ?Faces = "{D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D \<le> p}"
-    have extendh: "\<exists>g. continuous_on D g \<and>
-                       g ` D \<subseteq> rel_frontier T \<and>
-                       (\<forall>x \<in> D \<inter> \<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}). g x = h x)"
-      if D: "D \<in> \<G> \<union> ?Faces" for D
-    proof (cases "D \<subseteq> \<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p})")
-      case True
-      then show ?thesis
-        apply (rule_tac x=h in exI)
-        apply (intro conjI)
-        apply (blast intro: continuous_on_subset [OF conth])
-        using him apply blast
-        by simp
-    next
-      case False
-      note notDsub = False
-      show ?thesis
-      proof (cases "\<exists>a. D = {a}")
-        case True
-        then obtain a where "D = {a}" by auto
-        with notDsub t show ?thesis
-          by (rule_tac x="\<lambda>x. t" in exI) simp
-      next
-        case False
-        have "D \<noteq> {}" using notDsub by auto
-        have Dnotin: "D \<notin> \<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}"
-          using notDsub by auto
-        then have "D \<notin> \<G>" by simp
-        have "D \<in> ?Faces - {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}"
-          using Dnotin that by auto
-        then obtain C where "C \<in> \<F>" "D face_of C" and affD: "aff_dim D = int p"
-          by auto
-        then have "bounded D"
-          using face_of_polytope_polytope poly polytope_imp_bounded by blast
-        then have [simp]: "\<not> affine D"
-          using affine_bounded_eq_trivial False \<open>D \<noteq> {}\<close> \<open>bounded D\<close> by blast
-        have "{F. F facet_of D} \<subseteq> {E. E face_of C \<and> aff_dim E < int p}"
-          apply clarify
-          apply (metis \<open>D face_of C\<close> affD eq_iff face_of_trans facet_of_def zle_diff1_eq)
-          done
-        moreover have "polyhedron D"
-          using \<open>C \<in> \<F>\<close> \<open>D face_of C\<close> face_of_polytope_polytope poly polytope_imp_polyhedron by auto
-        ultimately have relf_sub: "rel_frontier D \<subseteq> \<Union> {E. E face_of C \<and> aff_dim E < p}"
-          by (simp add: rel_frontier_of_polyhedron Union_mono)
-        then have him_relf: "h ` rel_frontier D \<subseteq> rel_frontier T"
-          using \<open>C \<in> \<F>\<close> him by blast
-        have "convex D"
-          by (simp add: \<open>polyhedron D\<close> polyhedron_imp_convex)
-        have affD_lessT: "aff_dim D < aff_dim T"
-          using Suc.prems affD by linarith
-        have contDh: "continuous_on (rel_frontier D) h"
-          using \<open>C \<in> \<F>\<close> relf_sub by (blast intro: continuous_on_subset [OF conth])
-        then have *: "(\<exists>c. homotopic_with (\<lambda>x. True) (rel_frontier D) (rel_frontier T) h (\<lambda>x. c)) =
-                      (\<exists>g. continuous_on UNIV g \<and>  range g \<subseteq> rel_frontier T \<and>
-                           (\<forall>x\<in>rel_frontier D. g x = h x))"
-          apply (rule nullhomotopic_into_rel_frontier_extension [OF closed_rel_frontier])
-          apply (simp_all add: assms rel_frontier_eq_empty him_relf)
-          done
-        have "(\<exists>c. homotopic_with (\<lambda>x. True) (rel_frontier D)
-              (rel_frontier T) h (\<lambda>x. c))"
-          by (metis inessential_spheremap_lowdim_gen
-                 [OF \<open>convex D\<close> \<open>bounded D\<close> \<open>convex T\<close> \<open>bounded T\<close> affD_lessT contDh him_relf])
-        then obtain g where contg: "continuous_on UNIV g"
-                        and gim: "range g \<subseteq> rel_frontier T"
-                        and gh: "\<And>x. x \<in> rel_frontier D \<Longrightarrow> g x = h x"
-          by (metis *)
-        have "D \<inter> E \<subseteq> rel_frontier D"
-             if "E \<in> \<G> \<union> {D. Bex \<F> (op face_of D) \<and> aff_dim D < int p}" for E
-        proof (rule face_of_subset_rel_frontier)
-          show "D \<inter> E face_of D"
-            using that \<open>C \<in> \<F>\<close> \<open>D face_of C\<close> face
-            apply auto
-            apply (meson face_of_Int_subface \<open>\<G> \<subseteq> \<F>\<close> face_of_refl_eq poly polytope_imp_convex subsetD)
-            using face_of_Int_subface apply blast
-            done
-          show "D \<inter> E \<noteq> D"
-            using that notDsub by auto
-        qed
-        then show ?thesis
-          apply (rule_tac x=g in exI)
-          apply (intro conjI ballI)
-            using continuous_on_subset contg apply blast
-           using gim apply blast
-          using gh by fastforce
-      qed
-    qed
-    have intle: "i < 1 + int j \<longleftrightarrow> i \<le> int j" for i j
-      by auto
-    have "finite \<G>"
-      using \<open>finite \<F>\<close> \<open>\<G> \<subseteq> \<F>\<close> rev_finite_subset by blast
-    then have fin: "finite (\<G> \<union> ?Faces)"
-      apply simp
-      apply (rule_tac B = "\<Union>{{D. D face_of C}| C. C \<in> \<F>}" in finite_subset)
-       by (auto simp: \<open>finite \<F>\<close> finite_polytope_faces poly)
-    have clo: "closed S" if "S \<in> \<G> \<union> ?Faces" for S
-      using that \<open>\<G> \<subseteq> \<F>\<close> face_of_polytope_polytope poly polytope_imp_closed by blast
-    have K: "X \<inter> Y \<subseteq> \<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < int p})"
-                if "X \<in> \<G> \<union> ?Faces" "Y \<in> \<G> \<union> ?Faces" "~ Y \<subseteq> X" for X Y
-    proof -
-      have ff: "X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
-        if XY: "X face_of D" "Y face_of E" and DE: "D \<in> \<F>" "E \<in> \<F>" for D E
-        apply (rule face_of_Int_subface [OF _ _ XY])
-        apply (auto simp: face DE)
-        done
-      show ?thesis
-        using that
-        apply auto
-        apply (drule_tac x="X \<inter> Y" in spec, safe)
-        using ff face_of_imp_convex [of X] face_of_imp_convex [of Y]
-        apply (fastforce dest: face_of_aff_dim_lt)
-        by (meson face_of_trans ff)
-    qed
-    obtain g where "continuous_on (\<Union>(\<G> \<union> ?Faces)) g"
-                   "g ` \<Union>(\<G> \<union> ?Faces) \<subseteq> rel_frontier T"
-                   "(\<forall>x \<in> \<Union>(\<G> \<union> ?Faces) \<inter>
-                          \<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < p}). g x = h x)"
-      apply (rule exE [OF extending_maps_Union [OF fin extendh clo K]], blast+)
-      done
-    then show ?case
-      apply (simp add: intle local.heq [symmetric], blast)
-      done
-  qed
-  have eq: "\<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < i}) = \<Union>\<F>"
-  proof
-    show "\<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < int i}) \<subseteq> \<Union>\<F>"
-      apply (rule Union_subsetI)
-      using \<open>\<G> \<subseteq> \<F>\<close> face_of_imp_subset  apply force
-      done
-    show "\<Union>\<F> \<subseteq> \<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < i})"
-      apply (rule Union_mono)
-      using face  apply (fastforce simp: aff i)
-      done
-  qed
-  have "int i \<le> aff_dim T" by (simp add: i)
-  then show ?thesis
-    using extendf [of i] unfolding eq by (metis that)
-qed
-
-lemma extend_map_lemma_cofinite0:
-  assumes "finite \<F>"
-      and "pairwise (\<lambda>S T. S \<inter> T \<subseteq> K) \<F>"
-      and "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>a g. a \<notin> U \<and> continuous_on (S - {a}) g \<and> g ` (S - {a}) \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
-      and "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
-    shows "\<exists>C g. finite C \<and> disjnt C U \<and> card C \<le> card \<F> \<and>
-                 continuous_on (\<Union>\<F> - C) g \<and> g ` (\<Union>\<F> - C) \<subseteq> T
-                  \<and> (\<forall>x \<in> (\<Union>\<F> - C) \<inter> K. g x = h x)"
-  using assms
-proof induction
-  case empty then show ?case
-    by force
-next
-  case (insert X \<F>)
-  then have "closed X" and clo: "\<And>X. X \<in> \<F> \<Longrightarrow> closed X"
-        and \<F>: "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>a g. a \<notin> U \<and> continuous_on (S - {a}) g \<and> g ` (S - {a}) \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
-        and pwX: "\<And>Y. Y \<in> \<F> \<and> Y \<noteq> X \<longrightarrow> X \<inter> Y \<subseteq> K \<and> Y \<inter> X \<subseteq> K"
-        and pwF: "pairwise (\<lambda> S T. S \<inter> T \<subseteq> K) \<F>"
-    by (simp_all add: pairwise_insert)
-  obtain C g where C: "finite C" "disjnt C U" "card C \<le> card \<F>"
-               and contg: "continuous_on (\<Union>\<F> - C) g"
-               and gim: "g ` (\<Union>\<F> - C) \<subseteq> T"
-               and gh:  "\<And>x. x \<in> (\<Union>\<F> - C) \<inter> K \<Longrightarrow> g x = h x"
-    using insert.IH [OF pwF \<F> clo] by auto
-  obtain a f where "a \<notin> U"
-               and contf: "continuous_on (X - {a}) f"
-               and fim: "f ` (X - {a}) \<subseteq> T"
-               and fh: "(\<forall>x \<in> X \<inter> K. f x = h x)"
-    using insert.prems by (meson insertI1)
-  show ?case
-  proof (intro exI conjI)
-    show "finite (insert a C)"
-      by (simp add: C)
-    show "disjnt (insert a C) U"
-      using C \<open>a \<notin> U\<close> by simp
-    show "card (insert a C) \<le> card (insert X \<F>)"
-      by (simp add: C card_insert_if insert.hyps le_SucI)
-    have "closed (\<Union>\<F>)"
-      using clo insert.hyps by blast
-    have "continuous_on (X - insert a C \<union> (\<Union>\<F> - insert a C)) (\<lambda>x. if x \<in> X then f x else g x)"
-       apply (rule continuous_on_cases_local)
-          apply (simp_all add: closedin_closed)
-        using \<open>closed X\<close> apply blast
-        using \<open>closed (\<Union>\<F>)\<close> apply blast
-        using contf apply (force simp: elim: continuous_on_subset)
-        using contg apply (force simp: elim: continuous_on_subset)
-        using fh gh insert.hyps pwX by fastforce
-    then show "continuous_on (\<Union>insert X \<F> - insert a C) (\<lambda>a. if a \<in> X then f a else g a)"
-      by (blast intro: continuous_on_subset)
-    show "\<forall>x\<in>(\<Union>insert X \<F> - insert a C) \<inter> K. (if x \<in> X then f x else g x) = h x"
-      using gh by (auto simp: fh)
-    show "(\<lambda>a. if a \<in> X then f a else g a) ` (\<Union>insert X \<F> - insert a C) \<subseteq> T"
-      using fim gim by auto force
-  qed
-qed
-
-
-lemma extend_map_lemma_cofinite1:
-assumes "finite \<F>"
-    and \<F>: "\<And>X. X \<in> \<F> \<Longrightarrow> \<exists>a g. a \<notin> U \<and> continuous_on (X - {a}) g \<and> g ` (X - {a}) \<subseteq> T \<and> (\<forall>x \<in> X \<inter> K. g x = h x)"
-    and clo: "\<And>X. X \<in> \<F> \<Longrightarrow> closed X"
-    and K: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>; ~(X \<subseteq> Y); ~(Y \<subseteq> X)\<rbrakk> \<Longrightarrow> X \<inter> Y \<subseteq> K"
-  obtains C g where "finite C" "disjnt C U" "card C \<le> card \<F>" "continuous_on (\<Union>\<F> - C) g"
-                    "g ` (\<Union>\<F> - C) \<subseteq> T"
-                    "\<And>x. x \<in> (\<Union>\<F> - C) \<inter> K \<Longrightarrow> g x = h x"
-proof -
-  let ?\<F> = "{X \<in> \<F>. \<forall>Y\<in>\<F>. \<not> X \<subset> Y}"
-  have [simp]: "\<Union>?\<F> = \<Union>\<F>"
-    by (simp add: Union_maximal_sets assms)
-  have fin: "finite ?\<F>"
-    by (force intro: finite_subset [OF _ \<open>finite \<F>\<close>])
-  have pw: "pairwise (\<lambda> S T. S \<inter> T \<subseteq> K) ?\<F>"
-    by (simp add: pairwise_def) (metis K psubsetI)
-  have "card {X \<in> \<F>. \<forall>Y\<in>\<F>. \<not> X \<subset> Y} \<le> card \<F>"
-    by (simp add: \<open>finite \<F>\<close> card_mono)
-  moreover
-  obtain C g where "finite C \<and> disjnt C U \<and> card C \<le> card ?\<F> \<and>
-                 continuous_on (\<Union>?\<F> - C) g \<and> g ` (\<Union>?\<F> - C) \<subseteq> T
-                  \<and> (\<forall>x \<in> (\<Union>?\<F> - C) \<inter> K. g x = h x)"
-    apply (rule exE [OF extend_map_lemma_cofinite0 [OF fin pw, of U T h]])
-      apply (fastforce intro!:  clo \<F>)+
-    done
-  ultimately show ?thesis
-    by (rule_tac C=C and g=g in that) auto
-qed
-
-
-lemma extend_map_lemma_cofinite:
-  assumes "finite \<F>" "\<G> \<subseteq> \<F>" and T: "convex T" "bounded T"
-      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
-      and contf: "continuous_on (\<Union>\<G>) f" and fim: "f ` (\<Union>\<G>) \<subseteq> rel_frontier T"
-      and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y"
-      and aff: "\<And>X. X \<in> \<F> - \<G> \<Longrightarrow> aff_dim X \<le> aff_dim T"
-  obtains C g where
-     "finite C" "disjnt C (\<Union>\<G>)" "card C \<le> card \<F>" "continuous_on (\<Union>\<F> - C) g"
-     "g ` (\<Union> \<F> - C) \<subseteq> rel_frontier T" "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> g x = f x"
-proof -
-  define \<H> where "\<H> \<equiv> \<G> \<union> {D. \<exists>C \<in> \<F> - \<G>. D face_of C \<and> aff_dim D < aff_dim T}"
-  have "finite \<G>"
-    using assms finite_subset by blast
-  moreover have "finite (\<Union>{{D. D face_of C} |C. C \<in> \<F>})"
-    apply (rule finite_Union)
-     apply (simp add: \<open>finite \<F>\<close>)
-    using finite_polytope_faces poly by auto
-  ultimately have "finite \<H>"
-    apply (simp add: \<H>_def)
-    apply (rule finite_subset [of _ "\<Union> {{D. D face_of C} | C. C \<in> \<F>}"], auto)
-    done
-  have *: "\<And>X Y. \<lbrakk>X \<in> \<H>; Y \<in> \<H>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
-    unfolding \<H>_def
-    apply (elim UnE bexE CollectE DiffE)
-    using subsetD [OF \<open>\<G> \<subseteq> \<F>\<close>] apply (simp_all add: face)
-      apply (meson subsetD [OF \<open>\<G> \<subseteq> \<F>\<close>] face face_of_Int_subface face_of_imp_subset face_of_refl poly polytope_imp_convex)+
-    done
-  obtain h where conth: "continuous_on (\<Union>\<H>) h" and him: "h ` (\<Union>\<H>) \<subseteq> rel_frontier T"
-             and hf: "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> h x = f x"
-    using \<open>finite \<H>\<close>
-    unfolding \<H>_def
-    apply (rule extend_map_lemma [OF _ Un_upper1 T _ _ _ contf fim])
-    using \<open>\<G> \<subseteq> \<F>\<close> face_of_polytope_polytope poly apply fastforce
-    using * apply (auto simp: \<H>_def)
-    done
-  have "bounded (\<Union>\<G>)"
-    using \<open>finite \<G>\<close> \<open>\<G> \<subseteq> \<F>\<close> poly polytope_imp_bounded by blast
-  then have "\<Union>\<G> \<noteq> UNIV"
-    by auto
-  then obtain a where a: "a \<notin> \<Union>\<G>"
-    by blast
-  have \<F>: "\<exists>a g. a \<notin> \<Union>\<G> \<and> continuous_on (D - {a}) g \<and>
-                  g ` (D - {a}) \<subseteq> rel_frontier T \<and> (\<forall>x \<in> D \<inter> \<Union>\<H>. g x = h x)"
-       if "D \<in> \<F>" for D
-  proof (cases "D \<subseteq> \<Union>\<H>")
-    case True
-    then show ?thesis
-      apply (rule_tac x=a in exI)
-      apply (rule_tac x=h in exI)
-      using him apply (blast intro!: \<open>a \<notin> \<Union>\<G>\<close> continuous_on_subset [OF conth]) +
-      done
-  next
-    case False
-    note D_not_subset = False
-    show ?thesis
-    proof (cases "D \<in> \<G>")
-      case True
-      with D_not_subset show ?thesis
-        by (auto simp: \<H>_def)
-    next
-      case False
-      then have affD: "aff_dim D \<le> aff_dim T"
-        by (simp add: \<open>D \<in> \<F>\<close> aff)
-      show ?thesis
-      proof (cases "rel_interior D = {}")
-        case True
-        with \<open>D \<in> \<F>\<close> poly a show ?thesis
-          by (force simp: rel_interior_eq_empty polytope_imp_convex)
-      next
-        case False
-        then obtain b where brelD: "b \<in> rel_interior D"
-          by blast
-        have "polyhedron D"
-          by (simp add: poly polytope_imp_polyhedron that)
-        have "rel_frontier D retract_of affine hull D - {b}"
-          by (simp add: rel_frontier_retract_of_punctured_affine_hull poly polytope_imp_bounded polytope_imp_convex that brelD)
-        then obtain r where relfD: "rel_frontier D \<subseteq> affine hull D - {b}"
-                        and contr: "continuous_on (affine hull D - {b}) r"
-                        and rim: "r ` (affine hull D - {b}) \<subseteq> rel_frontier D"
-                        and rid: "\<And>x. x \<in> rel_frontier D \<Longrightarrow> r x = x"
-          by (auto simp: retract_of_def retraction_def)
-        show ?thesis
-        proof (intro exI conjI ballI)
-          show "b \<notin> \<Union>\<G>"
-          proof clarify
-            fix E
-            assume "b \<in> E" "E \<in> \<G>"
-            then have "E \<inter> D face_of E \<and> E \<inter> D face_of D"
-              using \<open>\<G> \<subseteq> \<F>\<close> face that by auto
-            with face_of_subset_rel_frontier \<open>E \<in> \<G>\<close> \<open>b \<in> E\<close> brelD rel_interior_subset [of D]
-                 D_not_subset rel_frontier_def \<H>_def
-            show False
-              by blast
-          qed
-          have "r ` (D - {b}) \<subseteq> r ` (affine hull D - {b})"
-            by (simp add: Diff_mono hull_subset image_mono)
-          also have "... \<subseteq> rel_frontier D"
-            by (rule rim)
-          also have "... \<subseteq> \<Union>{E. E face_of D \<and> aff_dim E < aff_dim T}"
-            using affD
-            by (force simp: rel_frontier_of_polyhedron [OF \<open>polyhedron D\<close>] facet_of_def)
-          also have "... \<subseteq> \<Union>(\<H>)"
-            using D_not_subset \<H>_def that by fastforce
-          finally have rsub: "r ` (D - {b}) \<subseteq> \<Union>(\<H>)" .
-          show "continuous_on (D - {b}) (h \<circ> r)"
-            apply (intro conjI \<open>b \<notin> \<Union>\<G>\<close> continuous_on_compose)
-               apply (rule continuous_on_subset [OF contr])
-            apply (simp add: Diff_mono hull_subset)
-            apply (rule continuous_on_subset [OF conth rsub])
-            done
-          show "(h \<circ> r) ` (D - {b}) \<subseteq> rel_frontier T"
-            using brelD him rsub by fastforce
-          show "(h \<circ> r) x = h x" if x: "x \<in> D \<inter> \<Union>\<H>" for x
-          proof -
-            consider A where "x \<in> D" "A \<in> \<G>" "x \<in> A"
-                 | A B where "x \<in> D" "A face_of B" "B \<in> \<F>" "B \<notin> \<G>" "aff_dim A < aff_dim T" "x \<in> A"
-              using x by (auto simp: \<H>_def)
-            then have xrel: "x \<in> rel_frontier D"
-            proof cases
-              case 1 show ?thesis
-              proof (rule face_of_subset_rel_frontier [THEN subsetD])
-                show "D \<inter> A face_of D"
-                  using \<open>A \<in> \<G>\<close> \<open>\<G> \<subseteq> \<F>\<close> face \<open>D \<in> \<F>\<close> by blast
-                show "D \<inter> A \<noteq> D"
-                  using \<open>A \<in> \<G>\<close> D_not_subset \<H>_def by blast
-              qed (auto simp: 1)
-            next
-              case 2 show ?thesis
-              proof (rule face_of_subset_rel_frontier [THEN subsetD])
-                show "D \<inter> A face_of D"
-                  apply (rule face_of_Int_subface [of D B _ A, THEN conjunct1])
-                     apply (simp_all add: 2 \<open>D \<in> \<F>\<close> face)
-                   apply (simp add: \<open>polyhedron D\<close> polyhedron_imp_convex face_of_refl)
-                  done
-                show "D \<inter> A \<noteq> D"
-                  using "2" D_not_subset \<H>_def by blast
-              qed (auto simp: 2)
-            qed
-            show ?thesis
-              by (simp add: rid xrel)
-          qed
-        qed
-      qed
-    qed
-  qed
-  have clo: "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
-    by (simp add: poly polytope_imp_closed)
-  obtain C g where "finite C" "disjnt C (\<Union>\<G>)" "card C \<le> card \<F>" "continuous_on (\<Union>\<F> - C) g"
-                   "g ` (\<Union>\<F> - C) \<subseteq> rel_frontier T"
-               and gh: "\<And>x. x \<in> (\<Union>\<F> - C) \<inter> \<Union>\<H> \<Longrightarrow> g x = h x"
-  proof (rule extend_map_lemma_cofinite1 [OF \<open>finite \<F>\<close> \<F> clo])
-    show "X \<inter> Y \<subseteq> \<Union>\<H>" if XY: "X \<in> \<F>" "Y \<in> \<F>" and "\<not> X \<subseteq> Y" "\<not> Y \<subseteq> X" for X Y
-    proof (cases "X \<in> \<G>")
-      case True
-      then show ?thesis
-        by (auto simp: \<H>_def)
-    next
-      case False
-      have "X \<inter> Y \<noteq> X"
-        using \<open>\<not> X \<subseteq> Y\<close> by blast
-      with XY
-      show ?thesis
-        by (clarsimp simp: \<H>_def)
-           (metis Diff_iff Int_iff aff antisym_conv face face_of_aff_dim_lt face_of_refl
-                  not_le poly polytope_imp_convex)
-    qed
-  qed (blast)+
-  with \<open>\<G> \<subseteq> \<F>\<close> show ?thesis
-    apply (rule_tac C=C and g=g in that)
-     apply (auto simp: disjnt_def hf [symmetric] \<H>_def intro!: gh)
-    done
-qed
-
-text\<open>The next two proofs are similar\<close>
-theorem extend_map_cell_complex_to_sphere:
-  assumes "finite \<F>" and S: "S \<subseteq> \<Union>\<F>" "closed S" and T: "convex T" "bounded T"
-      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
-      and aff: "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X < aff_dim T"
-      and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> rel_frontier T"
-  obtains g where "continuous_on (\<Union>\<F>) g"
-     "g ` (\<Union>\<F>) \<subseteq> rel_frontier T" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof -
-  obtain V g where "S \<subseteq> V" "open V" "continuous_on V g" and gim: "g ` V \<subseteq> rel_frontier T" and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-    using neighbourhood_extension_into_ANR [OF contf fim _ \<open>closed S\<close>] ANR_rel_frontier_convex T by blast
-  have "compact S"
-    by (meson assms compact_Union poly polytope_imp_compact seq_compact_closed_subset seq_compact_eq_compact)
-  then obtain d where "d > 0" and d: "\<And>x y. \<lbrakk>x \<in> S; y \<in> - V\<rbrakk> \<Longrightarrow> d \<le> dist x y"
-    using separate_compact_closed [of S "-V"] \<open>open V\<close> \<open>S \<subseteq> V\<close> by force
-  obtain \<G> where "finite \<G>" "\<Union>\<G> = \<Union>\<F>"
-             and diaG: "\<And>X. X \<in> \<G> \<Longrightarrow> diameter X < d"
-             and polyG: "\<And>X. X \<in> \<G> \<Longrightarrow> polytope X"
-             and affG: "\<And>X. X \<in> \<G> \<Longrightarrow> aff_dim X \<le> aff_dim T - 1"
-             and faceG: "\<And>X Y. \<lbrakk>X \<in> \<G>; Y \<in> \<G>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
-  proof (rule cell_complex_subdivision_exists [OF \<open>d>0\<close> \<open>finite \<F>\<close> poly _ face])
-    show "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X \<le> aff_dim T - 1"
-      by (simp add: aff)
-  qed auto
-  obtain h where conth: "continuous_on (\<Union>\<G>) h" and him: "h ` \<Union>\<G> \<subseteq> rel_frontier T" and hg: "\<And>x. x \<in> \<Union>(\<G> \<inter> Pow V) \<Longrightarrow> h x = g x"
-  proof (rule extend_map_lemma [of \<G> "\<G> \<inter> Pow V" T g])
-    show "continuous_on (\<Union>(\<G> \<inter> Pow V)) g"
-      by (metis Union_Int_subset Union_Pow_eq \<open>continuous_on V g\<close> continuous_on_subset le_inf_iff)
-  qed (use \<open>finite \<G>\<close> T polyG affG faceG gim in fastforce)+
-  show ?thesis
-  proof
-    show "continuous_on (\<Union>\<F>) h"
-      using \<open>\<Union>\<G> = \<Union>\<F>\<close> conth by auto
-    show "h ` \<Union>\<F> \<subseteq> rel_frontier T"
-      using \<open>\<Union>\<G> = \<Union>\<F>\<close> him by auto
-    show "h x = f x" if "x \<in> S" for x
-    proof -
-      have "x \<in> \<Union>\<G>"
-        using \<open>\<Union>\<G> = \<Union>\<F>\<close> \<open>S \<subseteq> \<Union>\<F>\<close> that by auto
-      then obtain X where "x \<in> X" "X \<in> \<G>" by blast
-      then have "diameter X < d" "bounded X"
-        by (auto simp: diaG \<open>X \<in> \<G>\<close> polyG polytope_imp_bounded)
-      then have "X \<subseteq> V" using d [OF \<open>x \<in> S\<close>] diameter_bounded_bound [OF \<open>bounded X\<close> \<open>x \<in> X\<close>]
-        by fastforce
-      have "h x = g x"
-        apply (rule hg)
-        using \<open>X \<in> \<G>\<close> \<open>X \<subseteq> V\<close> \<open>x \<in> X\<close> by blast
-      also have "... = f x"
-        by (simp add: gf that)
-      finally show "h x = f x" .
-    qed
-  qed
-qed
-
-
-theorem extend_map_cell_complex_to_sphere_cofinite:
-  assumes "finite \<F>" and S: "S \<subseteq> \<Union>\<F>" "closed S" and T: "convex T" "bounded T"
-      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
-      and aff: "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X \<le> aff_dim T"
-      and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> rel_frontier T"
-  obtains C g where "finite C" "disjnt C S" "continuous_on (\<Union>\<F> - C) g"
-     "g ` (\<Union>\<F> - C) \<subseteq> rel_frontier T" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof -
-  obtain V g where "S \<subseteq> V" "open V" "continuous_on V g" and gim: "g ` V \<subseteq> rel_frontier T" and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-    using neighbourhood_extension_into_ANR [OF contf fim _ \<open>closed S\<close>] ANR_rel_frontier_convex T by blast
-  have "compact S"
-    by (meson assms compact_Union poly polytope_imp_compact seq_compact_closed_subset seq_compact_eq_compact)
-  then obtain d where "d > 0" and d: "\<And>x y. \<lbrakk>x \<in> S; y \<in> - V\<rbrakk> \<Longrightarrow> d \<le> dist x y"
-    using separate_compact_closed [of S "-V"] \<open>open V\<close> \<open>S \<subseteq> V\<close> by force
-  obtain \<G> where "finite \<G>" "\<Union>\<G> = \<Union>\<F>"
-             and diaG: "\<And>X. X \<in> \<G> \<Longrightarrow> diameter X < d"
-             and polyG: "\<And>X. X \<in> \<G> \<Longrightarrow> polytope X"
-             and affG: "\<And>X. X \<in> \<G> \<Longrightarrow> aff_dim X \<le> aff_dim T"
-             and faceG: "\<And>X Y. \<lbrakk>X \<in> \<G>; Y \<in> \<G>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
-    by (rule cell_complex_subdivision_exists [OF \<open>d>0\<close> \<open>finite \<F>\<close> poly aff face]) auto
-  obtain C h where "finite C" and dis: "disjnt C (\<Union>(\<G> \<inter> Pow V))"
-               and card: "card C \<le> card \<G>" and conth: "continuous_on (\<Union>\<G> - C) h"
-               and him: "h ` (\<Union>\<G> - C) \<subseteq> rel_frontier T"
-               and hg: "\<And>x. x \<in> \<Union>(\<G> \<inter> Pow V) \<Longrightarrow> h x = g x"
-  proof (rule extend_map_lemma_cofinite [of \<G> "\<G> \<inter> Pow V" T g])
-    show "continuous_on (\<Union>(\<G> \<inter> Pow V)) g"
-      by (metis Union_Int_subset Union_Pow_eq \<open>continuous_on V g\<close> continuous_on_subset le_inf_iff)
-    show "g ` \<Union>(\<G> \<inter> Pow V) \<subseteq> rel_frontier T"
-      using gim by force
-  qed (auto intro: \<open>finite \<G>\<close> T polyG affG dest: faceG)
-  have Ssub: "S \<subseteq> \<Union>(\<G> \<inter> Pow V)"
-  proof
-    fix x
-    assume "x \<in> S"
-    then have "x \<in> \<Union>\<G>"
-      using \<open>\<Union>\<G> = \<Union>\<F>\<close> \<open>S \<subseteq> \<Union>\<F>\<close> by auto
-    then obtain X where "x \<in> X" "X \<in> \<G>" by blast
-    then have "diameter X < d" "bounded X"
-      by (auto simp: diaG \<open>X \<in> \<G>\<close> polyG polytope_imp_bounded)
-    then have "X \<subseteq> V" using d [OF \<open>x \<in> S\<close>] diameter_bounded_bound [OF \<open>bounded X\<close> \<open>x \<in> X\<close>]
-      by fastforce
-    then show "x \<in> \<Union>(\<G> \<inter> Pow V)"
-      using \<open>X \<in> \<G>\<close> \<open>x \<in> X\<close> by blast
-  qed
-  show ?thesis
-  proof
-    show "continuous_on (\<Union>\<F>-C) h"
-      using \<open>\<Union>\<G> = \<Union>\<F>\<close> conth by auto
-    show "h ` (\<Union>\<F> - C) \<subseteq> rel_frontier T"
-      using \<open>\<Union>\<G> = \<Union>\<F>\<close> him by auto
-    show "h x = f x" if "x \<in> S" for x
-    proof -
-      have "h x = g x"
-        apply (rule hg)
-        using Ssub that by blast
-      also have "... = f x"
-        by (simp add: gf that)
-      finally show "h x = f x" .
-    qed
-    show "disjnt C S"
-      using dis Ssub  by (meson disjnt_iff subset_eq)
-  qed (intro \<open>finite C\<close>)
-qed
-
-
-
-subsection\<open> Special cases and corollaries involving spheres.\<close>
-
-lemma disjnt_Diff1: "X \<subseteq> Y' \<Longrightarrow> disjnt (X - Y) (X' - Y')"
-  by (auto simp: disjnt_def)
-
-proposition extend_map_affine_to_sphere_cofinite_simple:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "compact S" "convex U" "bounded U"
-      and aff: "aff_dim T \<le> aff_dim U"
-      and "S \<subseteq> T" and contf: "continuous_on S f"
-      and fim: "f ` S \<subseteq> rel_frontier U"
- obtains K g where "finite K" "K \<subseteq> T" "disjnt K S" "continuous_on (T - K) g"
-                   "g ` (T - K) \<subseteq> rel_frontier U"
-                   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof -
-  have "\<exists>K g. finite K \<and> disjnt K S \<and> continuous_on (T - K) g \<and>
-              g ` (T - K) \<subseteq> rel_frontier U \<and> (\<forall>x \<in> S. g x = f x)"
-       if "affine T" "S \<subseteq> T" and aff: "aff_dim T \<le> aff_dim U"  for T
-  proof (cases "S = {}")
-    case True
-    show ?thesis
-    proof (cases "rel_frontier U = {}")
-      case True
-      with \<open>bounded U\<close> have "aff_dim U \<le> 0"
-        using affine_bounded_eq_lowdim rel_frontier_eq_empty by auto
-      with aff have "aff_dim T \<le> 0" by auto
-      then obtain a where "T \<subseteq> {a}"
-        using \<open>affine T\<close> affine_bounded_eq_lowdim affine_bounded_eq_trivial by auto
-      then show ?thesis
-        using \<open>S = {}\<close> fim
-        by (metis Diff_cancel contf disjnt_empty2 finite.emptyI finite_insert finite_subset)
-    next
-      case False
-      then obtain a where "a \<in> rel_frontier U"
-        by auto
-      then show ?thesis
-        using continuous_on_const [of _ a] \<open>S = {}\<close> by force
-    qed
-  next
-    case False
-    have "bounded S"
-      by (simp add: \<open>compact S\<close> compact_imp_bounded)
-    then obtain b where b: "S \<subseteq> cbox (-b) b"
-      using bounded_subset_cbox_symmetric by blast
-    define bbox where "bbox \<equiv> cbox (-(b+One)) (b+One)"
-    have "cbox (-b) b \<subseteq> bbox"
-      by (auto simp: bbox_def algebra_simps intro!: subset_box_imp)
-    with b \<open>S \<subseteq> T\<close> have "S \<subseteq> bbox \<inter> T"
-      by auto
-    then have Ssub: "S \<subseteq> \<Union>{bbox \<inter> T}"
-      by auto
-    then have "aff_dim (bbox \<inter> T) \<le> aff_dim U"
-      by (metis aff aff_dim_subset inf_commute inf_le1 order_trans)
-    obtain K g where K: "finite K" "disjnt K S"
-                 and contg: "continuous_on (\<Union>{bbox \<inter> T} - K) g"
-                 and gim: "g ` (\<Union>{bbox \<inter> T} - K) \<subseteq> rel_frontier U"
-                 and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-    proof (rule extend_map_cell_complex_to_sphere_cofinite
-              [OF _ Ssub _ \<open>convex U\<close> \<open>bounded U\<close> _ _ _ contf fim])
-      show "closed S"
-        using \<open>compact S\<close> compact_eq_bounded_closed by auto
-      show poly: "\<And>X. X \<in> {bbox \<inter> T} \<Longrightarrow> polytope X"
-        by (simp add: polytope_Int_polyhedron bbox_def polytope_interval affine_imp_polyhedron \<open>affine T\<close>)
-      show "\<And>X Y. \<lbrakk>X \<in> {bbox \<inter> T}; Y \<in> {bbox \<inter> T}\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
-        by (simp add:poly face_of_refl polytope_imp_convex)
-      show "\<And>X. X \<in> {bbox \<inter> T} \<Longrightarrow> aff_dim X \<le> aff_dim U"
-        by (simp add: \<open>aff_dim (bbox \<inter> T) \<le> aff_dim U\<close>)
-    qed auto
-    define fro where "fro \<equiv> \<lambda>d. frontier(cbox (-(b + d *\<^sub>R One)) (b + d *\<^sub>R One))"
-    obtain d where d12: "1/2 \<le> d" "d \<le> 1" and dd: "disjnt K (fro d)"
-    proof (rule disjoint_family_elem_disjnt [OF _ \<open>finite K\<close>])
-      show "infinite {1/2..1::real}"
-        by (simp add: infinite_Icc)
-      have dis1: "disjnt (fro x) (fro y)" if "x<y" for x y
-        by (auto simp: algebra_simps that subset_box_imp disjnt_Diff1 frontier_def fro_def)
-      then show "disjoint_family_on fro {1/2..1}"
-        by (auto simp: disjoint_family_on_def disjnt_def neq_iff)
-    qed auto
-    define c where "c \<equiv> b + d *\<^sub>R One"
-    have cbsub: "cbox (-b) b \<subseteq> box (-c) c"  "cbox (-b) b \<subseteq> cbox (-c) c"  "cbox (-c) c \<subseteq> bbox"
-      using d12 by (auto simp: algebra_simps subset_box_imp c_def bbox_def)
-    have clo_cbT: "closed (cbox (- c) c \<inter> T)"
-      by (simp add: affine_closed closed_Int closed_cbox \<open>affine T\<close>)
-    have cpT_ne: "cbox (- c) c \<inter> T \<noteq> {}"
-      using \<open>S \<noteq> {}\<close> b cbsub(2) \<open>S \<subseteq> T\<close> by fastforce
-    have "closest_point (cbox (- c) c \<inter> T) x \<notin> K" if "x \<in> T" "x \<notin> K" for x
-    proof (cases "x \<in> cbox (-c) c")
-      case True with that show ?thesis
-        by (simp add: closest_point_self)
-    next
-      case False
-      have int_ne: "interior (cbox (-c) c) \<inter> T \<noteq> {}"
-        using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b \<open>cbox (- b) b \<subseteq> box (- c) c\<close> by force
-      have "convex T"
-        by (meson \<open>affine T\<close> affine_imp_convex)
-      then have "x \<in> affine hull (cbox (- c) c \<inter> T)"
-          by (metis Int_commute Int_iff \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> cbsub(1) \<open>x \<in> T\<close> affine_hull_convex_Int_nonempty_interior all_not_in_conv b hull_inc inf.orderE interior_cbox)
-      then have "x \<in> affine hull (cbox (- c) c \<inter> T) - rel_interior (cbox (- c) c \<inter> T)"
-        by (meson DiffI False Int_iff rel_interior_subset subsetCE)
-      then have "closest_point (cbox (- c) c \<inter> T) x \<in> rel_frontier (cbox (- c) c \<inter> T)"
-        by (rule closest_point_in_rel_frontier [OF clo_cbT cpT_ne])
-      moreover have "(rel_frontier (cbox (- c) c \<inter> T)) \<subseteq> fro d"
-        apply (subst convex_affine_rel_frontier_Int [OF _  \<open>affine T\<close> int_ne])
-         apply (auto simp: fro_def c_def)
-        done
-      ultimately show ?thesis
-        using dd  by (force simp: disjnt_def)
-    qed
-    then have cpt_subset: "closest_point (cbox (- c) c \<inter> T) ` (T - K) \<subseteq> \<Union>{bbox \<inter> T} - K"
-      using closest_point_in_set [OF clo_cbT cpT_ne] cbsub(3) by force
-    show ?thesis
-    proof (intro conjI ballI exI)
-      have "continuous_on (T - K) (closest_point (cbox (- c) c \<inter> T))"
-        apply (rule continuous_on_closest_point)
-        using \<open>S \<noteq> {}\<close> cbsub(2) b that
-        by (auto simp: affine_imp_convex convex_Int affine_closed closed_Int closed_cbox \<open>affine T\<close>)
-      then show "continuous_on (T - K) (g \<circ> closest_point (cbox (- c) c \<inter> T))"
-        by (metis continuous_on_compose continuous_on_subset [OF contg cpt_subset])
-      have "(g \<circ> closest_point (cbox (- c) c \<inter> T)) ` (T - K) \<subseteq> g ` (\<Union>{bbox \<inter> T} - K)"
-        by (metis image_comp image_mono cpt_subset)
-      also have "... \<subseteq> rel_frontier U"
-        by (rule gim)
-      finally show "(g \<circ> closest_point (cbox (- c) c \<inter> T)) ` (T - K) \<subseteq> rel_frontier U" .
-      show "(g \<circ> closest_point (cbox (- c) c \<inter> T)) x = f x" if "x \<in> S" for x
-      proof -
-        have "(g \<circ> closest_point (cbox (- c) c \<inter> T)) x = g x"
-          unfolding o_def
-          by (metis IntI \<open>S \<subseteq> T\<close> b cbsub(2) closest_point_self subset_eq that)
-        also have "... = f x"
-          by (simp add: that gf)
-        finally show ?thesis .
-      qed
-    qed (auto simp: K)
-  qed
-  then obtain K g where "finite K" "disjnt K S"
-               and contg: "continuous_on (affine hull T - K) g"
-               and gim:  "g ` (affine hull T - K) \<subseteq> rel_frontier U"
-               and gf:   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-    by (metis aff affine_affine_hull aff_dim_affine_hull
-              order_trans [OF \<open>S \<subseteq> T\<close> hull_subset [of T affine]])
-  then obtain K g where "finite K" "disjnt K S"
-               and contg: "continuous_on (T - K) g"
-               and gim:  "g ` (T - K) \<subseteq> rel_frontier U"
-               and gf:   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-    by (rule_tac K=K and g=g in that) (auto simp: hull_inc elim: continuous_on_subset)
-  then show ?thesis
-    by (rule_tac K="K \<inter> T" and g=g in that) (auto simp: disjnt_iff Diff_Int contg)
-qed
-
-subsection\<open>Extending maps to spheres\<close>
-
-(*Up to extend_map_affine_to_sphere_cofinite_gen*)
-
-lemma closedin_closed_subset:
- "\<lbrakk>closedin (subtopology euclidean U) V; T \<subseteq> U; S = V \<inter> T\<rbrakk>
-             \<Longrightarrow> closedin (subtopology euclidean T) S"
-  by (metis (no_types, lifting) Int_assoc Int_commute closedin_closed inf.orderE)
-
-lemma extend_map_affine_to_sphere1:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::topological_space"
-  assumes "finite K" "affine U" and contf: "continuous_on (U - K) f"
-      and fim: "f ` (U - K) \<subseteq> T"
-      and comps: "\<And>C. \<lbrakk>C \<in> components(U - S); C \<inter> K \<noteq> {}\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
-      and clo: "closedin (subtopology euclidean U) S" and K: "disjnt K S" "K \<subseteq> U"
-  obtains g where "continuous_on (U - L) g" "g ` (U - L) \<subseteq> T" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof (cases "K = {}")
-  case True
-  then show ?thesis
-    by (metis Diff_empty Diff_subset contf fim continuous_on_subset image_subsetI rev_image_eqI subset_iff that)
-next
-  case False
-  have "S \<subseteq> U"
-    using clo closedin_limpt by blast
-  then have "(U - S) \<inter> K \<noteq> {}"
-    by (metis Diff_triv False Int_Diff K disjnt_def inf.absorb_iff2 inf_commute)
-  then have "\<Union>(components (U - S)) \<inter> K \<noteq> {}"
-    using Union_components by simp
-  then obtain C0 where C0: "C0 \<in> components (U - S)" "C0 \<inter> K \<noteq> {}"
-    by blast
-  have "convex U"
-    by (simp add: affine_imp_convex \<open>affine U\<close>)
-  then have "locally connected U"
-    by (rule convex_imp_locally_connected)
-  have "\<exists>a g. a \<in> C \<and> a \<in> L \<and> continuous_on (S \<union> (C - {a})) g \<and>
-              g ` (S \<union> (C - {a})) \<subseteq> T \<and> (\<forall>x \<in> S. g x = f x)"
-       if C: "C \<in> components (U - S)" and CK: "C \<inter> K \<noteq> {}" for C
-  proof -
-    have "C \<subseteq> U-S" "C \<inter> L \<noteq> {}"
-      by (simp_all add: in_components_subset comps that)
-    then obtain a where a: "a \<in> C" "a \<in> L" by auto
-    have opeUC: "openin (subtopology euclidean U) C"
-    proof (rule openin_trans)
-      show "openin (subtopology euclidean (U-S)) C"
-        by (simp add: \<open>locally connected U\<close> clo locally_diff_closed openin_components_locally_connected [OF _ C])
-      show "openin (subtopology euclidean U) (U - S)"
-        by (simp add: clo openin_diff)
-    qed
-    then obtain d where "C \<subseteq> U" "0 < d" and d: "cball a d \<inter> U \<subseteq> C"
-      using openin_contains_cball by (metis \<open>a \<in> C\<close>)
-    then have "ball a d \<inter> U \<subseteq> C"
-      by auto
-    obtain h k where homhk: "homeomorphism (S \<union> C) (S \<union> C) h k"
-                 and subC: "{x. (~ (h x = x \<and> k x = x))} \<subseteq> C"
-                 and bou: "bounded {x. (~ (h x = x \<and> k x = x))}"
-                 and hin: "\<And>x. x \<in> C \<inter> K \<Longrightarrow> h x \<in> ball a d \<inter> U"
-    proof (rule homeomorphism_grouping_points_exists_gen [of C "ball a d \<inter> U" "C \<inter> K" "S \<union> C"])
-      show "openin (subtopology euclidean C) (ball a d \<inter> U)"
-        by (metis Topology_Euclidean_Space.open_ball \<open>C \<subseteq> U\<close> \<open>ball a d \<inter> U \<subseteq> C\<close> inf.absorb_iff2 inf.orderE inf_assoc open_openin openin_subtopology)
-      show "openin (subtopology euclidean (affine hull C)) C"
-        by (metis \<open>a \<in> C\<close> \<open>openin (subtopology euclidean U) C\<close> affine_hull_eq affine_hull_openin all_not_in_conv \<open>affine U\<close>)
-      show "ball a d \<inter> U \<noteq> {}"
-        using \<open>0 < d\<close> \<open>C \<subseteq> U\<close> \<open>a \<in> C\<close> by force
-      show "finite (C \<inter> K)"
-        by (simp add: \<open>finite K\<close>)
-      show "S \<union> C \<subseteq> affine hull C"
-        by (metis \<open>C \<subseteq> U\<close> \<open>S \<subseteq> U\<close> \<open>a \<in> C\<close> opeUC affine_hull_eq affine_hull_openin all_not_in_conv assms(2) sup.bounded_iff)
-      show "connected C"
-        by (metis C in_components_connected)
-    qed auto
-    have a_BU: "a \<in> ball a d \<inter> U"
-      using \<open>0 < d\<close> \<open>C \<subseteq> U\<close> \<open>a \<in> C\<close> by auto
-    have "rel_frontier (cball a d \<inter> U) retract_of (affine hull (cball a d \<inter> U) - {a})"
-      apply (rule rel_frontier_retract_of_punctured_affine_hull)
-        apply (auto simp: \<open>convex U\<close> convex_Int)
-      by (metis \<open>affine U\<close> convex_cball empty_iff interior_cball a_BU rel_interior_convex_Int_affine)
-    moreover have "rel_frontier (cball a d \<inter> U) = frontier (cball a d) \<inter> U"
-      apply (rule convex_affine_rel_frontier_Int)
-      using a_BU by (force simp: \<open>affine U\<close>)+
-    moreover have "affine hull (cball a d \<inter> U) = U"
-      by (metis \<open>convex U\<close> a_BU affine_hull_convex_Int_nonempty_interior affine_hull_eq \<open>affine U\<close> equals0D inf.commute interior_cball)
-    ultimately have "frontier (cball a d) \<inter> U retract_of (U - {a})"
-      by metis
-    then obtain r where contr: "continuous_on (U - {a}) r"
-                    and rim: "r ` (U - {a}) \<subseteq> sphere a d"  "r ` (U - {a}) \<subseteq> U"
-                    and req: "\<And>x. x \<in> sphere a d \<inter> U \<Longrightarrow> r x = x"
-      using \<open>affine U\<close> by (auto simp: retract_of_def retraction_def hull_same)
-    define j where "j \<equiv> \<lambda>x. if x \<in> ball a d then r x else x"
-    have kj: "\<And>x. x \<in> S \<Longrightarrow> k (j x) = x"
-      using \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>ball a d \<inter> U \<subseteq> C\<close> j_def subC by auto
-    have Uaeq: "U - {a} = (cball a d - {a}) \<inter> U \<union> (U - ball a d)"
-      using \<open>0 < d\<close> by auto
-    have jim: "j ` (S \<union> (C - {a})) \<subseteq> (S \<union> C) - ball a d"
-    proof clarify
-      fix y  assume "y \<in> S \<union> (C - {a})"
-      then have "y \<in> U - {a}"
-        using \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>a \<in> C\<close> by auto
-      then have "r y \<in> sphere a d"
-        using rim by auto
-      then show "j y \<in> S \<union> C - ball a d"
-        apply (simp add: j_def)
-        using \<open>r y \<in> sphere a d\<close> \<open>y \<in> U - {a}\<close> \<open>y \<in> S \<union> (C - {a})\<close> d rim by fastforce
-    qed
-    have contj: "continuous_on (U - {a}) j"
-      unfolding j_def Uaeq
-    proof (intro continuous_on_cases_local continuous_on_id, simp_all add: req closedin_closed Uaeq [symmetric])
-      show "\<exists>T. closed T \<and> (cball a d - {a}) \<inter> U = (U - {a}) \<inter> T"
-          apply (rule_tac x="(cball a d) \<inter> U" in exI)
-        using affine_closed \<open>affine U\<close> by blast
-      show "\<exists>T. closed T \<and> U - ball a d = (U - {a}) \<inter> T"
-         apply (rule_tac x="U - ball a d" in exI)
-        using \<open>0 < d\<close>  by (force simp: affine_closed \<open>affine U\<close> closed_Diff)
-      show "continuous_on ((cball a d - {a}) \<inter> U) r"
-        by (force intro: continuous_on_subset [OF contr])
-    qed
-    have fT: "x \<in> U - K \<Longrightarrow> f x \<in> T" for x
-      using fim by blast
-    show ?thesis
-    proof (intro conjI exI)
-      show "continuous_on (S \<union> (C - {a})) (f \<circ> k \<circ> j)"
-      proof (intro continuous_on_compose)
-        show "continuous_on (S \<union> (C - {a})) j"
-          apply (rule continuous_on_subset [OF contj])
-          using \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>a \<in> C\<close> by force
-        show "continuous_on (j ` (S \<union> (C - {a}))) k"
-          apply (rule continuous_on_subset [OF homeomorphism_cont2 [OF homhk]])
-          using jim \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>ball a d \<inter> U \<subseteq> C\<close> j_def by fastforce
-        show "continuous_on (k ` j ` (S \<union> (C - {a}))) f"
-        proof (clarify intro!: continuous_on_subset [OF contf])
-          fix y  assume "y \<in> S \<union> (C - {a})"
-          have ky: "k y \<in> S \<union> C"
-            using homeomorphism_image2 [OF homhk] \<open>y \<in> S \<union> (C - {a})\<close> by blast
-          have jy: "j y \<in> S \<union> C - ball a d"
-            using Un_iff \<open>y \<in> S \<union> (C - {a})\<close> jim by auto
-          show "k (j y) \<in> U - K"
-            apply safe
-            using \<open>C \<subseteq> U\<close> \<open>S \<subseteq> U\<close>  homeomorphism_image2 [OF homhk] jy apply blast
-            by (metis DiffD1 DiffD2 Int_iff Un_iff \<open>disjnt K S\<close> disjnt_def empty_iff hin homeomorphism_apply2 homeomorphism_image2 homhk imageI jy)
-        qed
-      qed
-      have ST: "\<And>x. x \<in> S \<Longrightarrow> (f \<circ> k \<circ> j) x \<in> T"
-        apply (simp add: kj)
-        apply (metis DiffI \<open>S \<subseteq> U\<close> \<open>disjnt K S\<close> subsetD disjnt_iff fim image_subset_iff)
-        done
-      moreover have "(f \<circ> k \<circ> j) x \<in> T" if "x \<in> C" "x \<noteq> a" "x \<notin> S" for x
-      proof -
-        have rx: "r x \<in> sphere a d"
-          using \<open>C \<subseteq> U\<close> rim that by fastforce
-        have jj: "j x \<in> S \<union> C - ball a d"
-          using jim that by blast
-        have "k (j x) = j x \<longrightarrow> k (j x) \<in> C \<or> j x \<in> C"
-          by (metis Diff_iff Int_iff Un_iff \<open>S \<subseteq> U\<close> subsetD d j_def jj rx sphere_cball that(1))
-        then have "k (j x) \<in> C"
-          using homeomorphism_apply2 [OF homhk, of "j x"]   \<open>C \<subseteq> U\<close> \<open>S \<subseteq> U\<close> a rx
-          by (metis (mono_tags, lifting) Diff_iff subsetD jj mem_Collect_eq subC)
-        with jj \<open>C \<subseteq> U\<close> show ?thesis
-          apply safe
-          using ST j_def apply fastforce
-          apply (auto simp: not_less intro!: fT)
-          by (metis DiffD1 DiffD2 Int_iff hin homeomorphism_apply2 [OF homhk] jj)
-      qed
-      ultimately show "(f \<circ> k \<circ> j) ` (S \<union> (C - {a})) \<subseteq> T"
-        by force
-      show "\<forall>x\<in>S. (f \<circ> k \<circ> j) x = f x" using kj by simp
-    qed (auto simp: a)
-  qed
-  then obtain a h where
-    ah: "\<And>C. \<lbrakk>C \<in> components (U - S); C \<inter> K \<noteq> {}\<rbrakk>
-           \<Longrightarrow> a C \<in> C \<and> a C \<in> L \<and> continuous_on (S \<union> (C - {a C})) (h C) \<and>
-               h C ` (S \<union> (C - {a C})) \<subseteq> T \<and> (\<forall>x \<in> S. h C x = f x)"
-    using that by metis
-  define F where "F \<equiv> {C \<in> components (U - S). C \<inter> K \<noteq> {}}"
-  define G where "G \<equiv> {C \<in> components (U - S). C \<inter> K = {}}"
-  define UF where "UF \<equiv> (\<Union>C\<in>F. C - {a C})"
-  have "C0 \<in> F"
-    by (auto simp: F_def C0)
-  have "finite F"
-  proof (subst finite_image_iff [of "\<lambda>C. C \<inter> K" F, symmetric])
-    show "inj_on (\<lambda>C. C \<inter> K) F"
-      unfolding F_def inj_on_def
-      using components_nonoverlap by blast
-    show "finite ((\<lambda>C. C \<inter> K) ` F)"
-      unfolding F_def
-      by (rule finite_subset [of _ "Pow K"]) (auto simp: \<open>finite K\<close>)
-  qed
-  obtain g where contg: "continuous_on (S \<union> UF) g"
-             and gh: "\<And>x i. \<lbrakk>i \<in> F; x \<in> (S \<union> UF) \<inter> (S \<union> (i - {a i}))\<rbrakk>
-                            \<Longrightarrow> g x = h i x"
-  proof (rule pasting_lemma_exists_closed [OF \<open>finite F\<close>, of "S \<union> UF" "\<lambda>C. S \<union> (C - {a C})" h])
-    show "S \<union> UF \<subseteq> (\<Union>C\<in>F. S \<union> (C - {a C}))"
-      using \<open>C0 \<in> F\<close> by (force simp: UF_def)
-    show "closedin (subtopology euclidean (S \<union> UF)) (S \<union> (C - {a C}))"
-         if "C \<in> F" for C
-    proof (rule closedin_closed_subset [of U "S \<union> C"])
-      show "closedin (subtopology euclidean U) (S \<union> C)"
-        apply (rule closedin_Un_complement_component [OF \<open>locally connected U\<close> clo])
-        using F_def that by blast
-    next
-      have "x = a C'" if "C' \<in> F"  "x \<in> C'" "x \<notin> U" for x C'
-      proof -
-        have "\<forall>A. x \<in> \<Union>A \<or> C' \<notin> A"
-          using \<open>x \<in> C'\<close> by blast
-        with that show "x = a C'"
-          by (metis (lifting) DiffD1 F_def Union_components mem_Collect_eq)
-      qed
-      then show "S \<union> UF \<subseteq> U"
-        using \<open>S \<subseteq> U\<close> by (force simp: UF_def)
-    next
-      show "S \<union> (C - {a C}) = (S \<union> C) \<inter> (S \<union> UF)"
-        using F_def UF_def components_nonoverlap that by auto
-    qed
-  next
-    show "continuous_on (S \<union> (C' - {a C'})) (h C')" if "C' \<in> F" for C'
-      using ah F_def that by blast
-    show "\<And>i j x. \<lbrakk>i \<in> F; j \<in> F;
-                   x \<in> (S \<union> UF) \<inter> (S \<union> (i - {a i})) \<inter> (S \<union> (j - {a j}))\<rbrakk>
-                  \<Longrightarrow> h i x = h j x"
-      using components_eq by (fastforce simp: components_eq F_def ah)
-  qed blast
-  have SU': "S \<union> \<Union>G \<union> (S \<union> UF) \<subseteq> U"
-    using \<open>S \<subseteq> U\<close> in_components_subset by (auto simp: F_def G_def UF_def)
-  have clo1: "closedin (subtopology euclidean (S \<union> \<Union>G \<union> (S \<union> UF))) (S \<union> \<Union>G)"
-  proof (rule closedin_closed_subset [OF _ SU'])
-    have *: "\<And>C. C \<in> F \<Longrightarrow> openin (subtopology euclidean U) C"
-      unfolding F_def
-      by clarify (metis (no_types, lifting) \<open>locally connected U\<close> clo closedin_def locally_diff_closed openin_components_locally_connected openin_trans topspace_euclidean_subtopology)
-    show "closedin (subtopology euclidean U) (U - UF)"
-      unfolding UF_def
-      by (force intro: openin_delete *)
-    show "S \<union> \<Union>G = (U - UF) \<inter> (S \<union> \<Union>G \<union> (S \<union> UF))"
-      using \<open>S \<subseteq> U\<close> apply (auto simp: F_def G_def UF_def)
-        apply (metis Diff_iff UnionI Union_components)
-       apply (metis DiffD1 UnionI Union_components)
-      by (metis (no_types, lifting) IntI components_nonoverlap empty_iff)
-  qed
-  have clo2: "closedin (subtopology euclidean (S \<union> \<Union>G \<union> (S \<union> UF))) (S \<union> UF)"
-  proof (rule closedin_closed_subset [OF _ SU'])
-    show "closedin (subtopology euclidean U) (\<Union>C\<in>F. S \<union> C)"
-      apply (rule closedin_Union)
-       apply (simp add: \<open>finite F\<close>)
-      using F_def \<open>locally connected U\<close> clo closedin_Un_complement_component by blast
-    show "S \<union> UF = (\<Union>C\<in>F. S \<union> C) \<inter> (S \<union> \<Union>G \<union> (S \<union> UF))"
-      using \<open>S \<subseteq> U\<close> apply (auto simp: F_def G_def UF_def)
-      using C0 apply blast
-      by (metis components_nonoverlap disjnt_def disjnt_iff)
-  qed
-  have SUG: "S \<union> \<Union>G \<subseteq> U - K"
-    using \<open>S \<subseteq> U\<close> K apply (auto simp: G_def disjnt_iff)
-    by (meson Diff_iff subsetD in_components_subset)
-  then have contf': "continuous_on (S \<union> \<Union>G) f"
-    by (rule continuous_on_subset [OF contf])
-  have contg': "continuous_on (S \<union> UF) g"
-    apply (rule continuous_on_subset [OF contg])
-    using \<open>S \<subseteq> U\<close> by (auto simp: F_def G_def)
-  have  "\<And>x. \<lbrakk>S \<subseteq> U; x \<in> S\<rbrakk> \<Longrightarrow> f x = g x"
-    by (subst gh) (auto simp: ah C0 intro: \<open>C0 \<in> F\<close>)
-  then have f_eq_g: "\<And>x. x \<in> S \<union> UF \<and> x \<in> S \<union> \<Union>G \<Longrightarrow> f x = g x"
-    using \<open>S \<subseteq> U\<close> apply (auto simp: F_def G_def UF_def dest: in_components_subset)
-    using components_eq by blast
-  have cont: "continuous_on (S \<union> \<Union>G \<union> (S \<union> UF)) (\<lambda>x. if x \<in> S \<union> \<Union>G then f x else g x)"
-    by (blast intro: continuous_on_cases_local [OF clo1 clo2 contf' contg' f_eq_g, of "\<lambda>x. x \<in> S \<union> \<Union>G"])
-  show ?thesis
-  proof
-    have UF: "\<Union>F - L \<subseteq> UF"
-      unfolding F_def UF_def using ah by blast
-    have "U - S - L = \<Union>(components (U - S)) - L"
-      by simp
-    also have "... = \<Union>F \<union> \<Union>G - L"
-      unfolding F_def G_def by blast
-    also have "... \<subseteq> UF \<union> \<Union>G"
-      using UF by blast
-    finally have "U - L \<subseteq> S \<union> \<Union>G \<union> (S \<union> UF)"
-      by blast
-    then show "continuous_on (U - L) (\<lambda>x. if x \<in> S \<union> \<Union>G then f x else g x)"
-      by (rule continuous_on_subset [OF cont])
-    have "((U - L) \<inter> {x. x \<notin> S \<and> (\<forall>xa\<in>G. x \<notin> xa)}) \<subseteq>  ((U - L) \<inter> (-S \<inter> UF))"
-      using \<open>U - L \<subseteq> S \<union> \<Union>G \<union> (S \<union> UF)\<close> by auto
-    moreover have "g ` ((U - L) \<inter> (-S \<inter> UF)) \<subseteq> T"
-    proof -
-      have "g x \<in> T" if "x \<in> U" "x \<notin> L" "x \<notin> S" "C \<in> F" "x \<in> C" "x \<noteq> a C" for x C
-      proof (subst gh)
-        show "x \<in> (S \<union> UF) \<inter> (S \<union> (C - {a C}))"
-          using that by (auto simp: UF_def)
-        show "h C x \<in> T"
-          using ah that by (fastforce simp add: F_def)
-      qed (rule that)
-      then show ?thesis
-        by (force simp: UF_def)
-    qed
-    ultimately have "g ` ((U - L) \<inter> {x. x \<notin> S \<and> (\<forall>xa\<in>G. x \<notin> xa)}) \<subseteq> T"
-      using image_mono order_trans by blast
-    moreover have "f ` ((U - L) \<inter> (S \<union> \<Union>G)) \<subseteq> T"
-      using fim SUG by blast
-    ultimately show "(\<lambda>x. if x \<in> S \<union> \<Union>G then f x else g x) ` (U - L) \<subseteq> T"
-       by force
-    show "\<And>x. x \<in> S \<Longrightarrow> (if x \<in> S \<union> \<Union>G then f x else g x) = f x"
-      by (simp add: F_def G_def)
-  qed
-qed
-
-
-lemma extend_map_affine_to_sphere2:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "compact S" "convex U" "bounded U" "affine T" "S \<subseteq> T"
-      and affTU: "aff_dim T \<le> aff_dim U"
-      and contf: "continuous_on S f"
-      and fim: "f ` S \<subseteq> rel_frontier U"
-      and ovlap: "\<And>C. C \<in> components(T - S) \<Longrightarrow> C \<inter> L \<noteq> {}"
-    obtains K g where "finite K" "K \<subseteq> L" "K \<subseteq> T" "disjnt K S"
-                      "continuous_on (T - K) g" "g ` (T - K) \<subseteq> rel_frontier U"
-                      "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof -
-  obtain K g where K: "finite K" "K \<subseteq> T" "disjnt K S"
-               and contg: "continuous_on (T - K) g"
-               and gim: "g ` (T - K) \<subseteq> rel_frontier U"
-               and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-     using assms extend_map_affine_to_sphere_cofinite_simple by metis
-  have "(\<exists>y C. C \<in> components (T - S) \<and> x \<in> C \<and> y \<in> C \<and> y \<in> L)" if "x \<in> K" for x
-  proof -
-    have "x \<in> T-S"
-      using \<open>K \<subseteq> T\<close> \<open>disjnt K S\<close> disjnt_def that by fastforce
-    then obtain C where "C \<in> components(T - S)" "x \<in> C"
-      by (metis UnionE Union_components)
-    with ovlap [of C] show ?thesis
-      by blast
-  qed
-  then obtain \<xi> where \<xi>: "\<And>x. x \<in> K \<Longrightarrow> \<exists>C. C \<in> components (T - S) \<and> x \<in> C \<and> \<xi> x \<in> C \<and> \<xi> x \<in> L"
-    by metis
-  obtain h where conth: "continuous_on (T - \<xi> ` K) h"
-             and him: "h ` (T - \<xi> ` K) \<subseteq> rel_frontier U"
-             and hg: "\<And>x. x \<in> S \<Longrightarrow> h x = g x"
-  proof (rule extend_map_affine_to_sphere1 [OF \<open>finite K\<close> \<open>affine T\<close> contg gim, of S "\<xi> ` K"])
-    show cloTS: "closedin (subtopology euclidean T) S"
-      by (simp add: \<open>compact S\<close> \<open>S \<subseteq> T\<close> closed_subset compact_imp_closed)
-    show "\<And>C. \<lbrakk>C \<in> components (T - S); C \<inter> K \<noteq> {}\<rbrakk> \<Longrightarrow> C \<inter> \<xi> ` K \<noteq> {}"
-      using \<xi> components_eq by blast
-  qed (use K in auto)
-  show ?thesis
-  proof
-    show *: "\<xi> ` K \<subseteq> L"
-      using \<xi> by blast
-    show "finite (\<xi> ` K)"
-      by (simp add: K)
-    show "\<xi> ` K \<subseteq> T"
-      by clarify (meson \<xi> Diff_iff contra_subsetD in_components_subset)
-    show "continuous_on (T - \<xi> ` K) h"
-      by (rule conth)
-    show "disjnt (\<xi> ` K) S"
-      using K
-      apply (auto simp: disjnt_def)
-      by (metis \<xi> DiffD2 UnionI Union_components)
-  qed (simp_all add: him hg gf)
-qed
-
-
-proposition extend_map_affine_to_sphere_cofinite_gen:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes SUT: "compact S" "convex U" "bounded U" "affine T" "S \<subseteq> T"
-      and aff: "aff_dim T \<le> aff_dim U"
-      and contf: "continuous_on S f"
-      and fim: "f ` S \<subseteq> rel_frontier U"
-      and dis: "\<And>C. \<lbrakk>C \<in> components(T - S); bounded C\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
- obtains K g where "finite K" "K \<subseteq> L" "K \<subseteq> T" "disjnt K S" "continuous_on (T - K) g"
-                   "g ` (T - K) \<subseteq> rel_frontier U"
-                   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof (cases "S = {}")
-  case True
-  show ?thesis
-  proof (cases "rel_frontier U = {}")
-    case True
-    with aff have "aff_dim T \<le> 0"
-      apply (simp add: rel_frontier_eq_empty)
-      using affine_bounded_eq_lowdim \<open>bounded U\<close> order_trans by auto
-    with aff_dim_geq [of T] consider "aff_dim T = -1" |  "aff_dim T = 0"
-      by linarith
-    then show ?thesis
-    proof cases
-      assume "aff_dim T = -1"
-      then have "T = {}"
-        by (simp add: aff_dim_empty)
-      then show ?thesis
-        by (rule_tac K="{}" in that) auto
-    next
-      assume "aff_dim T = 0"
-      then obtain a where "T = {a}"
-        using aff_dim_eq_0 by blast
-      then have "a \<in> L"
-        using dis [of "{a}"] \<open>S = {}\<close> by (auto simp: in_components_self)
-      with \<open>S = {}\<close> \<open>T = {a}\<close> show ?thesis
-        by (rule_tac K="{a}" and g=f in that) auto
-    qed
-  next
-    case False
-    then obtain y where "y \<in> rel_frontier U"
-      by auto
-    with \<open>S = {}\<close> show ?thesis
-      by (rule_tac K="{}" and g="\<lambda>x. y" in that)  (auto simp: continuous_on_const)
-  qed
-next
-  case False
-  have "bounded S"
-    by (simp add: assms compact_imp_bounded)
-  then obtain b where b: "S \<subseteq> cbox (-b) b"
-    using bounded_subset_cbox_symmetric by blast
-  define LU where "LU \<equiv> L \<union> (\<Union> {C \<in> components (T - S). ~bounded C} - cbox (-(b+One)) (b+One))"
-  obtain K g where "finite K" "K \<subseteq> LU" "K \<subseteq> T" "disjnt K S"
-               and contg: "continuous_on (T - K) g"
-               and gim: "g ` (T - K) \<subseteq> rel_frontier U"
-               and gf:  "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-  proof (rule extend_map_affine_to_sphere2 [OF SUT aff contf fim])
-    show "C \<inter> LU \<noteq> {}" if "C \<in> components (T - S)" for C
-    proof (cases "bounded C")
-      case True
-      with dis that show ?thesis
-        unfolding LU_def by fastforce
-    next
-      case False
-      then have "\<not> bounded (\<Union>{C \<in> components (T - S). \<not> bounded C})"
-        by (metis (no_types, lifting) Sup_upper bounded_subset mem_Collect_eq that)
-      then show ?thesis
-        apply (clarsimp simp: LU_def Int_Un_distrib Diff_Int_distrib Int_UN_distrib)
-        by (metis (no_types, lifting) False Sup_upper bounded_cbox bounded_subset inf.orderE mem_Collect_eq that)
-    qed
-  qed blast
-  have *: False if "x \<in> cbox (- b - m *\<^sub>R One) (b + m *\<^sub>R One)"
-                   "x \<notin> box (- b - n *\<^sub>R One) (b + n *\<^sub>R One)"
-                   "0 \<le> m" "m < n" "n \<le> 1" for m n x
-    using that by (auto simp: mem_box algebra_simps)
-  have "disjoint_family_on (\<lambda>d. frontier (cbox (- b - d *\<^sub>R One) (b + d *\<^sub>R One))) {1 / 2..1}"
-    by (auto simp: disjoint_family_on_def neq_iff frontier_def dest: *)
-  then obtain d where d12: "1/2 \<le> d" "d \<le> 1"
-                  and ddis: "disjnt K (frontier (cbox (-(b + d *\<^sub>R One)) (b + d *\<^sub>R One)))"
-    using disjoint_family_elem_disjnt [of "{1/2..1::real}" K "\<lambda>d. frontier (cbox (-(b + d *\<^sub>R One)) (b + d *\<^sub>R One))"]
-    by (auto simp: \<open>finite K\<close>)
-  define c where "c \<equiv> b + d *\<^sub>R One"
-  have cbsub: "cbox (-b) b \<subseteq> box (-c) c"
-              "cbox (-b) b \<subseteq> cbox (-c) c"
-              "cbox (-c) c \<subseteq> cbox (-(b+One)) (b+One)"
-    using d12 by (simp_all add: subset_box c_def inner_diff_left inner_left_distrib)
-  have clo_cT: "closed (cbox (- c) c \<inter> T)"
-    using affine_closed \<open>affine T\<close> by blast
-  have cT_ne: "cbox (- c) c \<inter> T \<noteq> {}"
-    using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b cbsub by fastforce
-  have S_sub_cc: "S \<subseteq> cbox (- c) c"
-    using \<open>cbox (- b) b \<subseteq> cbox (- c) c\<close> b by auto
-  show ?thesis
-  proof
-    show "finite (K \<inter> cbox (-(b+One)) (b+One))"
-      using \<open>finite K\<close> by blast
-    show "K \<inter> cbox (- (b + One)) (b + One) \<subseteq> L"
-      using \<open>K \<subseteq> LU\<close> by (auto simp: LU_def)
-    show "K \<inter> cbox (- (b + One)) (b + One) \<subseteq> T"
-      using \<open>K \<subseteq> T\<close> by auto
-    show "disjnt (K \<inter> cbox (- (b + One)) (b + One)) S"
-      using \<open>disjnt K S\<close>  by (simp add: disjnt_def disjoint_eq_subset_Compl inf.coboundedI1)
-    have cloTK: "closest_point (cbox (- c) c \<inter> T) x \<in> T - K"
-                if "x \<in> T" and Knot: "x \<in> K \<longrightarrow> x \<notin> cbox (- b - One) (b + One)" for x
-    proof (cases "x \<in> cbox (- c) c")
-      case True
-      with \<open>x \<in> T\<close> show ?thesis
-        using cbsub(3) Knot  by (force simp: closest_point_self)
-    next
-      case False
-      have clo_in_rf: "closest_point (cbox (- c) c \<inter> T) x \<in> rel_frontier (cbox (- c) c \<inter> T)"
-      proof (intro closest_point_in_rel_frontier [OF clo_cT cT_ne] DiffI notI)
-        have "T \<inter> interior (cbox (- c) c) \<noteq> {}"
-          using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b cbsub(1) by fastforce
-        then show "x \<in> affine hull (cbox (- c) c \<inter> T)"
-          by (simp add: Int_commute affine_hull_affine_Int_nonempty_interior \<open>affine T\<close> hull_inc that(1))
-      next
-        show "False" if "x \<in> rel_interior (cbox (- c) c \<inter> T)"
-        proof -
-          have "interior (cbox (- c) c) \<inter> T \<noteq> {}"
-            using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b cbsub(1) by fastforce
-          then have "affine hull (T \<inter> cbox (- c) c) = T"
-            using affine_hull_convex_Int_nonempty_interior [of T "cbox (- c) c"]
-            by (simp add: affine_imp_convex \<open>affine T\<close> inf_commute)
-          then show ?thesis
-            by (meson subsetD le_inf_iff rel_interior_subset that False)
-        qed
-      qed
-      have "closest_point (cbox (- c) c \<inter> T) x \<notin> K"
-      proof
-        assume inK: "closest_point (cbox (- c) c \<inter> T) x \<in> K"
-        have "\<And>x. x \<in> K \<Longrightarrow> x \<notin> frontier (cbox (- (b + d *\<^sub>R One)) (b + d *\<^sub>R One))"
-          by (metis ddis disjnt_iff)
-        then show False
-          by (metis DiffI Int_iff \<open>affine T\<close> cT_ne c_def clo_cT clo_in_rf closest_point_in_set
-                    convex_affine_rel_frontier_Int convex_box(1) empty_iff frontier_cbox inK interior_cbox)
-      qed
-      then show ?thesis
-        using cT_ne clo_cT closest_point_in_set by blast
-    qed
-    show "continuous_on (T - K \<inter> cbox (- (b + One)) (b + One)) (g \<circ> closest_point (cbox (-c) c \<inter> T))"
-      apply (intro continuous_on_compose continuous_on_closest_point continuous_on_subset [OF contg])
-         apply (simp_all add: clo_cT affine_imp_convex \<open>affine T\<close> convex_Int cT_ne)
-      using cloTK by blast
-    have "g (closest_point (cbox (- c) c \<inter> T) x) \<in> rel_frontier U"
-         if "x \<in> T" "x \<in> K \<longrightarrow> x \<notin> cbox (- b - One) (b + One)" for x
-      apply (rule gim [THEN subsetD])
-      using that cloTK by blast
-    then show "(g \<circ> closest_point (cbox (- c) c \<inter> T)) ` (T - K \<inter> cbox (- (b + One)) (b + One))
-               \<subseteq> rel_frontier U"
-      by force
-    show "\<And>x. x \<in> S \<Longrightarrow> (g \<circ> closest_point (cbox (- c) c \<inter> T)) x = f x"
-      by simp (metis (mono_tags, lifting) IntI \<open>S \<subseteq> T\<close> cT_ne clo_cT closest_point_refl gf subsetD S_sub_cc)
-  qed
-qed
-
-
-corollary extend_map_affine_to_sphere_cofinite:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes SUT: "compact S" "affine T" "S \<subseteq> T"
-      and aff: "aff_dim T \<le> DIM('b)" and "0 \<le> r"
-      and contf: "continuous_on S f"
-      and fim: "f ` S \<subseteq> sphere a r"
-      and dis: "\<And>C. \<lbrakk>C \<in> components(T - S); bounded C\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
-  obtains K g where "finite K" "K \<subseteq> L" "K \<subseteq> T" "disjnt K S" "continuous_on (T - K) g"
-                    "g ` (T - K) \<subseteq> sphere a r" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-proof (cases "r = 0")
-  case True
-  with fim show ?thesis
-    by (rule_tac K="{}" and g = "\<lambda>x. a" in that) (auto simp: continuous_on_const)
-next
-  case False
-  with assms have "0 < r" by auto
-  then have "aff_dim T \<le> aff_dim (cball a r)"
-    by (simp add: aff aff_dim_cball)
-  then show ?thesis
-    apply (rule extend_map_affine_to_sphere_cofinite_gen
-            [OF \<open>compact S\<close> convex_cball bounded_cball \<open>affine T\<close> \<open>S \<subseteq> T\<close> _ contf])
-    using fim apply (auto simp: assms False that dest: dis)
-    done
-qed
-
-corollary extend_map_UNIV_to_sphere_cofinite:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes aff: "DIM('a) \<le> DIM('b)" and "0 \<le> r"
-      and SUT: "compact S"
-      and contf: "continuous_on S f"
-      and fim: "f ` S \<subseteq> sphere a r"
-      and dis: "\<And>C. \<lbrakk>C \<in> components(- S); bounded C\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
-  obtains K g where "finite K" "K \<subseteq> L" "disjnt K S" "continuous_on (- K) g"
-                    "g ` (- K) \<subseteq> sphere a r" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-apply (rule extend_map_affine_to_sphere_cofinite
-        [OF \<open>compact S\<close> affine_UNIV subset_UNIV _ \<open>0 \<le> r\<close> contf fim dis])
- apply (auto simp: assms that Compl_eq_Diff_UNIV [symmetric])
-done
-
-corollary extend_map_UNIV_to_sphere_no_bounded_component:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes aff: "DIM('a) \<le> DIM('b)" and "0 \<le> r"
-      and SUT: "compact S"
-      and contf: "continuous_on S f"
-      and fim: "f ` S \<subseteq> sphere a r"
-      and dis: "\<And>C. C \<in> components(- S) \<Longrightarrow> \<not> bounded C"
-  obtains g where "continuous_on UNIV g" "g ` UNIV \<subseteq> sphere a r" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-apply (rule extend_map_UNIV_to_sphere_cofinite [OF aff \<open>0 \<le> r\<close> \<open>compact S\<close> contf fim, of "{}"])
-   apply (auto simp: that dest: dis)
-done
-
-theorem Borsuk_separation_theorem_gen:
-  fixes S :: "'a::euclidean_space set"
-  assumes "compact S"
-    shows "(\<forall>c \<in> components(- S). ~bounded c) \<longleftrightarrow>
-           (\<forall>f. continuous_on S f \<and> f ` S \<subseteq> sphere (0::'a) 1
-                \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1) f (\<lambda>x. c)))"
-       (is "?lhs = ?rhs")
-proof
-  assume L [rule_format]: ?lhs
-  show ?rhs
-  proof clarify
-    fix f :: "'a \<Rightarrow> 'a"
-    assume contf: "continuous_on S f" and fim: "f ` S \<subseteq> sphere 0 1"
-    obtain g where contg: "continuous_on UNIV g" and gim: "range g \<subseteq> sphere 0 1"
-               and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-      by (rule extend_map_UNIV_to_sphere_no_bounded_component [OF _ _ \<open>compact S\<close> contf fim L]) auto
-    then show "\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1) f (\<lambda>x. c)"
-      using nullhomotopic_from_contractible [OF contg gim]
-      by (metis assms compact_imp_closed contf empty_iff fim homotopic_with_equal nullhomotopic_into_sphere_extension)
-  qed
-next
-  assume R [rule_format]: ?rhs
-  show ?lhs
-    unfolding components_def
-  proof clarify
-    fix a
-    assume "a \<notin> S" and a: "bounded (connected_component_set (- S) a)"
-    have cont: "continuous_on S (\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a))"
-      apply (intro continuous_intros)
-      using \<open>a \<notin> S\<close> by auto
-    have im: "(\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a)) ` S \<subseteq> sphere 0 1"
-      by clarsimp (metis \<open>a \<notin> S\<close> eq_iff_diff_eq_0 left_inverse norm_eq_zero)
-    show False
-      using R cont im Borsuk_map_essential_bounded_component [OF \<open>compact S\<close> \<open>a \<notin> S\<close>] a by blast
-  qed
-qed
-
-
-corollary Borsuk_separation_theorem:
-  fixes S :: "'a::euclidean_space set"
-  assumes "compact S" and 2: "2 \<le> DIM('a)"
-    shows "connected(- S) \<longleftrightarrow>
-           (\<forall>f. continuous_on S f \<and> f ` S \<subseteq> sphere (0::'a) 1
-                \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1) f (\<lambda>x. c)))"
-       (is "?lhs = ?rhs")
-proof
-  assume L: ?lhs
-  show ?rhs
-  proof (cases "S = {}")
-    case True
-    then show ?thesis by auto
-  next
-    case False
-    then have "(\<forall>c\<in>components (- S). \<not> bounded c)"
-      by (metis L assms(1) bounded_empty cobounded_imp_unbounded compact_imp_bounded in_components_maximal order_refl)
-    then show ?thesis
-      by (simp add: Borsuk_separation_theorem_gen [OF \<open>compact S\<close>])
-  qed
-next
-  assume R: ?rhs
-  then show ?lhs
-    apply (simp add: Borsuk_separation_theorem_gen [OF \<open>compact S\<close>, symmetric])
-    apply (auto simp: components_def connected_iff_eq_connected_component_set)
-    using connected_component_in apply fastforce
-    using cobounded_unique_unbounded_component [OF _ 2, of "-S"] \<open>compact S\<close> compact_eq_bounded_closed by fastforce
-qed
-
-
-lemma homotopy_eqv_separation:
-  fixes S :: "'a::euclidean_space set" and T :: "'a set"
-  assumes "S homotopy_eqv T" and "compact S" and "compact T"
-  shows "connected(- S) \<longleftrightarrow> connected(- T)"
-proof -
-  consider "DIM('a) = 1" | "2 \<le> DIM('a)"
-    by (metis DIM_ge_Suc0 One_nat_def Suc_1 dual_order.antisym not_less_eq_eq)
-  then show ?thesis
-  proof cases
-    case 1
-    then show ?thesis
-      using bounded_connected_Compl_1 compact_imp_bounded homotopy_eqv_empty1 homotopy_eqv_empty2 assms by metis
-  next
-    case 2
-    with assms show ?thesis
-      by (simp add: Borsuk_separation_theorem homotopy_eqv_cohomotopic_triviality_null)
-  qed
-qed
-
-lemma Jordan_Brouwer_separation:
-  fixes S :: "'a::euclidean_space set" and a::'a
-  assumes hom: "S homeomorphic sphere a r" and "0 < r"
-    shows "\<not> connected(- S)"
-proof -
-  have "- sphere a r \<inter> ball a r \<noteq> {}"
-    using \<open>0 < r\<close> by (simp add: Int_absorb1 subset_eq)
-  moreover
-  have eq: "- sphere a r - ball a r = - cball a r"
-    by auto
-  have "- cball a r \<noteq> {}"
-  proof -
-    have "frontier (cball a r) \<noteq> {}"
-      using \<open>0 < r\<close> by auto
-    then show ?thesis
-      by (metis frontier_complement frontier_empty)
-  qed
-  with eq have "- sphere a r - ball a r \<noteq> {}"
-    by auto
-  moreover
-  have "connected (- S) = connected (- sphere a r)"
-  proof (rule homotopy_eqv_separation)
-    show "S homotopy_eqv sphere a r"
-      using hom homeomorphic_imp_homotopy_eqv by blast
-    show "compact (sphere a r)"
-      by simp
-    then show " compact S"
-      using hom homeomorphic_compactness by blast
-  qed
-  ultimately show ?thesis
-    using connected_Int_frontier [of "- sphere a r" "ball a r"] by (auto simp: \<open>0 < r\<close>)
-qed
-
-
-lemma Jordan_Brouwer_frontier:
-  fixes S :: "'a::euclidean_space set" and a::'a
-  assumes S: "S homeomorphic sphere a r" and T: "T \<in> components(- S)" and 2: "2 \<le> DIM('a)"
-    shows "frontier T = S"
-proof (cases r rule: linorder_cases)
-  assume "r < 0"
-  with S T show ?thesis by auto
-next
-  assume "r = 0"
-  with S T card_eq_SucD obtain b where "S = {b}"
-    by (auto simp: homeomorphic_finite [of "{a}" S])
-  have "components (- {b}) = { -{b}}"
-    using T \<open>S = {b}\<close> by (auto simp: components_eq_sing_iff connected_punctured_universe 2)
-  with T show ?thesis
-    by (metis \<open>S = {b}\<close> cball_trivial frontier_cball frontier_complement singletonD sphere_trivial)
-next
-  assume "r > 0"
-  have "compact S"
-    using homeomorphic_compactness compact_sphere S by blast
-  show ?thesis
-  proof (rule frontier_minimal_separating_closed)
-    show "closed S"
-      using \<open>compact S\<close> compact_eq_bounded_closed by blast
-    show "\<not> connected (- S)"
-      using Jordan_Brouwer_separation S \<open>0 < r\<close> by blast
-    obtain f g where hom: "homeomorphism S (sphere a r) f g"
-      using S by (auto simp: homeomorphic_def)
-    show "connected (- T)" if "closed T" "T \<subset> S" for T
-    proof -
-      have "f ` T \<subseteq> sphere a r"
-        using \<open>T \<subset> S\<close> hom homeomorphism_image1 by blast
-      moreover have "f ` T \<noteq> sphere a r"
-        using \<open>T \<subset> S\<close> hom
-        by (metis homeomorphism_image2 homeomorphism_of_subsets order_refl psubsetE)
-      ultimately have "f ` T \<subset> sphere a r" by blast
-      then have "connected (- f ` T)"
-        by (rule psubset_sphere_Compl_connected [OF _ \<open>0 < r\<close> 2])
-      moreover have "compact T"
-        using \<open>compact S\<close> bounded_subset compact_eq_bounded_closed that by blast
-      moreover then have "compact (f ` T)"
-        by (meson compact_continuous_image continuous_on_subset hom homeomorphism_def psubsetE \<open>T \<subset> S\<close>)
-      moreover have "T homotopy_eqv f ` T"
-        by (meson \<open>f ` T \<subseteq> sphere a r\<close> dual_order.strict_implies_order hom homeomorphic_def homeomorphic_imp_homotopy_eqv homeomorphism_of_subsets \<open>T \<subset> S\<close>)
-      ultimately show ?thesis
-        using homotopy_eqv_separation [of T "f`T"] by blast
-    qed
-  qed (rule T)
-qed
-
-lemma Jordan_Brouwer_nonseparation:
-  fixes S :: "'a::euclidean_space set" and a::'a
-  assumes S: "S homeomorphic sphere a r" and "T \<subset> S" and 2: "2 \<le> DIM('a)"
-    shows "connected(- T)"
-proof -
-  have *: "connected(C \<union> (S - T))" if "C \<in> components(- S)" for C
-  proof (rule connected_intermediate_closure)
-    show "connected C"
-      using in_components_connected that by auto
-    have "S = frontier C"
-      using "2" Jordan_Brouwer_frontier S that by blast
-    with closure_subset show "C \<union> (S - T) \<subseteq> closure C"
-      by (auto simp: frontier_def)
-  qed auto
-  have "components(- S) \<noteq> {}"
-    by (metis S bounded_empty cobounded_imp_unbounded compact_eq_bounded_closed compact_sphere
-              components_eq_empty homeomorphic_compactness)
-  then have "- T = (\<Union>C \<in> components(- S). C \<union> (S - T))"
-    using Union_components [of "-S"] \<open>T \<subset> S\<close> by auto
-  then show ?thesis
-    apply (rule ssubst)
-    apply (rule connected_Union)
-    using \<open>T \<subset> S\<close> apply (auto simp: *)
-    done
-qed
-
-subsection\<open> Invariance of domain and corollaries\<close>
-
-lemma invariance_of_domain_ball:
-  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
-  assumes contf: "continuous_on (cball a r) f" and "0 < r"
-     and inj: "inj_on f (cball a r)"
-   shows "open(f ` ball a r)"
-proof (cases "DIM('a) = 1")
-  case True
-  obtain h::"'a\<Rightarrow>real" and k
-        where "linear h" "linear k" "h ` UNIV = UNIV" "k ` UNIV = UNIV"
-              "\<And>x. norm(h x) = norm x" "\<And>x. norm(k x) = norm x"
-              "\<And>x. k(h x) = x" "\<And>x. h(k x) = x"
-    apply (rule isomorphisms_UNIV_UNIV [where 'M='a and 'N=real])
-      using True
-       apply force
-      by (metis UNIV_I UNIV_eq_I imageI)
-    have cont: "continuous_on S h"  "continuous_on T k" for S T
-      by (simp_all add: \<open>linear h\<close> \<open>linear k\<close> linear_continuous_on linear_linear)
-    have "continuous_on (h ` cball a r) (h \<circ> f \<circ> k)"
-      apply (intro continuous_on_compose cont continuous_on_subset [OF contf])
-      apply (auto simp: \<open>\<And>x. k (h x) = x\<close>)
-      done
-    moreover have "is_interval (h ` cball a r)"
-      by (simp add: is_interval_connected_1 \<open>linear h\<close> linear_continuous_on linear_linear connected_continuous_image)
-    moreover have "inj_on (h \<circ> f \<circ> k) (h ` cball a r)"
-      using inj by (simp add: inj_on_def) (metis \<open>\<And>x. k (h x) = x\<close>)
-    ultimately have *: "\<And>T. \<lbrakk>open T; T \<subseteq> h ` cball a r\<rbrakk> \<Longrightarrow> open ((h \<circ> f \<circ> k) ` T)"
-      using injective_eq_1d_open_map_UNIV by blast
-    have "open ((h \<circ> f \<circ> k) ` (h ` ball a r))"
-      by (rule *) (auto simp: \<open>linear h\<close> \<open>range h = UNIV\<close> open_surjective_linear_image)
-    then have "open ((h \<circ> f) ` ball a r)"
-      by (simp add: image_comp \<open>\<And>x. k (h x) = x\<close> cong: image_cong)
-    then show ?thesis
-      apply (simp add: image_comp [symmetric])
-      apply (metis open_bijective_linear_image_eq \<open>linear h\<close> \<open>\<And>x. k (h x) = x\<close> \<open>range h = UNIV\<close> bijI inj_on_def)
-      done
-next
-  case False
-  then have 2: "DIM('a) \<ge> 2"
-    by (metis DIM_ge_Suc0 One_nat_def Suc_1 antisym not_less_eq_eq)
-  have fimsub: "f ` ball a r \<subseteq> - f ` sphere a r"
-    using inj  by clarsimp (metis inj_onD less_eq_real_def mem_cball order_less_irrefl)
-  have hom: "f ` sphere a r homeomorphic sphere a r"
-    by (meson compact_sphere contf continuous_on_subset homeomorphic_compact homeomorphic_sym inj inj_on_subset sphere_cball)
-  then have nconn: "\<not> connected (- f ` sphere a r)"
-    by (rule Jordan_Brouwer_separation) (auto simp: \<open>0 < r\<close>)
-  obtain C where C: "C \<in> components (- f ` sphere a r)" and "bounded C"
-    apply (rule cobounded_has_bounded_component [OF _ nconn])
-      apply (simp_all add: 2)
-    by (meson compact_imp_bounded compact_continuous_image_eq compact_sphere contf inj sphere_cball)
-  moreover have "f ` (ball a r) = C"
-  proof
-    have "C \<noteq> {}"
-      by (rule in_components_nonempty [OF C])
-    show "C \<subseteq> f ` ball a r"
-    proof (rule ccontr)
-      assume nonsub: "\<not> C \<subseteq> f ` ball a r"
-      have "- f ` cball a r \<subseteq> C"
-      proof (rule components_maximal [OF C])
-        have "f ` cball a r homeomorphic cball a r"
-          using compact_cball contf homeomorphic_compact homeomorphic_sym inj by blast
-        then show "connected (- f ` cball a r)"
-          by (auto intro: connected_complement_homeomorphic_convex_compact 2)
-        show "- f ` cball a r \<subseteq> - f ` sphere a r"
-          by auto
-        then show "C \<inter> - f ` cball a r \<noteq> {}"
-          using \<open>C \<noteq> {}\<close> in_components_subset [OF C] nonsub
-          using image_iff by fastforce
-      qed
-      then have "bounded (- f ` cball a r)"
-        using bounded_subset \<open>bounded C\<close> by auto
-      then have "\<not> bounded (f ` cball a r)"
-        using cobounded_imp_unbounded by blast
-      then show "False"
-        using compact_continuous_image [OF contf] compact_cball compact_imp_bounded by blast
-    qed
-    with \<open>C \<noteq> {}\<close> have "C \<inter> f ` ball a r \<noteq> {}"
-      by (simp add: inf.absorb_iff1)
-    then show "f ` ball a r \<subseteq> C"
-      by (metis components_maximal [OF C _ fimsub] connected_continuous_image ball_subset_cball connected_ball contf continuous_on_subset)
-  qed
-  moreover have "open (- f ` sphere a r)"
-    using hom compact_eq_bounded_closed compact_sphere homeomorphic_compactness by blast
-  ultimately show ?thesis
-    using open_components by blast
-qed
-
-
-text\<open>Proved by L. E. J. Brouwer (1912)\<close>
-theorem invariance_of_domain:
-  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
-  assumes "continuous_on S f" "open S" "inj_on f S"
-    shows "open(f ` S)"
-  unfolding open_subopen [of "f`S"]
-proof clarify
-  fix a
-  assume "a \<in> S"
-  obtain \<delta> where "\<delta> > 0" and \<delta>: "cball a \<delta> \<subseteq> S"
-    using \<open>open S\<close> \<open>a \<in> S\<close> open_contains_cball_eq by blast
-  show "\<exists>T. open T \<and> f a \<in> T \<and> T \<subseteq> f ` S"
-  proof (intro exI conjI)
-    show "open (f ` (ball a \<delta>))"
-      by (meson \<delta> \<open>0 < \<delta>\<close> assms continuous_on_subset inj_on_subset invariance_of_domain_ball)
-    show "f a \<in> f ` ball a \<delta>"
-      by (simp add: \<open>0 < \<delta>\<close>)
-    show "f ` ball a \<delta> \<subseteq> f ` S"
-      using \<delta> ball_subset_cball by blast
-  qed
-qed
-
-lemma inv_of_domain_ss0:
-  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
-  assumes contf: "continuous_on U f" and injf: "inj_on f U" and fim: "f ` U \<subseteq> S"
-      and "subspace S" and dimS: "dim S = DIM('b::euclidean_space)"
-      and ope: "openin (subtopology euclidean S) U"
-    shows "openin (subtopology euclidean S) (f ` U)"
-proof -
-  have "U \<subseteq> S"
-    using ope openin_imp_subset by blast
-  have "(UNIV::'b set) homeomorphic S"
-    by (simp add: \<open>subspace S\<close> dimS dim_UNIV homeomorphic_subspaces)
-  then obtain h k where homhk: "homeomorphism (UNIV::'b set) S h k"
-    using homeomorphic_def by blast
-  have homkh: "homeomorphism S (k ` S) k h"
-    using homhk homeomorphism_image2 homeomorphism_sym by fastforce
-  have "open ((k \<circ> f \<circ> h) ` k ` U)"
-  proof (rule invariance_of_domain)
-    show "continuous_on (k ` U) (k \<circ> f \<circ> h)"
-    proof (intro continuous_intros)
-      show "continuous_on (k ` U) h"
-        by (meson continuous_on_subset [OF homeomorphism_cont1 [OF homhk]] top_greatest)
-      show "continuous_on (h ` k ` U) f"
-        apply (rule continuous_on_subset [OF contf], clarify)
-        apply (metis homhk homeomorphism_def ope openin_imp_subset rev_subsetD)
-        done
-      show "continuous_on (f ` h ` k ` U) k"
-        apply (rule continuous_on_subset [OF homeomorphism_cont2 [OF homhk]])
-        using fim homhk homeomorphism_apply2 ope openin_subset by fastforce
-    qed
-    have ope_iff: "\<And>T. open T \<longleftrightarrow> openin (subtopology euclidean (k ` S)) T"
-      using homhk homeomorphism_image2 open_openin by fastforce
-    show "open (k ` U)"
-      by (simp add: ope_iff homeomorphism_imp_open_map [OF homkh ope])
-    show "inj_on (k \<circ> f \<circ> h) (k ` U)"
-      apply (clarsimp simp: inj_on_def)
-      by (metis subsetD fim homeomorphism_apply2 [OF homhk] image_subset_iff inj_on_eq_iff injf \<open>U \<subseteq> S\<close>)
-  qed
-  moreover
-  have eq: "f ` U = h ` (k \<circ> f \<circ> h \<circ> k) ` U"
-    apply (auto simp: image_comp [symmetric])
-    apply (metis homkh \<open>U \<subseteq> S\<close> fim homeomorphism_image2 homeomorphism_of_subsets homhk imageI subset_UNIV)
-    by (metis \<open>U \<subseteq> S\<close> subsetD fim homeomorphism_def homhk image_eqI)
-  ultimately show ?thesis
-    by (metis (no_types, hide_lams) homeomorphism_imp_open_map homhk image_comp open_openin subtopology_UNIV)
-qed
-
-lemma inv_of_domain_ss1:
-  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
-  assumes contf: "continuous_on U f" and injf: "inj_on f U" and fim: "f ` U \<subseteq> S"
-      and "subspace S"
-      and ope: "openin (subtopology euclidean S) U"
-    shows "openin (subtopology euclidean S) (f ` U)"
-proof -
-  define S' where "S' \<equiv> {y. \<forall>x \<in> S. orthogonal x y}"
-  have "subspace S'"
-    by (simp add: S'_def subspace_orthogonal_to_vectors)
-  define g where "g \<equiv> \<lambda>z::'a*'a. ((f \<circ> fst)z, snd z)"
-  have "openin (subtopology euclidean (S \<times> S')) (g ` (U \<times> S'))"
-  proof (rule inv_of_domain_ss0)
-    show "continuous_on (U \<times> S') g"
-      apply (simp add: g_def)
-      apply (intro continuous_intros continuous_on_compose2 [OF contf continuous_on_fst], auto)
-      done
-    show "g ` (U \<times> S') \<subseteq> S \<times> S'"
-      using fim  by (auto simp: g_def)
-    show "inj_on g (U \<times> S')"
-      using injf by (auto simp: g_def inj_on_def)
-    show "subspace (S \<times> S')"
-      by (simp add: \<open>subspace S'\<close> \<open>subspace S\<close> subspace_Times)
-    show "openin (subtopology euclidean (S \<times> S')) (U \<times> S')"
-      by (simp add: openin_Times [OF ope])
-    have "dim (S \<times> S') = dim S + dim S'"
-      by (simp add: \<open>subspace S'\<close> \<open>subspace S\<close> dim_Times)
-    also have "... = DIM('a)"
-      using dim_subspace_orthogonal_to_vectors [OF \<open>subspace S\<close> subspace_UNIV]
-      by (simp add: add.commute S'_def)
-    finally show "dim (S \<times> S') = DIM('a)" .
-  qed
-  moreover have "g ` (U \<times> S') = f ` U \<times> S'"
-    by (auto simp: g_def image_iff)
-  moreover have "0 \<in> S'"
-    using \<open>subspace S'\<close> subspace_affine by blast
-  ultimately show ?thesis
-    by (auto simp: openin_Times_eq)
-qed
-
-
-corollary invariance_of_domain_subspaces:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes ope: "openin (subtopology euclidean U) S"
-      and "subspace U" "subspace V" and VU: "dim V \<le> dim U"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
-      and injf: "inj_on f S"
-    shows "openin (subtopology euclidean V) (f ` S)"
-proof -
-  obtain V' where "subspace V'" "V' \<subseteq> U" "dim V' = dim V"
-    using choose_subspace_of_subspace [OF VU]
-    by (metis span_eq \<open>subspace U\<close>)
-  then have "V homeomorphic V'"
-    by (simp add: \<open>subspace V\<close> homeomorphic_subspaces)
-  then obtain h k where homhk: "homeomorphism V V' h k"
-    using homeomorphic_def by blast
-  have eq: "f ` S = k ` (h \<circ> f) ` S"
-  proof -
-    have "k ` h ` f ` S = f ` S"
-      by (meson fim homeomorphism_def homeomorphism_of_subsets homhk subset_refl)
-    then show ?thesis
-      by (simp add: image_comp)
-  qed
-  show ?thesis
-    unfolding eq
-  proof (rule homeomorphism_imp_open_map)
-    show homkh: "homeomorphism V' V k h"
-      by (simp add: homeomorphism_symD homhk)
-    have hfV': "(h \<circ> f) ` S \<subseteq> V'"
-      using fim homeomorphism_image1 homhk by fastforce
-    moreover have "openin (subtopology euclidean U) ((h \<circ> f) ` S)"
-    proof (rule inv_of_domain_ss1)
-      show "continuous_on S (h \<circ> f)"
-        by (meson contf continuous_on_compose continuous_on_subset fim homeomorphism_cont1 homhk)
-      show "inj_on (h \<circ> f) S"
-        apply (clarsimp simp: inj_on_def)
-        by (metis fim homeomorphism_apply2 [OF homkh] image_subset_iff inj_onD injf)
-      show "(h \<circ> f) ` S \<subseteq> U"
-        using \<open>V' \<subseteq> U\<close> hfV' by auto
-      qed (auto simp: assms)
-    ultimately show "openin (subtopology euclidean V') ((h \<circ> f) ` S)"
-      using openin_subset_trans \<open>V' \<subseteq> U\<close> by force
-  qed
-qed
-
-corollary invariance_of_dimension_subspaces:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes ope: "openin (subtopology euclidean U) S"
-      and "subspace U" "subspace V"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
-      and injf: "inj_on f S" and "S \<noteq> {}"
-    shows "dim U \<le> dim V"
-proof -
-  have "False" if "dim V < dim U"
-  proof -
-    obtain T where "subspace T" "T \<subseteq> U" "dim T = dim V"
-      using choose_subspace_of_subspace [of "dim V" U]
-      by (metis span_eq \<open>subspace U\<close> \<open>dim V < dim U\<close> linear not_le)
-    then have "V homeomorphic T"
-      by (simp add: \<open>subspace V\<close> homeomorphic_subspaces)
-    then obtain h k where homhk: "homeomorphism V T h k"
-      using homeomorphic_def  by blast
-    have "continuous_on S (h \<circ> f)"
-      by (meson contf continuous_on_compose continuous_on_subset fim homeomorphism_cont1 homhk)
-    moreover have "(h \<circ> f) ` S \<subseteq> U"
-      using \<open>T \<subseteq> U\<close> fim homeomorphism_image1 homhk by fastforce
-    moreover have "inj_on (h \<circ> f) S"
-      apply (clarsimp simp: inj_on_def)
-      by (metis fim homeomorphism_apply1 homhk image_subset_iff inj_onD injf)
-    ultimately have ope_hf: "openin (subtopology euclidean U) ((h \<circ> f) ` S)"
-      using invariance_of_domain_subspaces [OF ope \<open>subspace U\<close> \<open>subspace U\<close>] by auto
-    have "(h \<circ> f) ` S \<subseteq> T"
-      using fim homeomorphism_image1 homhk by fastforce
-    then show ?thesis
-      by (metis dim_openin \<open>dim T = dim V\<close> ope_hf \<open>subspace U\<close> \<open>S \<noteq> {}\<close> dim_subset image_is_empty not_le that)
-  qed
-  then show ?thesis
-    using not_less by blast
-qed
-
-corollary invariance_of_domain_affine_sets:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes ope: "openin (subtopology euclidean U) S"
-      and aff: "affine U" "affine V" "aff_dim V \<le> aff_dim U"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
-      and injf: "inj_on f S"
-    shows "openin (subtopology euclidean V) (f ` S)"
-proof (cases "S = {}")
-  case True
-  then show ?thesis by auto
-next
-  case False
-  obtain a b where "a \<in> S" "a \<in> U" "b \<in> V"
-    using False fim ope openin_contains_cball by fastforce
-  have "openin (subtopology euclidean (op + (- b) ` V)) ((op + (- b) \<circ> f \<circ> op + a) ` op + (- a) ` S)"
-  proof (rule invariance_of_domain_subspaces)
-    show "openin (subtopology euclidean (op + (- a) ` U)) (op + (- a) ` S)"
-      by (metis ope homeomorphism_imp_open_map homeomorphism_translation translation_galois)
-    show "subspace (op + (- a) ` U)"
-      by (simp add: \<open>a \<in> U\<close> affine_diffs_subspace \<open>affine U\<close>)
-    show "subspace (op + (- b) ` V)"
-      by (simp add: \<open>b \<in> V\<close> affine_diffs_subspace \<open>affine V\<close>)
-    show "dim (op + (- b) ` V) \<le> dim (op + (- a) ` U)"
-      by (metis \<open>a \<in> U\<close> \<open>b \<in> V\<close> aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff)
-    show "continuous_on (op + (- a) ` S) (op + (- b) \<circ> f \<circ> op + a)"
-      by (metis contf continuous_on_compose homeomorphism_cont2 homeomorphism_translation translation_galois)
-    show "(op + (- b) \<circ> f \<circ> op + a) ` op + (- a) ` S \<subseteq> op + (- b) ` V"
-      using fim by auto
-    show "inj_on (op + (- b) \<circ> f \<circ> op + a) (op + (- a) ` S)"
-      by (auto simp: inj_on_def) (meson inj_onD injf)
-  qed
-  then show ?thesis
-    by (metis (no_types, lifting) homeomorphism_imp_open_map homeomorphism_translation image_comp translation_galois)
-qed
-
-corollary invariance_of_dimension_affine_sets:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes ope: "openin (subtopology euclidean U) S"
-      and aff: "affine U" "affine V"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
-      and injf: "inj_on f S" and "S \<noteq> {}"
-    shows "aff_dim U \<le> aff_dim V"
-proof -
-  obtain a b where "a \<in> S" "a \<in> U" "b \<in> V"
-    using \<open>S \<noteq> {}\<close> fim ope openin_contains_cball by fastforce
-  have "dim (op + (- a) ` U) \<le> dim (op + (- b) ` V)"
-  proof (rule invariance_of_dimension_subspaces)
-    show "openin (subtopology euclidean (op + (- a) ` U)) (op + (- a) ` S)"
-      by (metis ope homeomorphism_imp_open_map homeomorphism_translation translation_galois)
-    show "subspace (op + (- a) ` U)"
-      by (simp add: \<open>a \<in> U\<close> affine_diffs_subspace \<open>affine U\<close>)
-    show "subspace (op + (- b) ` V)"
-      by (simp add: \<open>b \<in> V\<close> affine_diffs_subspace \<open>affine V\<close>)
-    show "continuous_on (op + (- a) ` S) (op + (- b) \<circ> f \<circ> op + a)"
-      by (metis contf continuous_on_compose homeomorphism_cont2 homeomorphism_translation translation_galois)
-    show "(op + (- b) \<circ> f \<circ> op + a) ` op + (- a) ` S \<subseteq> op + (- b) ` V"
-      using fim by auto
-    show "inj_on (op + (- b) \<circ> f \<circ> op + a) (op + (- a) ` S)"
-      by (auto simp: inj_on_def) (meson inj_onD injf)
-  qed (use \<open>S \<noteq> {}\<close> in auto)
-  then show ?thesis
-    by (metis \<open>a \<in> U\<close> \<open>b \<in> V\<close> aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff)
-qed
-
-corollary invariance_of_dimension:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes contf: "continuous_on S f" and "open S"
-      and injf: "inj_on f S" and "S \<noteq> {}"
-    shows "DIM('a) \<le> DIM('b)"
-  using invariance_of_dimension_subspaces [of UNIV S UNIV f] assms
-  by auto
-
-
-corollary continuous_injective_image_subspace_dim_le:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "subspace S" "subspace T"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> T"
-      and injf: "inj_on f S"
-    shows "dim S \<le> dim T"
-  apply (rule invariance_of_dimension_subspaces [of S S _ f])
-  using assms by (auto simp: subspace_affine)
-
-lemma invariance_of_dimension_convex_domain:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "convex S"
-      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> affine hull T"
-      and injf: "inj_on f S"
-    shows "aff_dim S \<le> aff_dim T"
-proof (cases "S = {}")
-  case True
-  then show ?thesis by (simp add: aff_dim_geq)
-next
-  case False
-  have "aff_dim (affine hull S) \<le> aff_dim (affine hull T)"
-  proof (rule invariance_of_dimension_affine_sets)
-    show "openin (subtopology euclidean (affine hull S)) (rel_interior S)"
-      by (simp add: openin_rel_interior)
-    show "continuous_on (rel_interior S) f"
-      using contf continuous_on_subset rel_interior_subset by blast
-    show "f ` rel_interior S \<subseteq> affine hull T"
-      using fim rel_interior_subset by blast
-    show "inj_on f (rel_interior S)"
-      using inj_on_subset injf rel_interior_subset by blast
-    show "rel_interior S \<noteq> {}"
-      by (simp add: False \<open>convex S\<close> rel_interior_eq_empty)
-  qed auto
-  then show ?thesis
-    by simp
-qed
-
-
-lemma homeomorphic_convex_sets_le:
-  assumes "convex S" "S homeomorphic T"
-  shows "aff_dim S \<le> aff_dim T"
-proof -
-  obtain h k where homhk: "homeomorphism S T h k"
-    using homeomorphic_def assms  by blast
-  show ?thesis
-  proof (rule invariance_of_dimension_convex_domain [OF \<open>convex S\<close>])
-    show "continuous_on S h"
-      using homeomorphism_def homhk by blast
-    show "h ` S \<subseteq> affine hull T"
-      by (metis homeomorphism_def homhk hull_subset)
-    show "inj_on h S"
-      by (meson homeomorphism_apply1 homhk inj_on_inverseI)
-  qed
-qed
-
-lemma homeomorphic_convex_sets:
-  assumes "convex S" "convex T" "S homeomorphic T"
-  shows "aff_dim S = aff_dim T"
-  by (meson assms dual_order.antisym homeomorphic_convex_sets_le homeomorphic_sym)
-
-lemma homeomorphic_convex_compact_sets_eq:
-  assumes "convex S" "compact S" "convex T" "compact T"
-  shows "S homeomorphic T \<longleftrightarrow> aff_dim S = aff_dim T"
-  by (meson assms homeomorphic_convex_compact_sets homeomorphic_convex_sets)
-
-lemma invariance_of_domain_gen:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "open S" "continuous_on S f" "inj_on f S" "DIM('b) \<le> DIM('a)"
-    shows "open(f ` S)"
-  using invariance_of_domain_subspaces [of UNIV S UNIV f] assms by auto
-
-lemma injective_into_1d_imp_open_map_UNIV:
-  fixes f :: "'a::euclidean_space \<Rightarrow> real"
-  assumes "open T" "continuous_on S f" "inj_on f S" "T \<subseteq> S"
-    shows "open (f ` T)"
-  apply (rule invariance_of_domain_gen [OF \<open>open T\<close>])
-  using assms apply (auto simp: elim: continuous_on_subset subset_inj_on)
-  done
-
-lemma continuous_on_inverse_open:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" and gf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
-    shows "continuous_on (f ` S) g"
-proof (clarsimp simp add: continuous_openin_preimage_eq)
-  fix T :: "'a set"
-  assume "open T"
-  have eq: "{x. x \<in> f ` S \<and> g x \<in> T} = f ` (S \<inter> T)"
-    by (auto simp: gf)
-  show "openin (subtopology euclidean (f ` S)) {x \<in> f ` S. g x \<in> T}"
-    apply (subst eq)
-    apply (rule open_openin_trans)
-      apply (rule invariance_of_domain_gen)
-    using assms
-         apply auto
-    using inj_on_inverseI apply auto[1]
-    by (metis \<open>open T\<close> continuous_on_subset inj_onI inj_on_subset invariance_of_domain_gen openin_open openin_open_eq)
-qed
-
-lemma invariance_of_domain_homeomorphism:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" "inj_on f S"
-  obtains g where "homeomorphism S (f ` S) f g"
-proof
-  show "homeomorphism S (f ` S) f (inv_into S f)"
-    by (simp add: assms continuous_on_inverse_open homeomorphism_def)
-qed
-
-corollary invariance_of_domain_homeomorphic:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" "inj_on f S"
-  shows "S homeomorphic (f ` S)"
-  using invariance_of_domain_homeomorphism [OF assms]
-  by (meson homeomorphic_def)
-
-lemma continuous_image_subset_interior:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "continuous_on S f" "inj_on f S" "DIM('b) \<le> DIM('a)"
-  shows "f ` (interior S) \<subseteq> interior(f ` S)"
-  apply (rule interior_maximal)
-   apply (simp add: image_mono interior_subset)
-  apply (rule invariance_of_domain_gen)
-  using assms
-     apply (auto simp: subset_inj_on interior_subset continuous_on_subset)
-  done
-
-lemma homeomorphic_interiors_same_dimension:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" and dimeq: "DIM('a) = DIM('b)"
-  shows "(interior S) homeomorphic (interior T)"
-  using assms [unfolded homeomorphic_minimal]
-  unfolding homeomorphic_def
-proof (clarify elim!: ex_forward)
-  fix f g
-  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
-     and contf: "continuous_on S f" and contg: "continuous_on T g"
-  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
-    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
-  have fim: "f ` interior S \<subseteq> interior T"
-    using continuous_image_subset_interior [OF contf \<open>inj_on f S\<close>] dimeq fST by simp
-  have gim: "g ` interior T \<subseteq> interior S"
-    using continuous_image_subset_interior [OF contg \<open>inj_on g T\<close>] dimeq gTS by simp
-  show "homeomorphism (interior S) (interior T) f g"
-    unfolding homeomorphism_def
-  proof (intro conjI ballI)
-    show "\<And>x. x \<in> interior S \<Longrightarrow> g (f x) = x"
-      by (meson \<open>\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x\<close> subsetD interior_subset)
-    have "interior T \<subseteq> f ` interior S"
-    proof
-      fix x assume "x \<in> interior T"
-      then have "g x \<in> interior S"
-        using gim by blast
-      then show "x \<in> f ` interior S"
-        by (metis T \<open>x \<in> interior T\<close> image_iff interior_subset subsetCE)
-    qed
-    then show "f ` interior S = interior T"
-      using fim by blast
-    show "continuous_on (interior S) f"
-      by (metis interior_subset continuous_on_subset contf)
-    show "\<And>y. y \<in> interior T \<Longrightarrow> f (g y) = y"
-      by (meson T subsetD interior_subset)
-    have "interior S \<subseteq> g ` interior T"
-    proof
-      fix x assume "x \<in> interior S"
-      then have "f x \<in> interior T"
-        using fim by blast
-      then show "x \<in> g ` interior T"
-        by (metis S \<open>x \<in> interior S\<close> image_iff interior_subset subsetCE)
-    qed
-    then show "g ` interior T = interior S"
-      using gim by blast
-    show "continuous_on (interior T) g"
-      by (metis interior_subset continuous_on_subset contg)
-  qed
-qed
-
-lemma homeomorphic_open_imp_same_dimension:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" "open S" "S \<noteq> {}" "open T" "T \<noteq> {}"
-  shows "DIM('a) = DIM('b)"
-    using assms
-    apply (simp add: homeomorphic_minimal)
-    apply (rule order_antisym; metis inj_onI invariance_of_dimension)
-    done
-
-lemma homeomorphic_interiors:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" "interior S = {} \<longleftrightarrow> interior T = {}"
-    shows "(interior S) homeomorphic (interior T)"
-proof (cases "interior T = {}")
-  case True
-  with assms show ?thesis by auto
-next
-  case False
-  then have "DIM('a) = DIM('b)"
-    using assms
-    apply (simp add: homeomorphic_minimal)
-    apply (rule order_antisym; metis continuous_on_subset inj_onI inj_on_subset interior_subset invariance_of_dimension open_interior)
-    done
-  then show ?thesis
-    by (rule homeomorphic_interiors_same_dimension [OF \<open>S homeomorphic T\<close>])
-qed
-
-lemma homeomorphic_frontiers_same_dimension:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" "closed S" "closed T" and dimeq: "DIM('a) = DIM('b)"
-  shows "(frontier S) homeomorphic (frontier T)"
-  using assms [unfolded homeomorphic_minimal]
-  unfolding homeomorphic_def
-proof (clarify elim!: ex_forward)
-  fix f g
-  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
-     and contf: "continuous_on S f" and contg: "continuous_on T g"
-  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
-    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
-  have "g ` interior T \<subseteq> interior S"
-    using continuous_image_subset_interior [OF contg \<open>inj_on g T\<close>] dimeq gTS by simp
-  then have fim: "f ` frontier S \<subseteq> frontier T"
-    apply (simp add: frontier_def)
-    using continuous_image_subset_interior assms(2) assms(3) S by auto
-  have "f ` interior S \<subseteq> interior T"
-    using continuous_image_subset_interior [OF contf \<open>inj_on f S\<close>] dimeq fST by simp
-  then have gim: "g ` frontier T \<subseteq> frontier S"
-    apply (simp add: frontier_def)
-    using continuous_image_subset_interior T assms(2) assms(3) by auto
-  show "homeomorphism (frontier S) (frontier T) f g"
-    unfolding homeomorphism_def
-  proof (intro conjI ballI)
-    show gf: "\<And>x. x \<in> frontier S \<Longrightarrow> g (f x) = x"
-      by (simp add: S assms(2) frontier_def)
-    show fg: "\<And>y. y \<in> frontier T \<Longrightarrow> f (g y) = y"
-      by (simp add: T assms(3) frontier_def)
-    have "frontier T \<subseteq> f ` frontier S"
-    proof
-      fix x assume "x \<in> frontier T"
-      then have "g x \<in> frontier S"
-        using gim by blast
-      then show "x \<in> f ` frontier S"
-        by (metis fg \<open>x \<in> frontier T\<close> imageI)
-    qed
-    then show "f ` frontier S = frontier T"
-      using fim by blast
-    show "continuous_on (frontier S) f"
-      by (metis Diff_subset assms(2) closure_eq contf continuous_on_subset frontier_def)
-    have "frontier S \<subseteq> g ` frontier T"
-    proof
-      fix x assume "x \<in> frontier S"
-      then have "f x \<in> frontier T"
-        using fim by blast
-      then show "x \<in> g ` frontier T"
-        by (metis gf \<open>x \<in> frontier S\<close> imageI)
-    qed
-    then show "g ` frontier T = frontier S"
-      using gim by blast
-    show "continuous_on (frontier T) g"
-      by (metis Diff_subset assms(3) closure_closed contg continuous_on_subset frontier_def)
-  qed
-qed
-
-lemma homeomorphic_frontiers:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" "closed S" "closed T"
-          "interior S = {} \<longleftrightarrow> interior T = {}"
-    shows "(frontier S) homeomorphic (frontier T)"
-proof (cases "interior T = {}")
-  case True
-  then show ?thesis
-    by (metis Diff_empty assms closure_eq frontier_def)
-next
-  case False
-  show ?thesis
-    apply (rule homeomorphic_frontiers_same_dimension)
-       apply (simp_all add: assms)
-    using False assms homeomorphic_interiors homeomorphic_open_imp_same_dimension by blast
-qed
-
-lemma continuous_image_subset_rel_interior:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes contf: "continuous_on S f" and injf: "inj_on f S" and fim: "f ` S \<subseteq> T"
-      and TS: "aff_dim T \<le> aff_dim S"
-  shows "f ` (rel_interior S) \<subseteq> rel_interior(f ` S)"
-proof (rule rel_interior_maximal)
-  show "f ` rel_interior S \<subseteq> f ` S"
-    by(simp add: image_mono rel_interior_subset)
-  show "openin (subtopology euclidean (affine hull f ` S)) (f ` rel_interior S)"
-  proof (rule invariance_of_domain_affine_sets)
-    show "openin (subtopology euclidean (affine hull S)) (rel_interior S)"
-      by (simp add: openin_rel_interior)
-    show "aff_dim (affine hull f ` S) \<le> aff_dim (affine hull S)"
-      by (metis aff_dim_affine_hull aff_dim_subset fim TS order_trans)
-    show "f ` rel_interior S \<subseteq> affine hull f ` S"
-      by (meson \<open>f ` rel_interior S \<subseteq> f ` S\<close> hull_subset order_trans)
-    show "continuous_on (rel_interior S) f"
-      using contf continuous_on_subset rel_interior_subset by blast
-    show "inj_on f (rel_interior S)"
-      using inj_on_subset injf rel_interior_subset by blast
-  qed auto
-qed
-
-lemma homeomorphic_rel_interiors_same_dimension:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" and aff: "aff_dim S = aff_dim T"
-  shows "(rel_interior S) homeomorphic (rel_interior T)"
-  using assms [unfolded homeomorphic_minimal]
-  unfolding homeomorphic_def
-proof (clarify elim!: ex_forward)
-  fix f g
-  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
-     and contf: "continuous_on S f" and contg: "continuous_on T g"
-  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
-    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
-  have fim: "f ` rel_interior S \<subseteq> rel_interior T"
-    by (metis \<open>inj_on f S\<close> aff contf continuous_image_subset_rel_interior fST order_refl)
-  have gim: "g ` rel_interior T \<subseteq> rel_interior S"
-    by (metis \<open>inj_on g T\<close> aff contg continuous_image_subset_rel_interior gTS order_refl)
-  show "homeomorphism (rel_interior S) (rel_interior T) f g"
-    unfolding homeomorphism_def
-  proof (intro conjI ballI)
-    show gf: "\<And>x. x \<in> rel_interior S \<Longrightarrow> g (f x) = x"
-      using S rel_interior_subset by blast
-    show fg: "\<And>y. y \<in> rel_interior T \<Longrightarrow> f (g y) = y"
-      using T mem_rel_interior_ball by blast
-    have "rel_interior T \<subseteq> f ` rel_interior S"
-    proof
-      fix x assume "x \<in> rel_interior T"
-      then have "g x \<in> rel_interior S"
-        using gim by blast
-      then show "x \<in> f ` rel_interior S"
-        by (metis fg \<open>x \<in> rel_interior T\<close> imageI)
-    qed
-    moreover have "f ` rel_interior S \<subseteq> rel_interior T"
-      by (metis \<open>inj_on f S\<close> aff contf continuous_image_subset_rel_interior fST order_refl)
-    ultimately show "f ` rel_interior S = rel_interior T"
-      by blast
-    show "continuous_on (rel_interior S) f"
-      using contf continuous_on_subset rel_interior_subset by blast
-    have "rel_interior S \<subseteq> g ` rel_interior T"
-    proof
-      fix x assume "x \<in> rel_interior S"
-      then have "f x \<in> rel_interior T"
-        using fim by blast
-      then show "x \<in> g ` rel_interior T"
-        by (metis gf \<open>x \<in> rel_interior S\<close> imageI)
-    qed
-    then show "g ` rel_interior T = rel_interior S"
-      using gim by blast
-    show "continuous_on (rel_interior T) g"
-      using contg continuous_on_subset rel_interior_subset by blast
-  qed
-qed
-
-lemma homeomorphic_rel_interiors:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" "rel_interior S = {} \<longleftrightarrow> rel_interior T = {}"
-    shows "(rel_interior S) homeomorphic (rel_interior T)"
-proof (cases "rel_interior T = {}")
-  case True
-  with assms show ?thesis by auto
-next
-  case False
-  obtain f g
-    where S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
-      and contf: "continuous_on S f" and contg: "continuous_on T g"
-    using  assms [unfolded homeomorphic_minimal] by auto
-  have "aff_dim (affine hull S) \<le> aff_dim (affine hull T)"
-    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior S" _ f])
-          apply (simp_all add: openin_rel_interior False assms)
-    using contf continuous_on_subset rel_interior_subset apply blast
-      apply (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)
-    apply (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
-    done
-  moreover have "aff_dim (affine hull T) \<le> aff_dim (affine hull S)"
-    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior T" _ g])
-          apply (simp_all add: openin_rel_interior False assms)
-    using contg continuous_on_subset rel_interior_subset apply blast
-      apply (meson T hull_subset image_subsetI rel_interior_subset rev_subsetD)
-    apply (metis T inj_on_inverseI inj_on_subset rel_interior_subset)
-    done
-  ultimately have "aff_dim S = aff_dim T" by force
-  then show ?thesis
-    by (rule homeomorphic_rel_interiors_same_dimension [OF \<open>S homeomorphic T\<close>])
-qed
-
-
-lemma homeomorphic_rel_boundaries_same_dimension:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" and aff: "aff_dim S = aff_dim T"
-  shows "(S - rel_interior S) homeomorphic (T - rel_interior T)"
-  using assms [unfolded homeomorphic_minimal]
-  unfolding homeomorphic_def
-proof (clarify elim!: ex_forward)
-  fix f g
-  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
-     and contf: "continuous_on S f" and contg: "continuous_on T g"
-  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
-    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
-  have fim: "f ` rel_interior S \<subseteq> rel_interior T"
-    by (metis \<open>inj_on f S\<close> aff contf continuous_image_subset_rel_interior fST order_refl)
-  have gim: "g ` rel_interior T \<subseteq> rel_interior S"
-    by (metis \<open>inj_on g T\<close> aff contg continuous_image_subset_rel_interior gTS order_refl)
-  show "homeomorphism (S - rel_interior S) (T - rel_interior T) f g"
-    unfolding homeomorphism_def
-  proof (intro conjI ballI)
-    show gf: "\<And>x. x \<in> S - rel_interior S \<Longrightarrow> g (f x) = x"
-      using S rel_interior_subset by blast
-    show fg: "\<And>y. y \<in> T - rel_interior T \<Longrightarrow> f (g y) = y"
-      using T mem_rel_interior_ball by blast
-    show "f ` (S - rel_interior S) = T - rel_interior T"
-      using S fST fim gim by auto
-    show "continuous_on (S - rel_interior S) f"
-      using contf continuous_on_subset rel_interior_subset by blast
-    show "g ` (T - rel_interior T) = S - rel_interior S"
-      using T gTS gim fim by auto
-    show "continuous_on (T - rel_interior T) g"
-      using contg continuous_on_subset rel_interior_subset by blast
-  qed
-qed
-
-lemma homeomorphic_rel_boundaries:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T" "rel_interior S = {} \<longleftrightarrow> rel_interior T = {}"
-    shows "(S - rel_interior S) homeomorphic (T - rel_interior T)"
-proof (cases "rel_interior T = {}")
-  case True
-  with assms show ?thesis by auto
-next
-  case False
-  obtain f g
-    where S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
-      and contf: "continuous_on S f" and contg: "continuous_on T g"
-    using  assms [unfolded homeomorphic_minimal] by auto
-  have "aff_dim (affine hull S) \<le> aff_dim (affine hull T)"
-    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior S" _ f])
-          apply (simp_all add: openin_rel_interior False assms)
-    using contf continuous_on_subset rel_interior_subset apply blast
-      apply (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)
-    apply (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
-    done
-  moreover have "aff_dim (affine hull T) \<le> aff_dim (affine hull S)"
-    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior T" _ g])
-          apply (simp_all add: openin_rel_interior False assms)
-    using contg continuous_on_subset rel_interior_subset apply blast
-      apply (meson T hull_subset image_subsetI rel_interior_subset rev_subsetD)
-    apply (metis T inj_on_inverseI inj_on_subset rel_interior_subset)
-    done
-  ultimately have "aff_dim S = aff_dim T" by force
-  then show ?thesis
-    by (rule homeomorphic_rel_boundaries_same_dimension [OF \<open>S homeomorphic T\<close>])
-qed
-
-proposition uniformly_continuous_homeomorphism_UNIV_trivial:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a"
-  assumes contf: "uniformly_continuous_on S f" and hom: "homeomorphism S UNIV f g"
-  shows "S = UNIV"
-proof (cases "S = {}")
-  case True
-  then show ?thesis
-    by (metis UNIV_I hom empty_iff homeomorphism_def image_eqI)
-next
-  case False
-  have "inj g"
-    by (metis UNIV_I hom homeomorphism_apply2 injI)
-  then have "open (g ` UNIV)"
-    by (blast intro: invariance_of_domain hom homeomorphism_cont2)
-  then have "open S"
-    using hom homeomorphism_image2 by blast
-  moreover have "complete S"
-    unfolding complete_def
-  proof clarify
-    fix \<sigma>
-    assume \<sigma>: "\<forall>n. \<sigma> n \<in> S" and "Cauchy \<sigma>"
-    have "Cauchy (f o \<sigma>)"
-      using uniformly_continuous_imp_Cauchy_continuous \<open>Cauchy \<sigma>\<close> \<sigma> contf by blast
-    then obtain l where "(f \<circ> \<sigma>) \<longlonglongrightarrow> l"
-      by (auto simp: convergent_eq_Cauchy [symmetric])
-    show "\<exists>l\<in>S. \<sigma> \<longlonglongrightarrow> l"
-    proof
-      show "g l \<in> S"
-        using hom homeomorphism_image2 by blast
-      have "(g \<circ> (f \<circ> \<sigma>)) \<longlonglongrightarrow> g l"
-        by (meson UNIV_I \<open>(f \<circ> \<sigma>) \<longlonglongrightarrow> l\<close> continuous_on_sequentially hom homeomorphism_cont2)
-      then show "\<sigma> \<longlonglongrightarrow> g l"
-      proof -
-        have "\<forall>n. \<sigma> n = (g \<circ> (f \<circ> \<sigma>)) n"
-          by (metis (no_types) \<sigma> comp_eq_dest_lhs hom homeomorphism_apply1)
-        then show ?thesis
-          by (metis (no_types) LIMSEQ_iff \<open>(g \<circ> (f \<circ> \<sigma>)) \<longlonglongrightarrow> g l\<close>)
-      qed
-    qed
-  qed
-  then have "closed S"
-    by (simp add: complete_eq_closed)
-  ultimately show ?thesis
-    using clopen [of S] False  by simp
-qed
-
-subsection\<open>The power, squaring and exponential functions as covering maps\<close>
-
-proposition covering_space_power_punctured_plane:
-  assumes "0 < n"
-    shows "covering_space (- {0}) (\<lambda>z::complex. z^n) (- {0})"
-proof -
-  consider "n = 1" | "2 \<le> n" using assms by linarith
-  then obtain e where "0 < e"
-                and e: "\<And>w z. cmod(w - z) < e * cmod z \<Longrightarrow> (w^n = z^n \<longleftrightarrow> w = z)"
-  proof cases
-    assume "n = 1" then show ?thesis
-      by (rule_tac e=1 in that) auto
-  next
-    assume "2 \<le> n"
-    have eq_if_pow_eq:
-         "w = z" if lt: "cmod (w - z) < 2 * sin (pi / real n) * cmod z"
-                 and eq: "w^n = z^n" for w z
-    proof (cases "z = 0")
-      case True with eq assms show ?thesis by (auto simp: power_0_left)
-    next
-      case False
-      then have "z \<noteq> 0" by auto
-      have "(w/z)^n = 1"
-        by (metis False divide_self_if eq power_divide power_one)
-      then obtain j where j: "w / z = exp (2 * of_real pi * \<i> * j / n)" and "j < n"
-        using Suc_leI assms \<open>2 \<le> n\<close> complex_roots_unity [THEN eqset_imp_iff, of n "w/z"]
-        by force
-      have "cmod (w/z - 1) < 2 * sin (pi / real n)"
-        using lt assms \<open>z \<noteq> 0\<close> by (simp add: divide_simps norm_divide)
-      then have "cmod (exp (\<i> * of_real (2 * pi * j / n)) - 1) < 2 * sin (pi / real n)"
-        by (simp add: j field_simps)
-      then have "2 * \<bar>sin((2 * pi * j / n) / 2)\<bar> < 2 * sin (pi / real n)"
-        by (simp only: dist_exp_ii_1)
-      then have sin_less: "sin((pi * j / n)) < sin (pi / real n)"
-        by (simp add: field_simps)
-      then have "w / z = 1"
-      proof (cases "j = 0")
-        case True then show ?thesis by (auto simp: j)
-      next
-        case False
-        then have "sin (pi / real n) \<le> sin((pi * j / n))"
-        proof (cases "j / n \<le> 1/2")
-          case True
-          show ?thesis
-            apply (rule sin_monotone_2pi_le)
-            using \<open>j \<noteq> 0 \<close> \<open>j < n\<close> True
-            apply (auto simp: field_simps intro: order_trans [of _ 0])
-            done
-        next
-          case False
-          then have seq: "sin(pi * j / n) = sin(pi * (n - j) / n)"
-            using \<open>j < n\<close> by (simp add: algebra_simps diff_divide_distrib of_nat_diff)
-          show ?thesis
-            apply (simp only: seq)
-            apply (rule sin_monotone_2pi_le)
-            using \<open>j < n\<close> False
-            apply (auto simp: field_simps intro: order_trans [of _ 0])
-            done
-        qed
-        with sin_less show ?thesis by force
-      qed
-      then show ?thesis by simp
-    qed
-    show ?thesis
-      apply (rule_tac e = "2 * sin(pi / n)" in that)
-       apply (force simp: \<open>2 \<le> n\<close> sin_pi_divide_n_gt_0)
-      apply (meson eq_if_pow_eq)
-      done
-  qed
-  have zn1: "continuous_on (- {0}) (\<lambda>z::complex. z^n)"
-    by (rule continuous_intros)+
-  have zn2: "(\<lambda>z::complex. z^n) ` (- {0}) = - {0}"
-    using assms by (auto simp: image_def elim: exists_complex_root_nonzero [where n = n])
-  have zn3: "\<exists>T. z^n \<in> T \<and> open T \<and> 0 \<notin> T \<and>
-               (\<exists>v. \<Union>v = {x. x \<noteq> 0 \<and> x^n \<in> T} \<and>
-                    (\<forall>u\<in>v. open u \<and> 0 \<notin> u) \<and>
-                    pairwise disjnt v \<and>
-                    (\<forall>u\<in>v. Ex (homeomorphism u T (\<lambda>z. z^n))))"
-           if "z \<noteq> 0" for z::complex
-  proof -
-    def d \<equiv> "min (1/2) (e/4) * norm z"
-    have "0 < d"
-      by (simp add: d_def \<open>0 < e\<close> \<open>z \<noteq> 0\<close>)
-    have iff_x_eq_y: "x^n = y^n \<longleftrightarrow> x = y"
-         if eq: "w^n = z^n" and x: "x \<in> ball w d" and y: "y \<in> ball w d" for w x y
-    proof -
-      have [simp]: "norm z = norm w" using that
-        by (simp add: assms power_eq_imp_eq_norm)
-      show ?thesis
-      proof (cases "w = 0")
-        case True with \<open>z \<noteq> 0\<close> assms eq
-        show ?thesis by (auto simp: power_0_left)
-      next
-        case False
-        have "cmod (x - y) < 2*d"
-          using x y
-          by (simp add: dist_norm [symmetric]) (metis dist_commute mult_2 dist_triangle_less_add)
-        also have "... \<le> 2 * e / 4 * norm w"
-          using \<open>e > 0\<close> by (simp add: d_def min_mult_distrib_right)
-        also have "... = e * (cmod w / 2)"
-          by simp
-        also have "... \<le> e * cmod y"
-          apply (rule mult_left_mono)
-          using \<open>e > 0\<close> y
-           apply (simp_all add: dist_norm d_def min_mult_distrib_right del: divide_const_simps)
-          apply (metis dist_0_norm dist_complex_def dist_triangle_half_l linorder_not_less order_less_irrefl)
-          done
-        finally have "cmod (x - y) < e * cmod y" .
-        then show ?thesis by (rule e)
-      qed
-    qed
-    then have inj: "inj_on (\<lambda>w. w^n) (ball z d)"
-      by (simp add: inj_on_def)
-    have cont: "continuous_on (ball z d) (\<lambda>w. w ^ n)"
-      by (intro continuous_intros)
-    have noncon: "\<not> (\<lambda>w::complex. w^n) constant_on UNIV"
-      by (metis UNIV_I assms constant_on_def power_one zero_neq_one zero_power)
-    have open_imball: "open ((\<lambda>w. w^n) ` ball z d)"
-      by (rule invariance_of_domain [OF cont open_ball inj])
-    have im_eq: "(\<lambda>w. w^n) ` ball z' d = (\<lambda>w. w^n) ` ball z d"
-                if z': "z'^n = z^n" for z'
-    proof -
-      have nz': "norm z' = norm z" using that assms power_eq_imp_eq_norm by blast
-      have "(w \<in> (\<lambda>w. w^n) ` ball z' d) = (w \<in> (\<lambda>w. w^n) ` ball z d)" for w
-      proof (cases "w=0")
-        case True with assms show ?thesis
-          by (simp add: image_def ball_def nz')
-      next
-        case False
-        have "z' \<noteq> 0" using \<open>z \<noteq> 0\<close> nz' by force
-        have [simp]: "(z*x / z')^n = x^n" if "x \<noteq> 0" for x
-          using z' that by (simp add: field_simps \<open>z \<noteq> 0\<close>)
-        have [simp]: "cmod (z - z * x / z') = cmod (z' - x)" if "x \<noteq> 0" for x
-        proof -
-          have "cmod (z - z * x / z') = cmod z * cmod (1 - x / z')"
-            by (metis (no_types) ab_semigroup_mult_class.mult_ac(1) complex_divide_def mult.right_neutral norm_mult right_diff_distrib')
-          also have "... = cmod z' * cmod (1 - x / z')"
-            by (simp add: nz')
-          also have "... = cmod (z' - x)"
-            by (simp add: \<open>z' \<noteq> 0\<close> diff_divide_eq_iff norm_divide)
-          finally show ?thesis .
-        qed
-        have [simp]: "(z'*x / z)^n = x^n" if "x \<noteq> 0" for x
-          using z' that by (simp add: field_simps \<open>z \<noteq> 0\<close>)
-        have [simp]: "cmod (z' - z' * x / z) = cmod (z - x)" if "x \<noteq> 0" for x
-        proof -
-          have "cmod (z * (1 - x * inverse z)) = cmod (z - x)"
-            by (metis \<open>z \<noteq> 0\<close> diff_divide_distrib divide_complex_def divide_self_if nonzero_eq_divide_eq semiring_normalization_rules(7))
-          then show ?thesis
-            by (metis (no_types) mult.assoc complex_divide_def mult.right_neutral norm_mult nz' right_diff_distrib')
-        qed
-        show ?thesis
-          unfolding image_def ball_def
-          apply safe
-          apply simp_all
-          apply (rule_tac x="z/z' * x" in exI)
-          using assms False apply (simp add: dist_norm)
-          apply (rule_tac x="z'/z * x" in exI)
-          using assms False apply (simp add: dist_norm)
-          done
-      qed
-      then show ?thesis by blast
-    qed
-    have ex_ball: "\<exists>B. (\<exists>z'. B = ball z' d \<and> z'^n = z^n) \<and> x \<in> B"
-                  if "x \<noteq> 0" and eq: "x^n = w^n" and dzw: "dist z w < d" for x w
-    proof -
-      have "w \<noteq> 0" by (metis assms power_eq_0_iff that(1) that(2))
-      have [simp]: "cmod x = cmod w"
-        using assms power_eq_imp_eq_norm eq by blast
-      have [simp]: "cmod (x * z / w - x) = cmod (z - w)"
-      proof -
-        have "cmod (x * z / w - x) = cmod x * cmod (z / w - 1)"
-          by (metis (no_types) mult.right_neutral norm_mult right_diff_distrib' times_divide_eq_right)
-        also have "... = cmod w * cmod (z / w - 1)"
-          by simp
-        also have "... = cmod (z - w)"
-          by (simp add: \<open>w \<noteq> 0\<close> divide_diff_eq_iff nonzero_norm_divide)
-        finally show ?thesis .
-      qed
-      show ?thesis
-        apply (rule_tac x="ball (z / w * x) d" in exI)
-        using \<open>d > 0\<close> that
-        apply (simp add: ball_eq_ball_iff)
-        apply (simp add: \<open>z \<noteq> 0\<close> \<open>w \<noteq> 0\<close> field_simps)
-        apply (simp add: dist_norm)
-        done
-    qed
-    have ball1: "\<Union>{ball z' d |z'. z'^n = z^n} = {x. x \<noteq> 0 \<and> x^n \<in> (\<lambda>w. w^n) ` ball z d}"
-      apply (rule equalityI)
-       prefer 2 apply (force simp: ex_ball, clarsimp)
-      apply (subst im_eq [symmetric], assumption)
-      using assms
-      apply (force simp: dist_norm d_def min_mult_distrib_right dest: power_eq_imp_eq_norm)
-      done
-    have ball2: "pairwise disjnt {ball z' d |z'. z'^n = z^n}"
-    proof (clarsimp simp add: pairwise_def disjnt_iff)
-      fix \<xi> \<zeta> x
-      assume "\<xi>^n = z^n" "\<zeta>^n = z^n" "ball \<xi> d \<noteq> ball \<zeta> d"
-         and "dist \<xi> x < d" "dist \<zeta> x < d"
-      then have "dist \<xi> \<zeta> < d+d"
-        using dist_triangle_less_add by blast
-      then have "cmod (\<xi> - \<zeta>) < 2*d"
-        by (simp add: dist_norm)
-      also have "... \<le> e * cmod z"
-        using mult_right_mono \<open>0 < e\<close> that by (auto simp: d_def)
-      finally have "cmod (\<xi> - \<zeta>) < e * cmod z" .
-      with e have "\<xi> = \<zeta>"
-        by (metis \<open>\<xi>^n = z^n\<close> \<open>\<zeta>^n = z^n\<close> assms power_eq_imp_eq_norm)
-      then show "False"
-        using \<open>ball \<xi> d \<noteq> ball \<zeta> d\<close> by blast
-    qed
-    have ball3: "Ex (homeomorphism (ball z' d) ((\<lambda>w. w^n) ` ball z d) (\<lambda>z. z^n))"
-            if zeq: "z'^n = z^n" for z'
-    proof -
-      have inj: "inj_on (\<lambda>z. z ^ n) (ball z' d)"
-        by (meson iff_x_eq_y inj_onI zeq)
-      show ?thesis
-        apply (rule invariance_of_domain_homeomorphism [of "ball z' d" "\<lambda>z. z^n"])
-          apply (rule open_ball continuous_intros order_refl inj)+
-        apply (force simp: im_eq [OF zeq])
-        done
-    qed
-    show ?thesis
-      apply (rule_tac x = "(\<lambda>w. w^n) ` (ball z d)" in exI)
-      apply (intro conjI open_imball)
-        using \<open>d > 0\<close> apply simp
-       using \<open>z \<noteq> 0\<close> assms apply (force simp: d_def)
-      apply (rule_tac x="{ ball z' d |z'. z'^n = z^n}" in exI)
-      apply (intro conjI ball1 ball2)
-       apply (force simp: assms d_def power_eq_imp_eq_norm that, clarify)
-      by (metis ball3)
-  qed
-  show ?thesis
-    using assms
-    apply (simp add: covering_space_def zn1 zn2)
-    apply (subst zn2 [symmetric])
-    apply (simp add: openin_open_eq open_Compl)
-    apply (blast intro: zn3)
-    done
-qed
-
-corollary covering_space_square_punctured_plane:
-  "covering_space (- {0}) (\<lambda>z::complex. z^2) (- {0})"
-  by (simp add: covering_space_power_punctured_plane)
-
-
-
-proposition covering_space_exp_punctured_plane:
-  "covering_space UNIV (\<lambda>z::complex. exp z) (- {0})"
-proof (simp add: covering_space_def, intro conjI ballI)
-  show "continuous_on UNIV (\<lambda>z::complex. exp z)"
-    by (rule continuous_on_exp [OF continuous_on_id])
-  show "range exp = - {0::complex}"
-    by auto (metis exp_Ln range_eqI)
-  show "\<exists>T. z \<in> T \<and> openin (subtopology euclidean (- {0})) T \<and>
-             (\<exists>v. \<Union>v = {z. exp z \<in> T} \<and> (\<forall>u\<in>v. open u) \<and> disjoint v \<and>
-                  (\<forall>u\<in>v. \<exists>q. homeomorphism u T exp q))"
-        if "z \<in> - {0::complex}" for z
-  proof -
-    have "z \<noteq> 0"
-      using that by auto
-    have inj_exp: "inj_on exp (ball (Ln z) 1)"
-      apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]])
-      using pi_ge_two by (simp add: ball_subset_ball_iff)
-    define \<V> where "\<V> \<equiv> range (\<lambda>n. (\<lambda>x. x + of_real (2 * of_int n * pi) * ii) ` (ball(Ln z) 1))"
-    show ?thesis
-    proof (intro exI conjI)
-      show "z \<in> exp ` (ball(Ln z) 1)"
-        by (metis \<open>z \<noteq> 0\<close> centre_in_ball exp_Ln rev_image_eqI zero_less_one)
-      have "open (- {0::complex})"
-        by blast
-      moreover have "inj_on exp (ball (Ln z) 1)"
-        apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]])
-        using pi_ge_two by (simp add: ball_subset_ball_iff)
-      ultimately show "openin (subtopology euclidean (- {0})) (exp ` ball (Ln z) 1)"
-        by (auto simp: openin_open_eq invariance_of_domain continuous_on_exp [OF continuous_on_id])
-      show "\<Union>\<V> = {w. exp w \<in> exp ` ball (Ln z) 1}"
-        by (auto simp: \<V>_def Complex_Transcendental.exp_eq image_iff)
-      show "\<forall>V\<in>\<V>. open V"
-        by (auto simp: \<V>_def inj_on_def continuous_intros invariance_of_domain)
-      have xy: "2 \<le> cmod (2 * of_int x * of_real pi * \<i> - 2 * of_int y * of_real pi * \<i>)"
-               if "x < y" for x y
-      proof -
-        have "1 \<le> abs (x - y)"
-          using that by linarith
-        then have "1 \<le> cmod (of_int x - of_int y) * 1"
-          by (metis mult.right_neutral norm_of_int of_int_1_le_iff of_int_abs of_int_diff)
-        also have "... \<le> cmod (of_int x - of_int y) * of_real pi"
-          apply (rule mult_left_mono)
-          using pi_ge_two by auto
-        also have "... \<le> cmod ((of_int x - of_int y) * of_real pi * \<i>)"
-          by (simp add: norm_mult)
-        also have "... \<le> cmod (of_int x * of_real pi * \<i> - of_int y * of_real pi * \<i>)"
-          by (simp add: algebra_simps)
-        finally have "1 \<le> cmod (of_int x * of_real pi * \<i> - of_int y * of_real pi * \<i>)" .
-        then have "2 * 1 \<le> cmod (2 * (of_int x * of_real pi * \<i> - of_int y * of_real pi * \<i>))"
-          by (metis mult_le_cancel_left_pos norm_mult_numeral1 zero_less_numeral)
-        then show ?thesis
-          by (simp add: algebra_simps)
-      qed
-      show "disjoint \<V>"
-        apply (clarsimp simp add: \<V>_def pairwise_def disjnt_def add.commute [of _ "x*y" for x y]
-                        image_add_ball ball_eq_ball_iff)
-        apply (rule disjoint_ballI)
-        apply (auto simp: dist_norm neq_iff)
-        by (metis norm_minus_commute xy)+
-      show "\<forall>u\<in>\<V>. \<exists>q. homeomorphism u (exp ` ball (Ln z) 1) exp q"
-      proof
-        fix u
-        assume "u \<in> \<V>"
-        then obtain n where n: "u = (\<lambda>x. x + of_real (2 * of_int n * pi) * ii) ` (ball(Ln z) 1)"
-          by (auto simp: \<V>_def)
-        have "compact (cball (Ln z) 1)"
-          by simp
-        moreover have "continuous_on (cball (Ln z) 1) exp"
-          by (rule continuous_on_exp [OF continuous_on_id])
-        moreover have "inj_on exp (cball (Ln z) 1)"
-          apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]])
-          using pi_ge_two by (simp add: cball_subset_ball_iff)
-        ultimately obtain \<gamma> where hom: "homeomorphism (cball (Ln z) 1) (exp ` cball (Ln z) 1) exp \<gamma>"
-          using homeomorphism_compact  by blast
-        have eq1: "exp ` u = exp ` ball (Ln z) 1"
-          unfolding n
-          apply (auto simp: algebra_simps)
-          apply (rename_tac w)
-          apply (rule_tac x = "w + \<i> * (of_int n * (of_real pi * 2))" in image_eqI)
-          apply (auto simp: image_iff)
-          done
-        have \<gamma>exp: "\<gamma> (exp x) + 2 * of_int n * of_real pi * \<i> = x" if "x \<in> u" for x
-        proof -
-          have "exp x = exp (x - 2 * of_int n * of_real pi * \<i>)"
-            by (simp add: exp_eq)
-          then have "\<gamma> (exp x) = \<gamma> (exp (x - 2 * of_int n * of_real pi * \<i>))"
-            by simp
-          also have "... = x - 2 * of_int n * of_real pi * \<i>"
-            apply (rule homeomorphism_apply1 [OF hom])
-            using \<open>x \<in> u\<close> by (auto simp: n)
-          finally show ?thesis
-            by simp
-        qed
-        have exp2n: "exp (\<gamma> (exp x) + 2 * of_int n * complex_of_real pi * \<i>) = exp x"
-                if "dist (Ln z) x < 1" for x
-          using that by (auto simp: exp_eq homeomorphism_apply1 [OF hom])
-        have cont: "continuous_on (exp ` ball (Ln z) 1) (\<lambda>x. \<gamma> x + 2 * of_int n * complex_of_real pi * \<i>)"
-          apply (intro continuous_intros)
-          apply (rule continuous_on_subset [OF homeomorphism_cont2 [OF hom]])
-          apply (force simp:)
-          done
-        show "\<exists>q. homeomorphism u (exp ` ball (Ln z) 1) exp q"
-          apply (rule_tac x="(\<lambda>x. x + of_real(2 * n * pi) * ii) \<circ> \<gamma>" in exI)
-          unfolding homeomorphism_def
-          apply (intro conjI ballI eq1 continuous_on_exp [OF continuous_on_id])
-             apply (auto simp: \<gamma>exp exp2n cont n)
-           apply (simp add:  homeomorphism_apply1 [OF hom])
-          apply (simp add: image_comp [symmetric])
-          using hom homeomorphism_apply1  apply (force simp: image_iff)
-          done
-      qed
-    qed
-  qed
-qed
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Further_Topology.thy	Tue Oct 18 17:29:28 2016 +0200
@@ -0,0 +1,3097 @@
+section \<open>Extending Continous Maps, Invariance of Domain, etc..\<close>
+
+text\<open>Ported from HOL Light (moretop.ml) by L C Paulson\<close>
+
+theory Further_Topology
+  imports Equivalence_Lebesgue_Henstock_Integration Weierstrass_Theorems Polytope
+begin
+
+subsection\<open>A map from a sphere to a higher dimensional sphere is nullhomotopic\<close>
+
+lemma spheremap_lemma1:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes "subspace S" "subspace T" and dimST: "dim S < dim T"
+      and "S \<subseteq> T"
+      and diff_f: "f differentiable_on sphere 0 1 \<inter> S"
+    shows "f ` (sphere 0 1 \<inter> S) \<noteq> sphere 0 1 \<inter> T"
+proof
+  assume fim: "f ` (sphere 0 1 \<inter> S) = sphere 0 1 \<inter> T"
+  have inS: "\<And>x. \<lbrakk>x \<in> S; x \<noteq> 0\<rbrakk> \<Longrightarrow> (x /\<^sub>R norm x) \<in> S"
+    using subspace_mul \<open>subspace S\<close> by blast
+  have subS01: "(\<lambda>x. x /\<^sub>R norm x) ` (S - {0}) \<subseteq> sphere 0 1 \<inter> S"
+    using \<open>subspace S\<close> subspace_mul by fastforce
+  then have diff_f': "f differentiable_on (\<lambda>x. x /\<^sub>R norm x) ` (S - {0})"
+    by (rule differentiable_on_subset [OF diff_f])
+  define g where "g \<equiv> \<lambda>x. norm x *\<^sub>R f(inverse(norm x) *\<^sub>R x)"
+  have gdiff: "g differentiable_on S - {0}"
+    unfolding g_def
+    by (rule diff_f' derivative_intros differentiable_on_compose [where f=f] | force)+
+  have geq: "g ` (S - {0}) = T - {0}"
+  proof
+    have "g ` (S - {0}) \<subseteq> T"
+      apply (auto simp: g_def subspace_mul [OF \<open>subspace T\<close>])
+      apply (metis (mono_tags, lifting) DiffI subS01 subspace_mul [OF \<open>subspace T\<close>] fim image_subset_iff inf_le2 singletonD)
+      done
+    moreover have "g ` (S - {0}) \<subseteq> UNIV - {0}"
+    proof (clarsimp simp: g_def)
+      fix y
+      assume "y \<in> S" and f0: "f (y /\<^sub>R norm y) = 0"
+      then have "y \<noteq> 0 \<Longrightarrow> y /\<^sub>R norm y \<in> sphere 0 1 \<inter> S"
+        by (auto simp: subspace_mul [OF \<open>subspace S\<close>])
+      then show "y = 0"
+        by (metis fim f0 Int_iff image_iff mem_sphere_0 norm_eq_zero zero_neq_one)
+    qed
+    ultimately show "g ` (S - {0}) \<subseteq> T - {0}"
+      by auto
+  next
+    have *: "sphere 0 1 \<inter> T \<subseteq> f ` (sphere 0 1 \<inter> S)"
+      using fim by (simp add: image_subset_iff)
+    have "x \<in> (\<lambda>x. norm x *\<^sub>R f (x /\<^sub>R norm x)) ` (S - {0})"
+          if "x \<in> T" "x \<noteq> 0" for x
+    proof -
+      have "x /\<^sub>R norm x \<in> T"
+        using \<open>subspace T\<close> subspace_mul that by blast
+      then show ?thesis
+        using * [THEN subsetD, of "x /\<^sub>R norm x"] that apply clarsimp
+        apply (rule_tac x="norm x *\<^sub>R xa" in image_eqI, simp)
+        apply (metis norm_eq_zero right_inverse scaleR_one scaleR_scaleR)
+        using \<open>subspace S\<close> subspace_mul apply force
+        done
+    qed
+    then have "T - {0} \<subseteq> (\<lambda>x. norm x *\<^sub>R f (x /\<^sub>R norm x)) ` (S - {0})"
+      by force
+    then show "T - {0} \<subseteq> g ` (S - {0})"
+      by (simp add: g_def)
+  qed
+  define T' where "T' \<equiv> {y. \<forall>x \<in> T. orthogonal x y}"
+  have "subspace T'"
+    by (simp add: subspace_orthogonal_to_vectors T'_def)
+  have dim_eq: "dim T' + dim T = DIM('a)"
+    using dim_subspace_orthogonal_to_vectors [of T UNIV] \<open>subspace T\<close>
+    by (simp add: dim_UNIV T'_def)
+  have "\<exists>v1 v2. v1 \<in> span T \<and> (\<forall>w \<in> span T. orthogonal v2 w) \<and> x = v1 + v2" for x
+    by (force intro: orthogonal_subspace_decomp_exists [of T x])
+  then obtain p1 p2 where p1span: "p1 x \<in> span T"
+                      and "\<And>w. w \<in> span T \<Longrightarrow> orthogonal (p2 x) w"
+                      and eq: "p1 x + p2 x = x" for x
+    by metis
+  then have p1: "\<And>z. p1 z \<in> T" and ortho: "\<And>w. w \<in> T \<Longrightarrow> orthogonal (p2 x) w" for x
+    using span_eq \<open>subspace T\<close> by blast+
+  then have p2: "\<And>z. p2 z \<in> T'"
+    by (simp add: T'_def orthogonal_commute)
+  have p12_eq: "\<And>x y. \<lbrakk>x \<in> T; y \<in> T'\<rbrakk> \<Longrightarrow> p1(x + y) = x \<and> p2(x + y) = y"
+  proof (rule orthogonal_subspace_decomp_unique [OF eq p1span, where T=T'])
+    show "\<And>x y. \<lbrakk>x \<in> T; y \<in> T'\<rbrakk> \<Longrightarrow> p2 (x + y) \<in> span T'"
+      using span_eq p2 \<open>subspace T'\<close> by blast
+    show "\<And>a b. \<lbrakk>a \<in> T; b \<in> T'\<rbrakk> \<Longrightarrow> orthogonal a b"
+      using T'_def by blast
+  qed (auto simp: span_superset)
+  then have "\<And>c x. p1 (c *\<^sub>R x) = c *\<^sub>R p1 x \<and> p2 (c *\<^sub>R x) = c *\<^sub>R p2 x"
+    by (metis eq \<open>subspace T\<close> \<open>subspace T'\<close> p1 p2 scaleR_add_right subspace_mul)
+  moreover have lin_add: "\<And>x y. p1 (x + y) = p1 x + p1 y \<and> p2 (x + y) = p2 x + p2 y"
+  proof (rule orthogonal_subspace_decomp_unique [OF _ p1span, where T=T'])
+    show "\<And>x y. p1 (x + y) + p2 (x + y) = p1 x + p1 y + (p2 x + p2 y)"
+      by (simp add: add.assoc add.left_commute eq)
+    show  "\<And>a b. \<lbrakk>a \<in> T; b \<in> T'\<rbrakk> \<Longrightarrow> orthogonal a b"
+      using T'_def by blast
+  qed (auto simp: p1span p2 span_superset subspace_add)
+  ultimately have "linear p1" "linear p2"
+    by unfold_locales auto
+  have "(\<lambda>z. g (p1 z)) differentiable_on {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
+    apply (rule differentiable_on_compose [where f=g])
+    apply (rule linear_imp_differentiable_on [OF \<open>linear p1\<close>])
+    apply (rule differentiable_on_subset [OF gdiff])
+    using p12_eq \<open>S \<subseteq> T\<close> apply auto
+    done
+  then have diff: "(\<lambda>x. g (p1 x) + p2 x) differentiable_on {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
+    by (intro derivative_intros linear_imp_differentiable_on [OF \<open>linear p2\<close>])
+  have "dim {x + y |x y. x \<in> S - {0} \<and> y \<in> T'} \<le> dim {x + y |x y. x \<in> S  \<and> y \<in> T'}"
+    by (blast intro: dim_subset)
+  also have "... = dim S + dim T' - dim (S \<inter> T')"
+    using dim_sums_Int [OF \<open>subspace S\<close> \<open>subspace T'\<close>]
+    by (simp add: algebra_simps)
+  also have "... < DIM('a)"
+    using dimST dim_eq by auto
+  finally have neg: "negligible {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
+    by (rule negligible_lowdim)
+  have "negligible ((\<lambda>x. g (p1 x) + p2 x) ` {x + y |x y. x \<in> S - {0} \<and> y \<in> T'})"
+    by (rule negligible_differentiable_image_negligible [OF order_refl neg diff])
+  then have "negligible {x + y |x y. x \<in> g ` (S - {0}) \<and> y \<in> T'}"
+  proof (rule negligible_subset)
+    have "\<lbrakk>t' \<in> T'; s \<in> S; s \<noteq> 0\<rbrakk>
+          \<Longrightarrow> g s + t' \<in> (\<lambda>x. g (p1 x) + p2 x) `
+                         {x + t' |x t'. x \<in> S \<and> x \<noteq> 0 \<and> t' \<in> T'}" for t' s
+      apply (rule_tac x="s + t'" in image_eqI)
+      using \<open>S \<subseteq> T\<close> p12_eq by auto
+    then show "{x + y |x y. x \<in> g ` (S - {0}) \<and> y \<in> T'}
+          \<subseteq> (\<lambda>x. g (p1 x) + p2 x) ` {x + y |x y. x \<in> S - {0} \<and> y \<in> T'}"
+      by auto
+  qed
+  moreover have "- T' \<subseteq> {x + y |x y. x \<in> g ` (S - {0}) \<and> y \<in> T'}"
+  proof clarsimp
+    fix z assume "z \<notin> T'"
+    show "\<exists>x y. z = x + y \<and> x \<in> g ` (S - {0}) \<and> y \<in> T'"
+      apply (rule_tac x="p1 z" in exI)
+      apply (rule_tac x="p2 z" in exI)
+      apply (simp add: p1 eq p2 geq)
+      by (metis \<open>z \<notin> T'\<close> add.left_neutral eq p2)
+  qed
+  ultimately have "negligible (-T')"
+    using negligible_subset by blast
+  moreover have "negligible T'"
+    using negligible_lowdim
+    by (metis add.commute assms(3) diff_add_inverse2 diff_self_eq_0 dim_eq le_add1 le_antisym linordered_semidom_class.add_diff_inverse not_less0)
+  ultimately have  "negligible (-T' \<union> T')"
+    by (metis negligible_Un_eq)
+  then show False
+    using negligible_Un_eq non_negligible_UNIV by simp
+qed
+
+
+lemma spheremap_lemma2:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes ST: "subspace S" "subspace T" "dim S < dim T"
+      and "S \<subseteq> T"
+      and contf: "continuous_on (sphere 0 1 \<inter> S) f"
+      and fim: "f ` (sphere 0 1 \<inter> S) \<subseteq> sphere 0 1 \<inter> T"
+    shows "\<exists>c. homotopic_with (\<lambda>x. True) (sphere 0 1 \<inter> S) (sphere 0 1 \<inter> T) f (\<lambda>x. c)"
+proof -
+  have [simp]: "\<And>x. \<lbrakk>norm x = 1; x \<in> S\<rbrakk> \<Longrightarrow> norm (f x) = 1"
+    using fim by (simp add: image_subset_iff)
+  have "compact (sphere 0 1 \<inter> S)"
+    by (simp add: \<open>subspace S\<close> closed_subspace compact_Int_closed)
+  then obtain g where pfg: "polynomial_function g" and gim: "g ` (sphere 0 1 \<inter> S) \<subseteq> T"
+                and g12: "\<And>x. x \<in> sphere 0 1 \<inter> S \<Longrightarrow> norm(f x - g x) < 1/2"
+    apply (rule Stone_Weierstrass_polynomial_function_subspace [OF _ contf _ \<open>subspace T\<close>, of "1/2"])
+    using fim apply auto
+    done
+  have gnz: "g x \<noteq> 0" if "x \<in> sphere 0 1 \<inter> S" for x
+  proof -
+    have "norm (f x) = 1"
+      using fim that by (simp add: image_subset_iff)
+    then show ?thesis
+      using g12 [OF that] by auto
+  qed
+  have diffg: "g differentiable_on sphere 0 1 \<inter> S"
+    by (metis pfg differentiable_on_polynomial_function)
+  define h where "h \<equiv> \<lambda>x. inverse(norm(g x)) *\<^sub>R g x"
+  have h: "x \<in> sphere 0 1 \<inter> S \<Longrightarrow> h x \<in> sphere 0 1 \<inter> T" for x
+    unfolding h_def
+    using gnz [of x]
+    by (auto simp: subspace_mul [OF \<open>subspace T\<close>] subsetD [OF gim])
+  have diffh: "h differentiable_on sphere 0 1 \<inter> S"
+    unfolding h_def
+    apply (intro derivative_intros diffg differentiable_on_compose [OF diffg])
+    using gnz apply auto
+    done
+  have homfg: "homotopic_with (\<lambda>z. True) (sphere 0 1 \<inter> S) (T - {0}) f g"
+  proof (rule homotopic_with_linear [OF contf])
+    show "continuous_on (sphere 0 1 \<inter> S) g"
+      using pfg by (simp add: differentiable_imp_continuous_on diffg)
+  next
+    have non0fg: "0 \<notin> closed_segment (f x) (g x)" if "norm x = 1" "x \<in> S" for x
+    proof -
+      have "f x \<in> sphere 0 1"
+        using fim that by (simp add: image_subset_iff)
+      moreover have "norm(f x - g x) < 1/2"
+        apply (rule g12)
+        using that by force
+      ultimately show ?thesis
+        by (auto simp: norm_minus_commute dest: segment_bound)
+    qed
+    show "\<And>x. x \<in> sphere 0 1 \<inter> S \<Longrightarrow> closed_segment (f x) (g x) \<subseteq> T - {0}"
+      apply (simp add: subset_Diff_insert non0fg)
+      apply (simp add: segment_convex_hull)
+      apply (rule hull_minimal)
+       using fim image_eqI gim apply force
+      apply (rule subspace_imp_convex [OF \<open>subspace T\<close>])
+      done
+  qed
+  obtain d where d: "d \<in> (sphere 0 1 \<inter> T) - h ` (sphere 0 1 \<inter> S)"
+    using h spheremap_lemma1 [OF ST \<open>S \<subseteq> T\<close> diffh] by force
+  then have non0hd: "0 \<notin> closed_segment (h x) (- d)" if "norm x = 1" "x \<in> S" for x
+    using midpoint_between [of 0 "h x" "-d"] that h [of x]
+    by (auto simp: between_mem_segment midpoint_def)
+  have conth: "continuous_on (sphere 0 1 \<inter> S) h"
+    using differentiable_imp_continuous_on diffh by blast
+  have hom_hd: "homotopic_with (\<lambda>z. True) (sphere 0 1 \<inter> S) (T - {0}) h (\<lambda>x. -d)"
+    apply (rule homotopic_with_linear [OF conth continuous_on_const])
+    apply (simp add: subset_Diff_insert non0hd)
+    apply (simp add: segment_convex_hull)
+    apply (rule hull_minimal)
+     using h d apply (force simp: subspace_neg [OF \<open>subspace T\<close>])
+    apply (rule subspace_imp_convex [OF \<open>subspace T\<close>])
+    done
+  have conT0: "continuous_on (T - {0}) (\<lambda>y. inverse(norm y) *\<^sub>R y)"
+    by (intro continuous_intros) auto
+  have sub0T: "(\<lambda>y. y /\<^sub>R norm y) ` (T - {0}) \<subseteq> sphere 0 1 \<inter> T"
+    by (fastforce simp: assms(2) subspace_mul)
+  obtain c where homhc: "homotopic_with (\<lambda>z. True) (sphere 0 1 \<inter> S) (sphere 0 1 \<inter> T) h (\<lambda>x. c)"
+    apply (rule_tac c="-d" in that)
+    apply (rule homotopic_with_eq)
+       apply (rule homotopic_compose_continuous_left [OF hom_hd conT0 sub0T])
+    using d apply (auto simp: h_def)
+    done
+  show ?thesis
+    apply (rule_tac x=c in exI)
+    apply (rule homotopic_with_trans [OF _ homhc])
+    apply (rule homotopic_with_eq)
+       apply (rule homotopic_compose_continuous_left [OF homfg conT0 sub0T])
+      apply (auto simp: h_def)
+    done
+qed
+
+
+lemma spheremap_lemma3:
+  assumes "bounded S" "convex S" "subspace U" and affSU: "aff_dim S \<le> dim U"
+  obtains T where "subspace T" "T \<subseteq> U" "S \<noteq> {} \<Longrightarrow> aff_dim T = aff_dim S"
+                  "(rel_frontier S) homeomorphic (sphere 0 1 \<inter> T)"
+proof (cases "S = {}")
+  case True
+  with \<open>subspace U\<close> subspace_0 show ?thesis
+    by (rule_tac T = "{0}" in that) auto
+next
+  case False
+  then obtain a where "a \<in> S"
+    by auto
+  then have affS: "aff_dim S = int (dim ((\<lambda>x. -a+x) ` S))"
+    by (metis hull_inc aff_dim_eq_dim)
+  with affSU have "dim ((\<lambda>x. -a+x) ` S) \<le> dim U"
+    by linarith
+  with choose_subspace_of_subspace
+  obtain T where "subspace T" "T \<subseteq> span U" and dimT: "dim T = dim ((\<lambda>x. -a+x) ` S)" .
+  show ?thesis
+  proof (rule that [OF \<open>subspace T\<close>])
+    show "T \<subseteq> U"
+      using span_eq \<open>subspace U\<close> \<open>T \<subseteq> span U\<close> by blast
+    show "aff_dim T = aff_dim S"
+      using dimT \<open>subspace T\<close> affS aff_dim_subspace by fastforce
+    show "rel_frontier S homeomorphic sphere 0 1 \<inter> T"
+    proof -
+      have "aff_dim (ball 0 1 \<inter> T) = aff_dim (T)"
+        by (metis IntI interior_ball \<open>subspace T\<close> aff_dim_convex_Int_nonempty_interior centre_in_ball empty_iff inf_commute subspace_0 subspace_imp_convex zero_less_one)
+      then have affS_eq: "aff_dim S = aff_dim (ball 0 1 \<inter> T)"
+        using \<open>aff_dim T = aff_dim S\<close> by simp
+      have "rel_frontier S homeomorphic rel_frontier(ball 0 1 \<inter> T)"
+        apply (rule homeomorphic_rel_frontiers_convex_bounded_sets [OF \<open>convex S\<close> \<open>bounded S\<close>])
+          apply (simp add: \<open>subspace T\<close> convex_Int subspace_imp_convex)
+         apply (simp add: bounded_Int)
+        apply (rule affS_eq)
+        done
+      also have "... = frontier (ball 0 1) \<inter> T"
+        apply (rule convex_affine_rel_frontier_Int [OF convex_ball])
+         apply (simp add: \<open>subspace T\<close> subspace_imp_affine)
+        using \<open>subspace T\<close> subspace_0 by force
+      also have "... = sphere 0 1 \<inter> T"
+        by auto
+      finally show ?thesis .
+    qed
+  qed
+qed
+
+
+proposition inessential_spheremap_lowdim_gen:
+  fixes f :: "'M::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes "convex S" "bounded S" "convex T" "bounded T"
+      and affST: "aff_dim S < aff_dim T"
+      and contf: "continuous_on (rel_frontier S) f"
+      and fim: "f ` (rel_frontier S) \<subseteq> rel_frontier T"
+  obtains c where "homotopic_with (\<lambda>z. True) (rel_frontier S) (rel_frontier T) f (\<lambda>x. c)"
+proof (cases "S = {}")
+  case True
+  then show ?thesis
+    by (simp add: that)
+next
+  case False
+  then show ?thesis
+  proof (cases "T = {}")
+    case True
+    then show ?thesis
+      using fim that by auto
+  next
+    case False
+    obtain T':: "'a set"
+      where "subspace T'" and affT': "aff_dim T' = aff_dim T"
+        and homT: "rel_frontier T homeomorphic sphere 0 1 \<inter> T'"
+      apply (rule spheremap_lemma3 [OF \<open>bounded T\<close> \<open>convex T\<close> subspace_UNIV, where 'b='a])
+       apply (simp add: dim_UNIV aff_dim_le_DIM)
+      using \<open>T \<noteq> {}\<close> by blast
+    with homeomorphic_imp_homotopy_eqv
+    have relT: "sphere 0 1 \<inter> T'  homotopy_eqv rel_frontier T"
+      using homotopy_eqv_sym by blast
+    have "aff_dim S \<le> int (dim T')"
+      using affT' \<open>subspace T'\<close> affST aff_dim_subspace by force
+    with spheremap_lemma3 [OF \<open>bounded S\<close> \<open>convex S\<close> \<open>subspace T'\<close>] \<open>S \<noteq> {}\<close>
+    obtain S':: "'a set" where "subspace S'" "S' \<subseteq> T'"
+       and affS': "aff_dim S' = aff_dim S"
+       and homT: "rel_frontier S homeomorphic sphere 0 1 \<inter> S'"
+        by metis
+    with homeomorphic_imp_homotopy_eqv
+    have relS: "sphere 0 1 \<inter> S'  homotopy_eqv rel_frontier S"
+      using homotopy_eqv_sym by blast
+    have dimST': "dim S' < dim T'"
+      by (metis \<open>S' \<subseteq> T'\<close> \<open>subspace S'\<close> \<open>subspace T'\<close> affS' affST affT' less_irrefl not_le subspace_dim_equal)
+    have "\<exists>c. homotopic_with (\<lambda>z. True) (rel_frontier S) (rel_frontier T) f (\<lambda>x. c)"
+      apply (rule homotopy_eqv_homotopic_triviality_null_imp [OF relT contf fim])
+      apply (rule homotopy_eqv_cohomotopic_triviality_null[OF relS, THEN iffD1, rule_format])
+       apply (metis dimST' \<open>subspace S'\<close>  \<open>subspace T'\<close>  \<open>S' \<subseteq> T'\<close> spheremap_lemma2, blast)
+      done
+    with that show ?thesis by blast
+  qed
+qed
+
+lemma inessential_spheremap_lowdim:
+  fixes f :: "'M::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes
+   "DIM('M) < DIM('a)" and f: "continuous_on (sphere a r) f" "f ` (sphere a r) \<subseteq> (sphere b s)"
+   obtains c where "homotopic_with (\<lambda>z. True) (sphere a r) (sphere b s) f (\<lambda>x. c)"
+proof (cases "s \<le> 0")
+  case True then show ?thesis
+    by (meson nullhomotopic_into_contractible f contractible_sphere that)
+next
+  case False
+  show ?thesis
+  proof (cases "r \<le> 0")
+    case True then show ?thesis
+      by (meson f nullhomotopic_from_contractible contractible_sphere that)
+  next
+    case False
+    with \<open>~ s \<le> 0\<close> have "r > 0" "s > 0" by auto
+    show ?thesis
+      apply (rule inessential_spheremap_lowdim_gen [of "cball a r" "cball b s" f])
+      using  \<open>0 < r\<close> \<open>0 < s\<close> assms(1)
+             apply (simp_all add: f aff_dim_cball)
+      using that by blast
+  qed
+qed
+
+
+
+subsection\<open> Some technical lemmas about extending maps from cell complexes.\<close>
+
+lemma extending_maps_Union_aux:
+  assumes fin: "finite \<F>"
+      and "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
+      and "\<And>S T. \<lbrakk>S \<in> \<F>; T \<in> \<F>; S \<noteq> T\<rbrakk> \<Longrightarrow> S \<inter> T \<subseteq> K"
+      and "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>g. continuous_on S g \<and> g ` S \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
+   shows "\<exists>g. continuous_on (\<Union>\<F>) g \<and> g ` (\<Union>\<F>) \<subseteq> T \<and> (\<forall>x \<in> \<Union>\<F> \<inter> K. g x = h x)"
+using assms
+proof (induction \<F>)
+  case empty show ?case by simp
+next
+  case (insert S \<F>)
+  then obtain f where contf: "continuous_on (S) f" and fim: "f ` S \<subseteq> T" and feq: "\<forall>x \<in> S \<inter> K. f x = h x"
+    by (meson insertI1)
+  obtain g where contg: "continuous_on (\<Union>\<F>) g" and gim: "g ` \<Union>\<F> \<subseteq> T" and geq: "\<forall>x \<in> \<Union>\<F> \<inter> K. g x = h x"
+    using insert by auto
+  have fg: "f x = g x" if "x \<in> T" "T \<in> \<F>" "x \<in> S" for x T
+  proof -
+    have "T \<inter> S \<subseteq> K \<or> S = T"
+      using that by (metis (no_types) insert.prems(2) insertCI)
+    then show ?thesis
+      using UnionI feq geq \<open>S \<notin> \<F>\<close> subsetD that by fastforce
+  qed
+  show ?case
+    apply (rule_tac x="\<lambda>x. if x \<in> S then f x else g x" in exI, simp)
+    apply (intro conjI continuous_on_cases)
+    apply (simp_all add: insert closed_Union contf contg)
+    using fim gim feq geq
+    apply (force simp: insert closed_Union contf contg inf_commute intro: fg)+
+    done
+qed
+
+lemma extending_maps_Union:
+  assumes fin: "finite \<F>"
+      and "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>g. continuous_on S g \<and> g ` S \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
+      and "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
+      and K: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>; ~ X \<subseteq> Y; ~ Y \<subseteq> X\<rbrakk> \<Longrightarrow> X \<inter> Y \<subseteq> K"
+    shows "\<exists>g. continuous_on (\<Union>\<F>) g \<and> g ` (\<Union>\<F>) \<subseteq> T \<and> (\<forall>x \<in> \<Union>\<F> \<inter> K. g x = h x)"
+apply (simp add: Union_maximal_sets [OF fin, symmetric])
+apply (rule extending_maps_Union_aux)
+apply (simp_all add: Union_maximal_sets [OF fin] assms)
+by (metis K psubsetI)
+
+
+lemma extend_map_lemma:
+  assumes "finite \<F>" "\<G> \<subseteq> \<F>" "convex T" "bounded T"
+      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
+      and aff: "\<And>X. X \<in> \<F> - \<G> \<Longrightarrow> aff_dim X < aff_dim T"
+      and face: "\<And>S T. \<lbrakk>S \<in> \<F>; T \<in> \<F>\<rbrakk> \<Longrightarrow> (S \<inter> T) face_of S \<and> (S \<inter> T) face_of T"
+      and contf: "continuous_on (\<Union>\<G>) f" and fim: "f ` (\<Union>\<G>) \<subseteq> rel_frontier T"
+  obtains g where "continuous_on (\<Union>\<F>) g" "g ` (\<Union>\<F>) \<subseteq> rel_frontier T" "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> g x = f x"
+proof (cases "\<F> - \<G> = {}")
+  case True
+  then have "\<Union>\<F> \<subseteq> \<Union>\<G>"
+    by (simp add: Union_mono)
+  then show ?thesis
+    apply (rule_tac g=f in that)
+      using contf continuous_on_subset apply blast
+     using fim apply blast
+    by simp
+next
+  case False
+  then have "0 \<le> aff_dim T"
+    by (metis aff aff_dim_empty aff_dim_geq aff_dim_negative_iff all_not_in_conv not_less)
+  then obtain i::nat where i: "int i = aff_dim T"
+    by (metis nonneg_eq_int)
+  have Union_empty_eq: "\<Union>{D. D = {} \<and> P D} = {}" for P :: "'a set \<Rightarrow> bool"
+    by auto
+  have extendf: "\<exists>g. continuous_on (\<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < i})) g \<and>
+                     g ` (\<Union> (\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < i})) \<subseteq> rel_frontier T \<and>
+                     (\<forall>x \<in> \<Union>\<G>. g x = f x)"
+       if "i \<le> aff_dim T" for i::nat
+  using that
+  proof (induction i)
+    case 0 then show ?case
+      apply (simp add: Union_empty_eq)
+      apply (rule_tac x=f in exI)
+      apply (intro conjI)
+      using contf continuous_on_subset apply blast
+      using fim apply blast
+      by simp
+  next
+    case (Suc p)
+    with \<open>bounded T\<close> have "rel_frontier T \<noteq> {}"
+      by (auto simp: rel_frontier_eq_empty affine_bounded_eq_lowdim [of T])
+    then obtain t where t: "t \<in> rel_frontier T" by auto
+    have ple: "int p \<le> aff_dim T" using Suc.prems by force
+    obtain h where conth: "continuous_on (\<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p})) h"
+               and him: "h ` (\<Union> (\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}))
+                         \<subseteq> rel_frontier T"
+               and heq: "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> h x = f x"
+      using Suc.IH [OF ple] by auto
+    let ?Faces = "{D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D \<le> p}"
+    have extendh: "\<exists>g. continuous_on D g \<and>
+                       g ` D \<subseteq> rel_frontier T \<and>
+                       (\<forall>x \<in> D \<inter> \<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}). g x = h x)"
+      if D: "D \<in> \<G> \<union> ?Faces" for D
+    proof (cases "D \<subseteq> \<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p})")
+      case True
+      then show ?thesis
+        apply (rule_tac x=h in exI)
+        apply (intro conjI)
+        apply (blast intro: continuous_on_subset [OF conth])
+        using him apply blast
+        by simp
+    next
+      case False
+      note notDsub = False
+      show ?thesis
+      proof (cases "\<exists>a. D = {a}")
+        case True
+        then obtain a where "D = {a}" by auto
+        with notDsub t show ?thesis
+          by (rule_tac x="\<lambda>x. t" in exI) simp
+      next
+        case False
+        have "D \<noteq> {}" using notDsub by auto
+        have Dnotin: "D \<notin> \<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}"
+          using notDsub by auto
+        then have "D \<notin> \<G>" by simp
+        have "D \<in> ?Faces - {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < p}"
+          using Dnotin that by auto
+        then obtain C where "C \<in> \<F>" "D face_of C" and affD: "aff_dim D = int p"
+          by auto
+        then have "bounded D"
+          using face_of_polytope_polytope poly polytope_imp_bounded by blast
+        then have [simp]: "\<not> affine D"
+          using affine_bounded_eq_trivial False \<open>D \<noteq> {}\<close> \<open>bounded D\<close> by blast
+        have "{F. F facet_of D} \<subseteq> {E. E face_of C \<and> aff_dim E < int p}"
+          apply clarify
+          apply (metis \<open>D face_of C\<close> affD eq_iff face_of_trans facet_of_def zle_diff1_eq)
+          done
+        moreover have "polyhedron D"
+          using \<open>C \<in> \<F>\<close> \<open>D face_of C\<close> face_of_polytope_polytope poly polytope_imp_polyhedron by auto
+        ultimately have relf_sub: "rel_frontier D \<subseteq> \<Union> {E. E face_of C \<and> aff_dim E < p}"
+          by (simp add: rel_frontier_of_polyhedron Union_mono)
+        then have him_relf: "h ` rel_frontier D \<subseteq> rel_frontier T"
+          using \<open>C \<in> \<F>\<close> him by blast
+        have "convex D"
+          by (simp add: \<open>polyhedron D\<close> polyhedron_imp_convex)
+        have affD_lessT: "aff_dim D < aff_dim T"
+          using Suc.prems affD by linarith
+        have contDh: "continuous_on (rel_frontier D) h"
+          using \<open>C \<in> \<F>\<close> relf_sub by (blast intro: continuous_on_subset [OF conth])
+        then have *: "(\<exists>c. homotopic_with (\<lambda>x. True) (rel_frontier D) (rel_frontier T) h (\<lambda>x. c)) =
+                      (\<exists>g. continuous_on UNIV g \<and>  range g \<subseteq> rel_frontier T \<and>
+                           (\<forall>x\<in>rel_frontier D. g x = h x))"
+          apply (rule nullhomotopic_into_rel_frontier_extension [OF closed_rel_frontier])
+          apply (simp_all add: assms rel_frontier_eq_empty him_relf)
+          done
+        have "(\<exists>c. homotopic_with (\<lambda>x. True) (rel_frontier D)
+              (rel_frontier T) h (\<lambda>x. c))"
+          by (metis inessential_spheremap_lowdim_gen
+                 [OF \<open>convex D\<close> \<open>bounded D\<close> \<open>convex T\<close> \<open>bounded T\<close> affD_lessT contDh him_relf])
+        then obtain g where contg: "continuous_on UNIV g"
+                        and gim: "range g \<subseteq> rel_frontier T"
+                        and gh: "\<And>x. x \<in> rel_frontier D \<Longrightarrow> g x = h x"
+          by (metis *)
+        have "D \<inter> E \<subseteq> rel_frontier D"
+             if "E \<in> \<G> \<union> {D. Bex \<F> (op face_of D) \<and> aff_dim D < int p}" for E
+        proof (rule face_of_subset_rel_frontier)
+          show "D \<inter> E face_of D"
+            using that \<open>C \<in> \<F>\<close> \<open>D face_of C\<close> face
+            apply auto
+            apply (meson face_of_Int_subface \<open>\<G> \<subseteq> \<F>\<close> face_of_refl_eq poly polytope_imp_convex subsetD)
+            using face_of_Int_subface apply blast
+            done
+          show "D \<inter> E \<noteq> D"
+            using that notDsub by auto
+        qed
+        then show ?thesis
+          apply (rule_tac x=g in exI)
+          apply (intro conjI ballI)
+            using continuous_on_subset contg apply blast
+           using gim apply blast
+          using gh by fastforce
+      qed
+    qed
+    have intle: "i < 1 + int j \<longleftrightarrow> i \<le> int j" for i j
+      by auto
+    have "finite \<G>"
+      using \<open>finite \<F>\<close> \<open>\<G> \<subseteq> \<F>\<close> rev_finite_subset by blast
+    then have fin: "finite (\<G> \<union> ?Faces)"
+      apply simp
+      apply (rule_tac B = "\<Union>{{D. D face_of C}| C. C \<in> \<F>}" in finite_subset)
+       by (auto simp: \<open>finite \<F>\<close> finite_polytope_faces poly)
+    have clo: "closed S" if "S \<in> \<G> \<union> ?Faces" for S
+      using that \<open>\<G> \<subseteq> \<F>\<close> face_of_polytope_polytope poly polytope_imp_closed by blast
+    have K: "X \<inter> Y \<subseteq> \<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < int p})"
+                if "X \<in> \<G> \<union> ?Faces" "Y \<in> \<G> \<union> ?Faces" "~ Y \<subseteq> X" for X Y
+    proof -
+      have ff: "X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
+        if XY: "X face_of D" "Y face_of E" and DE: "D \<in> \<F>" "E \<in> \<F>" for D E
+        apply (rule face_of_Int_subface [OF _ _ XY])
+        apply (auto simp: face DE)
+        done
+      show ?thesis
+        using that
+        apply auto
+        apply (drule_tac x="X \<inter> Y" in spec, safe)
+        using ff face_of_imp_convex [of X] face_of_imp_convex [of Y]
+        apply (fastforce dest: face_of_aff_dim_lt)
+        by (meson face_of_trans ff)
+    qed
+    obtain g where "continuous_on (\<Union>(\<G> \<union> ?Faces)) g"
+                   "g ` \<Union>(\<G> \<union> ?Faces) \<subseteq> rel_frontier T"
+                   "(\<forall>x \<in> \<Union>(\<G> \<union> ?Faces) \<inter>
+                          \<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < p}). g x = h x)"
+      apply (rule exE [OF extending_maps_Union [OF fin extendh clo K]], blast+)
+      done
+    then show ?case
+      apply (simp add: intle local.heq [symmetric], blast)
+      done
+  qed
+  have eq: "\<Union>(\<G> \<union> {D. \<exists>C \<in> \<F>. D face_of C \<and> aff_dim D < i}) = \<Union>\<F>"
+  proof
+    show "\<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < int i}) \<subseteq> \<Union>\<F>"
+      apply (rule Union_subsetI)
+      using \<open>\<G> \<subseteq> \<F>\<close> face_of_imp_subset  apply force
+      done
+    show "\<Union>\<F> \<subseteq> \<Union>(\<G> \<union> {D. \<exists>C\<in>\<F>. D face_of C \<and> aff_dim D < i})"
+      apply (rule Union_mono)
+      using face  apply (fastforce simp: aff i)
+      done
+  qed
+  have "int i \<le> aff_dim T" by (simp add: i)
+  then show ?thesis
+    using extendf [of i] unfolding eq by (metis that)
+qed
+
+lemma extend_map_lemma_cofinite0:
+  assumes "finite \<F>"
+      and "pairwise (\<lambda>S T. S \<inter> T \<subseteq> K) \<F>"
+      and "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>a g. a \<notin> U \<and> continuous_on (S - {a}) g \<and> g ` (S - {a}) \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
+      and "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
+    shows "\<exists>C g. finite C \<and> disjnt C U \<and> card C \<le> card \<F> \<and>
+                 continuous_on (\<Union>\<F> - C) g \<and> g ` (\<Union>\<F> - C) \<subseteq> T
+                  \<and> (\<forall>x \<in> (\<Union>\<F> - C) \<inter> K. g x = h x)"
+  using assms
+proof induction
+  case empty then show ?case
+    by force
+next
+  case (insert X \<F>)
+  then have "closed X" and clo: "\<And>X. X \<in> \<F> \<Longrightarrow> closed X"
+        and \<F>: "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>a g. a \<notin> U \<and> continuous_on (S - {a}) g \<and> g ` (S - {a}) \<subseteq> T \<and> (\<forall>x \<in> S \<inter> K. g x = h x)"
+        and pwX: "\<And>Y. Y \<in> \<F> \<and> Y \<noteq> X \<longrightarrow> X \<inter> Y \<subseteq> K \<and> Y \<inter> X \<subseteq> K"
+        and pwF: "pairwise (\<lambda> S T. S \<inter> T \<subseteq> K) \<F>"
+    by (simp_all add: pairwise_insert)
+  obtain C g where C: "finite C" "disjnt C U" "card C \<le> card \<F>"
+               and contg: "continuous_on (\<Union>\<F> - C) g"
+               and gim: "g ` (\<Union>\<F> - C) \<subseteq> T"
+               and gh:  "\<And>x. x \<in> (\<Union>\<F> - C) \<inter> K \<Longrightarrow> g x = h x"
+    using insert.IH [OF pwF \<F> clo] by auto
+  obtain a f where "a \<notin> U"
+               and contf: "continuous_on (X - {a}) f"
+               and fim: "f ` (X - {a}) \<subseteq> T"
+               and fh: "(\<forall>x \<in> X \<inter> K. f x = h x)"
+    using insert.prems by (meson insertI1)
+  show ?case
+  proof (intro exI conjI)
+    show "finite (insert a C)"
+      by (simp add: C)
+    show "disjnt (insert a C) U"
+      using C \<open>a \<notin> U\<close> by simp
+    show "card (insert a C) \<le> card (insert X \<F>)"
+      by (simp add: C card_insert_if insert.hyps le_SucI)
+    have "closed (\<Union>\<F>)"
+      using clo insert.hyps by blast
+    have "continuous_on (X - insert a C \<union> (\<Union>\<F> - insert a C)) (\<lambda>x. if x \<in> X then f x else g x)"
+       apply (rule continuous_on_cases_local)
+          apply (simp_all add: closedin_closed)
+        using \<open>closed X\<close> apply blast
+        using \<open>closed (\<Union>\<F>)\<close> apply blast
+        using contf apply (force simp: elim: continuous_on_subset)
+        using contg apply (force simp: elim: continuous_on_subset)
+        using fh gh insert.hyps pwX by fastforce
+    then show "continuous_on (\<Union>insert X \<F> - insert a C) (\<lambda>a. if a \<in> X then f a else g a)"
+      by (blast intro: continuous_on_subset)
+    show "\<forall>x\<in>(\<Union>insert X \<F> - insert a C) \<inter> K. (if x \<in> X then f x else g x) = h x"
+      using gh by (auto simp: fh)
+    show "(\<lambda>a. if a \<in> X then f a else g a) ` (\<Union>insert X \<F> - insert a C) \<subseteq> T"
+      using fim gim by auto force
+  qed
+qed
+
+
+lemma extend_map_lemma_cofinite1:
+assumes "finite \<F>"
+    and \<F>: "\<And>X. X \<in> \<F> \<Longrightarrow> \<exists>a g. a \<notin> U \<and> continuous_on (X - {a}) g \<and> g ` (X - {a}) \<subseteq> T \<and> (\<forall>x \<in> X \<inter> K. g x = h x)"
+    and clo: "\<And>X. X \<in> \<F> \<Longrightarrow> closed X"
+    and K: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>; ~(X \<subseteq> Y); ~(Y \<subseteq> X)\<rbrakk> \<Longrightarrow> X \<inter> Y \<subseteq> K"
+  obtains C g where "finite C" "disjnt C U" "card C \<le> card \<F>" "continuous_on (\<Union>\<F> - C) g"
+                    "g ` (\<Union>\<F> - C) \<subseteq> T"
+                    "\<And>x. x \<in> (\<Union>\<F> - C) \<inter> K \<Longrightarrow> g x = h x"
+proof -
+  let ?\<F> = "{X \<in> \<F>. \<forall>Y\<in>\<F>. \<not> X \<subset> Y}"
+  have [simp]: "\<Union>?\<F> = \<Union>\<F>"
+    by (simp add: Union_maximal_sets assms)
+  have fin: "finite ?\<F>"
+    by (force intro: finite_subset [OF _ \<open>finite \<F>\<close>])
+  have pw: "pairwise (\<lambda> S T. S \<inter> T \<subseteq> K) ?\<F>"
+    by (simp add: pairwise_def) (metis K psubsetI)
+  have "card {X \<in> \<F>. \<forall>Y\<in>\<F>. \<not> X \<subset> Y} \<le> card \<F>"
+    by (simp add: \<open>finite \<F>\<close> card_mono)
+  moreover
+  obtain C g where "finite C \<and> disjnt C U \<and> card C \<le> card ?\<F> \<and>
+                 continuous_on (\<Union>?\<F> - C) g \<and> g ` (\<Union>?\<F> - C) \<subseteq> T
+                  \<and> (\<forall>x \<in> (\<Union>?\<F> - C) \<inter> K. g x = h x)"
+    apply (rule exE [OF extend_map_lemma_cofinite0 [OF fin pw, of U T h]])
+      apply (fastforce intro!:  clo \<F>)+
+    done
+  ultimately show ?thesis
+    by (rule_tac C=C and g=g in that) auto
+qed
+
+
+lemma extend_map_lemma_cofinite:
+  assumes "finite \<F>" "\<G> \<subseteq> \<F>" and T: "convex T" "bounded T"
+      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
+      and contf: "continuous_on (\<Union>\<G>) f" and fim: "f ` (\<Union>\<G>) \<subseteq> rel_frontier T"
+      and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y"
+      and aff: "\<And>X. X \<in> \<F> - \<G> \<Longrightarrow> aff_dim X \<le> aff_dim T"
+  obtains C g where
+     "finite C" "disjnt C (\<Union>\<G>)" "card C \<le> card \<F>" "continuous_on (\<Union>\<F> - C) g"
+     "g ` (\<Union> \<F> - C) \<subseteq> rel_frontier T" "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> g x = f x"
+proof -
+  define \<H> where "\<H> \<equiv> \<G> \<union> {D. \<exists>C \<in> \<F> - \<G>. D face_of C \<and> aff_dim D < aff_dim T}"
+  have "finite \<G>"
+    using assms finite_subset by blast
+  moreover have "finite (\<Union>{{D. D face_of C} |C. C \<in> \<F>})"
+    apply (rule finite_Union)
+     apply (simp add: \<open>finite \<F>\<close>)
+    using finite_polytope_faces poly by auto
+  ultimately have "finite \<H>"
+    apply (simp add: \<H>_def)
+    apply (rule finite_subset [of _ "\<Union> {{D. D face_of C} | C. C \<in> \<F>}"], auto)
+    done
+  have *: "\<And>X Y. \<lbrakk>X \<in> \<H>; Y \<in> \<H>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
+    unfolding \<H>_def
+    apply (elim UnE bexE CollectE DiffE)
+    using subsetD [OF \<open>\<G> \<subseteq> \<F>\<close>] apply (simp_all add: face)
+      apply (meson subsetD [OF \<open>\<G> \<subseteq> \<F>\<close>] face face_of_Int_subface face_of_imp_subset face_of_refl poly polytope_imp_convex)+
+    done
+  obtain h where conth: "continuous_on (\<Union>\<H>) h" and him: "h ` (\<Union>\<H>) \<subseteq> rel_frontier T"
+             and hf: "\<And>x. x \<in> \<Union>\<G> \<Longrightarrow> h x = f x"
+    using \<open>finite \<H>\<close>
+    unfolding \<H>_def
+    apply (rule extend_map_lemma [OF _ Un_upper1 T _ _ _ contf fim])
+    using \<open>\<G> \<subseteq> \<F>\<close> face_of_polytope_polytope poly apply fastforce
+    using * apply (auto simp: \<H>_def)
+    done
+  have "bounded (\<Union>\<G>)"
+    using \<open>finite \<G>\<close> \<open>\<G> \<subseteq> \<F>\<close> poly polytope_imp_bounded by blast
+  then have "\<Union>\<G> \<noteq> UNIV"
+    by auto
+  then obtain a where a: "a \<notin> \<Union>\<G>"
+    by blast
+  have \<F>: "\<exists>a g. a \<notin> \<Union>\<G> \<and> continuous_on (D - {a}) g \<and>
+                  g ` (D - {a}) \<subseteq> rel_frontier T \<and> (\<forall>x \<in> D \<inter> \<Union>\<H>. g x = h x)"
+       if "D \<in> \<F>" for D
+  proof (cases "D \<subseteq> \<Union>\<H>")
+    case True
+    then show ?thesis
+      apply (rule_tac x=a in exI)
+      apply (rule_tac x=h in exI)
+      using him apply (blast intro!: \<open>a \<notin> \<Union>\<G>\<close> continuous_on_subset [OF conth]) +
+      done
+  next
+    case False
+    note D_not_subset = False
+    show ?thesis
+    proof (cases "D \<in> \<G>")
+      case True
+      with D_not_subset show ?thesis
+        by (auto simp: \<H>_def)
+    next
+      case False
+      then have affD: "aff_dim D \<le> aff_dim T"
+        by (simp add: \<open>D \<in> \<F>\<close> aff)
+      show ?thesis
+      proof (cases "rel_interior D = {}")
+        case True
+        with \<open>D \<in> \<F>\<close> poly a show ?thesis
+          by (force simp: rel_interior_eq_empty polytope_imp_convex)
+      next
+        case False
+        then obtain b where brelD: "b \<in> rel_interior D"
+          by blast
+        have "polyhedron D"
+          by (simp add: poly polytope_imp_polyhedron that)
+        have "rel_frontier D retract_of affine hull D - {b}"
+          by (simp add: rel_frontier_retract_of_punctured_affine_hull poly polytope_imp_bounded polytope_imp_convex that brelD)
+        then obtain r where relfD: "rel_frontier D \<subseteq> affine hull D - {b}"
+                        and contr: "continuous_on (affine hull D - {b}) r"
+                        and rim: "r ` (affine hull D - {b}) \<subseteq> rel_frontier D"
+                        and rid: "\<And>x. x \<in> rel_frontier D \<Longrightarrow> r x = x"
+          by (auto simp: retract_of_def retraction_def)
+        show ?thesis
+        proof (intro exI conjI ballI)
+          show "b \<notin> \<Union>\<G>"
+          proof clarify
+            fix E
+            assume "b \<in> E" "E \<in> \<G>"
+            then have "E \<inter> D face_of E \<and> E \<inter> D face_of D"
+              using \<open>\<G> \<subseteq> \<F>\<close> face that by auto
+            with face_of_subset_rel_frontier \<open>E \<in> \<G>\<close> \<open>b \<in> E\<close> brelD rel_interior_subset [of D]
+                 D_not_subset rel_frontier_def \<H>_def
+            show False
+              by blast
+          qed
+          have "r ` (D - {b}) \<subseteq> r ` (affine hull D - {b})"
+            by (simp add: Diff_mono hull_subset image_mono)
+          also have "... \<subseteq> rel_frontier D"
+            by (rule rim)
+          also have "... \<subseteq> \<Union>{E. E face_of D \<and> aff_dim E < aff_dim T}"
+            using affD
+            by (force simp: rel_frontier_of_polyhedron [OF \<open>polyhedron D\<close>] facet_of_def)
+          also have "... \<subseteq> \<Union>(\<H>)"
+            using D_not_subset \<H>_def that by fastforce
+          finally have rsub: "r ` (D - {b}) \<subseteq> \<Union>(\<H>)" .
+          show "continuous_on (D - {b}) (h \<circ> r)"
+            apply (intro conjI \<open>b \<notin> \<Union>\<G>\<close> continuous_on_compose)
+               apply (rule continuous_on_subset [OF contr])
+            apply (simp add: Diff_mono hull_subset)
+            apply (rule continuous_on_subset [OF conth rsub])
+            done
+          show "(h \<circ> r) ` (D - {b}) \<subseteq> rel_frontier T"
+            using brelD him rsub by fastforce
+          show "(h \<circ> r) x = h x" if x: "x \<in> D \<inter> \<Union>\<H>" for x
+          proof -
+            consider A where "x \<in> D" "A \<in> \<G>" "x \<in> A"
+                 | A B where "x \<in> D" "A face_of B" "B \<in> \<F>" "B \<notin> \<G>" "aff_dim A < aff_dim T" "x \<in> A"
+              using x by (auto simp: \<H>_def)
+            then have xrel: "x \<in> rel_frontier D"
+            proof cases
+              case 1 show ?thesis
+              proof (rule face_of_subset_rel_frontier [THEN subsetD])
+                show "D \<inter> A face_of D"
+                  using \<open>A \<in> \<G>\<close> \<open>\<G> \<subseteq> \<F>\<close> face \<open>D \<in> \<F>\<close> by blast
+                show "D \<inter> A \<noteq> D"
+                  using \<open>A \<in> \<G>\<close> D_not_subset \<H>_def by blast
+              qed (auto simp: 1)
+            next
+              case 2 show ?thesis
+              proof (rule face_of_subset_rel_frontier [THEN subsetD])
+                show "D \<inter> A face_of D"
+                  apply (rule face_of_Int_subface [of D B _ A, THEN conjunct1])
+                     apply (simp_all add: 2 \<open>D \<in> \<F>\<close> face)
+                   apply (simp add: \<open>polyhedron D\<close> polyhedron_imp_convex face_of_refl)
+                  done
+                show "D \<inter> A \<noteq> D"
+                  using "2" D_not_subset \<H>_def by blast
+              qed (auto simp: 2)
+            qed
+            show ?thesis
+              by (simp add: rid xrel)
+          qed
+        qed
+      qed
+    qed
+  qed
+  have clo: "\<And>S. S \<in> \<F> \<Longrightarrow> closed S"
+    by (simp add: poly polytope_imp_closed)
+  obtain C g where "finite C" "disjnt C (\<Union>\<G>)" "card C \<le> card \<F>" "continuous_on (\<Union>\<F> - C) g"
+                   "g ` (\<Union>\<F> - C) \<subseteq> rel_frontier T"
+               and gh: "\<And>x. x \<in> (\<Union>\<F> - C) \<inter> \<Union>\<H> \<Longrightarrow> g x = h x"
+  proof (rule extend_map_lemma_cofinite1 [OF \<open>finite \<F>\<close> \<F> clo])
+    show "X \<inter> Y \<subseteq> \<Union>\<H>" if XY: "X \<in> \<F>" "Y \<in> \<F>" and "\<not> X \<subseteq> Y" "\<not> Y \<subseteq> X" for X Y
+    proof (cases "X \<in> \<G>")
+      case True
+      then show ?thesis
+        by (auto simp: \<H>_def)
+    next
+      case False
+      have "X \<inter> Y \<noteq> X"
+        using \<open>\<not> X \<subseteq> Y\<close> by blast
+      with XY
+      show ?thesis
+        by (clarsimp simp: \<H>_def)
+           (metis Diff_iff Int_iff aff antisym_conv face face_of_aff_dim_lt face_of_refl
+                  not_le poly polytope_imp_convex)
+    qed
+  qed (blast)+
+  with \<open>\<G> \<subseteq> \<F>\<close> show ?thesis
+    apply (rule_tac C=C and g=g in that)
+     apply (auto simp: disjnt_def hf [symmetric] \<H>_def intro!: gh)
+    done
+qed
+
+text\<open>The next two proofs are similar\<close>
+theorem extend_map_cell_complex_to_sphere:
+  assumes "finite \<F>" and S: "S \<subseteq> \<Union>\<F>" "closed S" and T: "convex T" "bounded T"
+      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
+      and aff: "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X < aff_dim T"
+      and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> rel_frontier T"
+  obtains g where "continuous_on (\<Union>\<F>) g"
+     "g ` (\<Union>\<F>) \<subseteq> rel_frontier T" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof -
+  obtain V g where "S \<subseteq> V" "open V" "continuous_on V g" and gim: "g ` V \<subseteq> rel_frontier T" and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+    using neighbourhood_extension_into_ANR [OF contf fim _ \<open>closed S\<close>] ANR_rel_frontier_convex T by blast
+  have "compact S"
+    by (meson assms compact_Union poly polytope_imp_compact seq_compact_closed_subset seq_compact_eq_compact)
+  then obtain d where "d > 0" and d: "\<And>x y. \<lbrakk>x \<in> S; y \<in> - V\<rbrakk> \<Longrightarrow> d \<le> dist x y"
+    using separate_compact_closed [of S "-V"] \<open>open V\<close> \<open>S \<subseteq> V\<close> by force
+  obtain \<G> where "finite \<G>" "\<Union>\<G> = \<Union>\<F>"
+             and diaG: "\<And>X. X \<in> \<G> \<Longrightarrow> diameter X < d"
+             and polyG: "\<And>X. X \<in> \<G> \<Longrightarrow> polytope X"
+             and affG: "\<And>X. X \<in> \<G> \<Longrightarrow> aff_dim X \<le> aff_dim T - 1"
+             and faceG: "\<And>X Y. \<lbrakk>X \<in> \<G>; Y \<in> \<G>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
+  proof (rule cell_complex_subdivision_exists [OF \<open>d>0\<close> \<open>finite \<F>\<close> poly _ face])
+    show "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X \<le> aff_dim T - 1"
+      by (simp add: aff)
+  qed auto
+  obtain h where conth: "continuous_on (\<Union>\<G>) h" and him: "h ` \<Union>\<G> \<subseteq> rel_frontier T" and hg: "\<And>x. x \<in> \<Union>(\<G> \<inter> Pow V) \<Longrightarrow> h x = g x"
+  proof (rule extend_map_lemma [of \<G> "\<G> \<inter> Pow V" T g])
+    show "continuous_on (\<Union>(\<G> \<inter> Pow V)) g"
+      by (metis Union_Int_subset Union_Pow_eq \<open>continuous_on V g\<close> continuous_on_subset le_inf_iff)
+  qed (use \<open>finite \<G>\<close> T polyG affG faceG gim in fastforce)+
+  show ?thesis
+  proof
+    show "continuous_on (\<Union>\<F>) h"
+      using \<open>\<Union>\<G> = \<Union>\<F>\<close> conth by auto
+    show "h ` \<Union>\<F> \<subseteq> rel_frontier T"
+      using \<open>\<Union>\<G> = \<Union>\<F>\<close> him by auto
+    show "h x = f x" if "x \<in> S" for x
+    proof -
+      have "x \<in> \<Union>\<G>"
+        using \<open>\<Union>\<G> = \<Union>\<F>\<close> \<open>S \<subseteq> \<Union>\<F>\<close> that by auto
+      then obtain X where "x \<in> X" "X \<in> \<G>" by blast
+      then have "diameter X < d" "bounded X"
+        by (auto simp: diaG \<open>X \<in> \<G>\<close> polyG polytope_imp_bounded)
+      then have "X \<subseteq> V" using d [OF \<open>x \<in> S\<close>] diameter_bounded_bound [OF \<open>bounded X\<close> \<open>x \<in> X\<close>]
+        by fastforce
+      have "h x = g x"
+        apply (rule hg)
+        using \<open>X \<in> \<G>\<close> \<open>X \<subseteq> V\<close> \<open>x \<in> X\<close> by blast
+      also have "... = f x"
+        by (simp add: gf that)
+      finally show "h x = f x" .
+    qed
+  qed
+qed
+
+
+theorem extend_map_cell_complex_to_sphere_cofinite:
+  assumes "finite \<F>" and S: "S \<subseteq> \<Union>\<F>" "closed S" and T: "convex T" "bounded T"
+      and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X"
+      and aff: "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X \<le> aff_dim T"
+      and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> rel_frontier T"
+  obtains C g where "finite C" "disjnt C S" "continuous_on (\<Union>\<F> - C) g"
+     "g ` (\<Union>\<F> - C) \<subseteq> rel_frontier T" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof -
+  obtain V g where "S \<subseteq> V" "open V" "continuous_on V g" and gim: "g ` V \<subseteq> rel_frontier T" and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+    using neighbourhood_extension_into_ANR [OF contf fim _ \<open>closed S\<close>] ANR_rel_frontier_convex T by blast
+  have "compact S"
+    by (meson assms compact_Union poly polytope_imp_compact seq_compact_closed_subset seq_compact_eq_compact)
+  then obtain d where "d > 0" and d: "\<And>x y. \<lbrakk>x \<in> S; y \<in> - V\<rbrakk> \<Longrightarrow> d \<le> dist x y"
+    using separate_compact_closed [of S "-V"] \<open>open V\<close> \<open>S \<subseteq> V\<close> by force
+  obtain \<G> where "finite \<G>" "\<Union>\<G> = \<Union>\<F>"
+             and diaG: "\<And>X. X \<in> \<G> \<Longrightarrow> diameter X < d"
+             and polyG: "\<And>X. X \<in> \<G> \<Longrightarrow> polytope X"
+             and affG: "\<And>X. X \<in> \<G> \<Longrightarrow> aff_dim X \<le> aff_dim T"
+             and faceG: "\<And>X Y. \<lbrakk>X \<in> \<G>; Y \<in> \<G>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
+    by (rule cell_complex_subdivision_exists [OF \<open>d>0\<close> \<open>finite \<F>\<close> poly aff face]) auto
+  obtain C h where "finite C" and dis: "disjnt C (\<Union>(\<G> \<inter> Pow V))"
+               and card: "card C \<le> card \<G>" and conth: "continuous_on (\<Union>\<G> - C) h"
+               and him: "h ` (\<Union>\<G> - C) \<subseteq> rel_frontier T"
+               and hg: "\<And>x. x \<in> \<Union>(\<G> \<inter> Pow V) \<Longrightarrow> h x = g x"
+  proof (rule extend_map_lemma_cofinite [of \<G> "\<G> \<inter> Pow V" T g])
+    show "continuous_on (\<Union>(\<G> \<inter> Pow V)) g"
+      by (metis Union_Int_subset Union_Pow_eq \<open>continuous_on V g\<close> continuous_on_subset le_inf_iff)
+    show "g ` \<Union>(\<G> \<inter> Pow V) \<subseteq> rel_frontier T"
+      using gim by force
+  qed (auto intro: \<open>finite \<G>\<close> T polyG affG dest: faceG)
+  have Ssub: "S \<subseteq> \<Union>(\<G> \<inter> Pow V)"
+  proof
+    fix x
+    assume "x \<in> S"
+    then have "x \<in> \<Union>\<G>"
+      using \<open>\<Union>\<G> = \<Union>\<F>\<close> \<open>S \<subseteq> \<Union>\<F>\<close> by auto
+    then obtain X where "x \<in> X" "X \<in> \<G>" by blast
+    then have "diameter X < d" "bounded X"
+      by (auto simp: diaG \<open>X \<in> \<G>\<close> polyG polytope_imp_bounded)
+    then have "X \<subseteq> V" using d [OF \<open>x \<in> S\<close>] diameter_bounded_bound [OF \<open>bounded X\<close> \<open>x \<in> X\<close>]
+      by fastforce
+    then show "x \<in> \<Union>(\<G> \<inter> Pow V)"
+      using \<open>X \<in> \<G>\<close> \<open>x \<in> X\<close> by blast
+  qed
+  show ?thesis
+  proof
+    show "continuous_on (\<Union>\<F>-C) h"
+      using \<open>\<Union>\<G> = \<Union>\<F>\<close> conth by auto
+    show "h ` (\<Union>\<F> - C) \<subseteq> rel_frontier T"
+      using \<open>\<Union>\<G> = \<Union>\<F>\<close> him by auto
+    show "h x = f x" if "x \<in> S" for x
+    proof -
+      have "h x = g x"
+        apply (rule hg)
+        using Ssub that by blast
+      also have "... = f x"
+        by (simp add: gf that)
+      finally show "h x = f x" .
+    qed
+    show "disjnt C S"
+      using dis Ssub  by (meson disjnt_iff subset_eq)
+  qed (intro \<open>finite C\<close>)
+qed
+
+
+
+subsection\<open> Special cases and corollaries involving spheres.\<close>
+
+lemma disjnt_Diff1: "X \<subseteq> Y' \<Longrightarrow> disjnt (X - Y) (X' - Y')"
+  by (auto simp: disjnt_def)
+
+proposition extend_map_affine_to_sphere_cofinite_simple:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "compact S" "convex U" "bounded U"
+      and aff: "aff_dim T \<le> aff_dim U"
+      and "S \<subseteq> T" and contf: "continuous_on S f"
+      and fim: "f ` S \<subseteq> rel_frontier U"
+ obtains K g where "finite K" "K \<subseteq> T" "disjnt K S" "continuous_on (T - K) g"
+                   "g ` (T - K) \<subseteq> rel_frontier U"
+                   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof -
+  have "\<exists>K g. finite K \<and> disjnt K S \<and> continuous_on (T - K) g \<and>
+              g ` (T - K) \<subseteq> rel_frontier U \<and> (\<forall>x \<in> S. g x = f x)"
+       if "affine T" "S \<subseteq> T" and aff: "aff_dim T \<le> aff_dim U"  for T
+  proof (cases "S = {}")
+    case True
+    show ?thesis
+    proof (cases "rel_frontier U = {}")
+      case True
+      with \<open>bounded U\<close> have "aff_dim U \<le> 0"
+        using affine_bounded_eq_lowdim rel_frontier_eq_empty by auto
+      with aff have "aff_dim T \<le> 0" by auto
+      then obtain a where "T \<subseteq> {a}"
+        using \<open>affine T\<close> affine_bounded_eq_lowdim affine_bounded_eq_trivial by auto
+      then show ?thesis
+        using \<open>S = {}\<close> fim
+        by (metis Diff_cancel contf disjnt_empty2 finite.emptyI finite_insert finite_subset)
+    next
+      case False
+      then obtain a where "a \<in> rel_frontier U"
+        by auto
+      then show ?thesis
+        using continuous_on_const [of _ a] \<open>S = {}\<close> by force
+    qed
+  next
+    case False
+    have "bounded S"
+      by (simp add: \<open>compact S\<close> compact_imp_bounded)
+    then obtain b where b: "S \<subseteq> cbox (-b) b"
+      using bounded_subset_cbox_symmetric by blast
+    define bbox where "bbox \<equiv> cbox (-(b+One)) (b+One)"
+    have "cbox (-b) b \<subseteq> bbox"
+      by (auto simp: bbox_def algebra_simps intro!: subset_box_imp)
+    with b \<open>S \<subseteq> T\<close> have "S \<subseteq> bbox \<inter> T"
+      by auto
+    then have Ssub: "S \<subseteq> \<Union>{bbox \<inter> T}"
+      by auto
+    then have "aff_dim (bbox \<inter> T) \<le> aff_dim U"
+      by (metis aff aff_dim_subset inf_commute inf_le1 order_trans)
+    obtain K g where K: "finite K" "disjnt K S"
+                 and contg: "continuous_on (\<Union>{bbox \<inter> T} - K) g"
+                 and gim: "g ` (\<Union>{bbox \<inter> T} - K) \<subseteq> rel_frontier U"
+                 and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+    proof (rule extend_map_cell_complex_to_sphere_cofinite
+              [OF _ Ssub _ \<open>convex U\<close> \<open>bounded U\<close> _ _ _ contf fim])
+      show "closed S"
+        using \<open>compact S\<close> compact_eq_bounded_closed by auto
+      show poly: "\<And>X. X \<in> {bbox \<inter> T} \<Longrightarrow> polytope X"
+        by (simp add: polytope_Int_polyhedron bbox_def polytope_interval affine_imp_polyhedron \<open>affine T\<close>)
+      show "\<And>X Y. \<lbrakk>X \<in> {bbox \<inter> T}; Y \<in> {bbox \<inter> T}\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y"
+        by (simp add:poly face_of_refl polytope_imp_convex)
+      show "\<And>X. X \<in> {bbox \<inter> T} \<Longrightarrow> aff_dim X \<le> aff_dim U"
+        by (simp add: \<open>aff_dim (bbox \<inter> T) \<le> aff_dim U\<close>)
+    qed auto
+    define fro where "fro \<equiv> \<lambda>d. frontier(cbox (-(b + d *\<^sub>R One)) (b + d *\<^sub>R One))"
+    obtain d where d12: "1/2 \<le> d" "d \<le> 1" and dd: "disjnt K (fro d)"
+    proof (rule disjoint_family_elem_disjnt [OF _ \<open>finite K\<close>])
+      show "infinite {1/2..1::real}"
+        by (simp add: infinite_Icc)
+      have dis1: "disjnt (fro x) (fro y)" if "x<y" for x y
+        by (auto simp: algebra_simps that subset_box_imp disjnt_Diff1 frontier_def fro_def)
+      then show "disjoint_family_on fro {1/2..1}"
+        by (auto simp: disjoint_family_on_def disjnt_def neq_iff)
+    qed auto
+    define c where "c \<equiv> b + d *\<^sub>R One"
+    have cbsub: "cbox (-b) b \<subseteq> box (-c) c"  "cbox (-b) b \<subseteq> cbox (-c) c"  "cbox (-c) c \<subseteq> bbox"
+      using d12 by (auto simp: algebra_simps subset_box_imp c_def bbox_def)
+    have clo_cbT: "closed (cbox (- c) c \<inter> T)"
+      by (simp add: affine_closed closed_Int closed_cbox \<open>affine T\<close>)
+    have cpT_ne: "cbox (- c) c \<inter> T \<noteq> {}"
+      using \<open>S \<noteq> {}\<close> b cbsub(2) \<open>S \<subseteq> T\<close> by fastforce
+    have "closest_point (cbox (- c) c \<inter> T) x \<notin> K" if "x \<in> T" "x \<notin> K" for x
+    proof (cases "x \<in> cbox (-c) c")
+      case True with that show ?thesis
+        by (simp add: closest_point_self)
+    next
+      case False
+      have int_ne: "interior (cbox (-c) c) \<inter> T \<noteq> {}"
+        using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b \<open>cbox (- b) b \<subseteq> box (- c) c\<close> by force
+      have "convex T"
+        by (meson \<open>affine T\<close> affine_imp_convex)
+      then have "x \<in> affine hull (cbox (- c) c \<inter> T)"
+          by (metis Int_commute Int_iff \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> cbsub(1) \<open>x \<in> T\<close> affine_hull_convex_Int_nonempty_interior all_not_in_conv b hull_inc inf.orderE interior_cbox)
+      then have "x \<in> affine hull (cbox (- c) c \<inter> T) - rel_interior (cbox (- c) c \<inter> T)"
+        by (meson DiffI False Int_iff rel_interior_subset subsetCE)
+      then have "closest_point (cbox (- c) c \<inter> T) x \<in> rel_frontier (cbox (- c) c \<inter> T)"
+        by (rule closest_point_in_rel_frontier [OF clo_cbT cpT_ne])
+      moreover have "(rel_frontier (cbox (- c) c \<inter> T)) \<subseteq> fro d"
+        apply (subst convex_affine_rel_frontier_Int [OF _  \<open>affine T\<close> int_ne])
+         apply (auto simp: fro_def c_def)
+        done
+      ultimately show ?thesis
+        using dd  by (force simp: disjnt_def)
+    qed
+    then have cpt_subset: "closest_point (cbox (- c) c \<inter> T) ` (T - K) \<subseteq> \<Union>{bbox \<inter> T} - K"
+      using closest_point_in_set [OF clo_cbT cpT_ne] cbsub(3) by force
+    show ?thesis
+    proof (intro conjI ballI exI)
+      have "continuous_on (T - K) (closest_point (cbox (- c) c \<inter> T))"
+        apply (rule continuous_on_closest_point)
+        using \<open>S \<noteq> {}\<close> cbsub(2) b that
+        by (auto simp: affine_imp_convex convex_Int affine_closed closed_Int closed_cbox \<open>affine T\<close>)
+      then show "continuous_on (T - K) (g \<circ> closest_point (cbox (- c) c \<inter> T))"
+        by (metis continuous_on_compose continuous_on_subset [OF contg cpt_subset])
+      have "(g \<circ> closest_point (cbox (- c) c \<inter> T)) ` (T - K) \<subseteq> g ` (\<Union>{bbox \<inter> T} - K)"
+        by (metis image_comp image_mono cpt_subset)
+      also have "... \<subseteq> rel_frontier U"
+        by (rule gim)
+      finally show "(g \<circ> closest_point (cbox (- c) c \<inter> T)) ` (T - K) \<subseteq> rel_frontier U" .
+      show "(g \<circ> closest_point (cbox (- c) c \<inter> T)) x = f x" if "x \<in> S" for x
+      proof -
+        have "(g \<circ> closest_point (cbox (- c) c \<inter> T)) x = g x"
+          unfolding o_def
+          by (metis IntI \<open>S \<subseteq> T\<close> b cbsub(2) closest_point_self subset_eq that)
+        also have "... = f x"
+          by (simp add: that gf)
+        finally show ?thesis .
+      qed
+    qed (auto simp: K)
+  qed
+  then obtain K g where "finite K" "disjnt K S"
+               and contg: "continuous_on (affine hull T - K) g"
+               and gim:  "g ` (affine hull T - K) \<subseteq> rel_frontier U"
+               and gf:   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+    by (metis aff affine_affine_hull aff_dim_affine_hull
+              order_trans [OF \<open>S \<subseteq> T\<close> hull_subset [of T affine]])
+  then obtain K g where "finite K" "disjnt K S"
+               and contg: "continuous_on (T - K) g"
+               and gim:  "g ` (T - K) \<subseteq> rel_frontier U"
+               and gf:   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+    by (rule_tac K=K and g=g in that) (auto simp: hull_inc elim: continuous_on_subset)
+  then show ?thesis
+    by (rule_tac K="K \<inter> T" and g=g in that) (auto simp: disjnt_iff Diff_Int contg)
+qed
+
+subsection\<open>Extending maps to spheres\<close>
+
+(*Up to extend_map_affine_to_sphere_cofinite_gen*)
+
+lemma closedin_closed_subset:
+ "\<lbrakk>closedin (subtopology euclidean U) V; T \<subseteq> U; S = V \<inter> T\<rbrakk>
+             \<Longrightarrow> closedin (subtopology euclidean T) S"
+  by (metis (no_types, lifting) Int_assoc Int_commute closedin_closed inf.orderE)
+
+lemma extend_map_affine_to_sphere1:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::topological_space"
+  assumes "finite K" "affine U" and contf: "continuous_on (U - K) f"
+      and fim: "f ` (U - K) \<subseteq> T"
+      and comps: "\<And>C. \<lbrakk>C \<in> components(U - S); C \<inter> K \<noteq> {}\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
+      and clo: "closedin (subtopology euclidean U) S" and K: "disjnt K S" "K \<subseteq> U"
+  obtains g where "continuous_on (U - L) g" "g ` (U - L) \<subseteq> T" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof (cases "K = {}")
+  case True
+  then show ?thesis
+    by (metis Diff_empty Diff_subset contf fim continuous_on_subset image_subsetI rev_image_eqI subset_iff that)
+next
+  case False
+  have "S \<subseteq> U"
+    using clo closedin_limpt by blast
+  then have "(U - S) \<inter> K \<noteq> {}"
+    by (metis Diff_triv False Int_Diff K disjnt_def inf.absorb_iff2 inf_commute)
+  then have "\<Union>(components (U - S)) \<inter> K \<noteq> {}"
+    using Union_components by simp
+  then obtain C0 where C0: "C0 \<in> components (U - S)" "C0 \<inter> K \<noteq> {}"
+    by blast
+  have "convex U"
+    by (simp add: affine_imp_convex \<open>affine U\<close>)
+  then have "locally connected U"
+    by (rule convex_imp_locally_connected)
+  have "\<exists>a g. a \<in> C \<and> a \<in> L \<and> continuous_on (S \<union> (C - {a})) g \<and>
+              g ` (S \<union> (C - {a})) \<subseteq> T \<and> (\<forall>x \<in> S. g x = f x)"
+       if C: "C \<in> components (U - S)" and CK: "C \<inter> K \<noteq> {}" for C
+  proof -
+    have "C \<subseteq> U-S" "C \<inter> L \<noteq> {}"
+      by (simp_all add: in_components_subset comps that)
+    then obtain a where a: "a \<in> C" "a \<in> L" by auto
+    have opeUC: "openin (subtopology euclidean U) C"
+    proof (rule openin_trans)
+      show "openin (subtopology euclidean (U-S)) C"
+        by (simp add: \<open>locally connected U\<close> clo locally_diff_closed openin_components_locally_connected [OF _ C])
+      show "openin (subtopology euclidean U) (U - S)"
+        by (simp add: clo openin_diff)
+    qed
+    then obtain d where "C \<subseteq> U" "0 < d" and d: "cball a d \<inter> U \<subseteq> C"
+      using openin_contains_cball by (metis \<open>a \<in> C\<close>)
+    then have "ball a d \<inter> U \<subseteq> C"
+      by auto
+    obtain h k where homhk: "homeomorphism (S \<union> C) (S \<union> C) h k"
+                 and subC: "{x. (~ (h x = x \<and> k x = x))} \<subseteq> C"
+                 and bou: "bounded {x. (~ (h x = x \<and> k x = x))}"
+                 and hin: "\<And>x. x \<in> C \<inter> K \<Longrightarrow> h x \<in> ball a d \<inter> U"
+    proof (rule homeomorphism_grouping_points_exists_gen [of C "ball a d \<inter> U" "C \<inter> K" "S \<union> C"])
+      show "openin (subtopology euclidean C) (ball a d \<inter> U)"
+        by (metis Topology_Euclidean_Space.open_ball \<open>C \<subseteq> U\<close> \<open>ball a d \<inter> U \<subseteq> C\<close> inf.absorb_iff2 inf.orderE inf_assoc open_openin openin_subtopology)
+      show "openin (subtopology euclidean (affine hull C)) C"
+        by (metis \<open>a \<in> C\<close> \<open>openin (subtopology euclidean U) C\<close> affine_hull_eq affine_hull_openin all_not_in_conv \<open>affine U\<close>)
+      show "ball a d \<inter> U \<noteq> {}"
+        using \<open>0 < d\<close> \<open>C \<subseteq> U\<close> \<open>a \<in> C\<close> by force
+      show "finite (C \<inter> K)"
+        by (simp add: \<open>finite K\<close>)
+      show "S \<union> C \<subseteq> affine hull C"
+        by (metis \<open>C \<subseteq> U\<close> \<open>S \<subseteq> U\<close> \<open>a \<in> C\<close> opeUC affine_hull_eq affine_hull_openin all_not_in_conv assms(2) sup.bounded_iff)
+      show "connected C"
+        by (metis C in_components_connected)
+    qed auto
+    have a_BU: "a \<in> ball a d \<inter> U"
+      using \<open>0 < d\<close> \<open>C \<subseteq> U\<close> \<open>a \<in> C\<close> by auto
+    have "rel_frontier (cball a d \<inter> U) retract_of (affine hull (cball a d \<inter> U) - {a})"
+      apply (rule rel_frontier_retract_of_punctured_affine_hull)
+        apply (auto simp: \<open>convex U\<close> convex_Int)
+      by (metis \<open>affine U\<close> convex_cball empty_iff interior_cball a_BU rel_interior_convex_Int_affine)
+    moreover have "rel_frontier (cball a d \<inter> U) = frontier (cball a d) \<inter> U"
+      apply (rule convex_affine_rel_frontier_Int)
+      using a_BU by (force simp: \<open>affine U\<close>)+
+    moreover have "affine hull (cball a d \<inter> U) = U"
+      by (metis \<open>convex U\<close> a_BU affine_hull_convex_Int_nonempty_interior affine_hull_eq \<open>affine U\<close> equals0D inf.commute interior_cball)
+    ultimately have "frontier (cball a d) \<inter> U retract_of (U - {a})"
+      by metis
+    then obtain r where contr: "continuous_on (U - {a}) r"
+                    and rim: "r ` (U - {a}) \<subseteq> sphere a d"  "r ` (U - {a}) \<subseteq> U"
+                    and req: "\<And>x. x \<in> sphere a d \<inter> U \<Longrightarrow> r x = x"
+      using \<open>affine U\<close> by (auto simp: retract_of_def retraction_def hull_same)
+    define j where "j \<equiv> \<lambda>x. if x \<in> ball a d then r x else x"
+    have kj: "\<And>x. x \<in> S \<Longrightarrow> k (j x) = x"
+      using \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>ball a d \<inter> U \<subseteq> C\<close> j_def subC by auto
+    have Uaeq: "U - {a} = (cball a d - {a}) \<inter> U \<union> (U - ball a d)"
+      using \<open>0 < d\<close> by auto
+    have jim: "j ` (S \<union> (C - {a})) \<subseteq> (S \<union> C) - ball a d"
+    proof clarify
+      fix y  assume "y \<in> S \<union> (C - {a})"
+      then have "y \<in> U - {a}"
+        using \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>a \<in> C\<close> by auto
+      then have "r y \<in> sphere a d"
+        using rim by auto
+      then show "j y \<in> S \<union> C - ball a d"
+        apply (simp add: j_def)
+        using \<open>r y \<in> sphere a d\<close> \<open>y \<in> U - {a}\<close> \<open>y \<in> S \<union> (C - {a})\<close> d rim by fastforce
+    qed
+    have contj: "continuous_on (U - {a}) j"
+      unfolding j_def Uaeq
+    proof (intro continuous_on_cases_local continuous_on_id, simp_all add: req closedin_closed Uaeq [symmetric])
+      show "\<exists>T. closed T \<and> (cball a d - {a}) \<inter> U = (U - {a}) \<inter> T"
+          apply (rule_tac x="(cball a d) \<inter> U" in exI)
+        using affine_closed \<open>affine U\<close> by blast
+      show "\<exists>T. closed T \<and> U - ball a d = (U - {a}) \<inter> T"
+         apply (rule_tac x="U - ball a d" in exI)
+        using \<open>0 < d\<close>  by (force simp: affine_closed \<open>affine U\<close> closed_Diff)
+      show "continuous_on ((cball a d - {a}) \<inter> U) r"
+        by (force intro: continuous_on_subset [OF contr])
+    qed
+    have fT: "x \<in> U - K \<Longrightarrow> f x \<in> T" for x
+      using fim by blast
+    show ?thesis
+    proof (intro conjI exI)
+      show "continuous_on (S \<union> (C - {a})) (f \<circ> k \<circ> j)"
+      proof (intro continuous_on_compose)
+        show "continuous_on (S \<union> (C - {a})) j"
+          apply (rule continuous_on_subset [OF contj])
+          using \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>a \<in> C\<close> by force
+        show "continuous_on (j ` (S \<union> (C - {a}))) k"
+          apply (rule continuous_on_subset [OF homeomorphism_cont2 [OF homhk]])
+          using jim \<open>C \<subseteq> U - S\<close> \<open>S \<subseteq> U\<close> \<open>ball a d \<inter> U \<subseteq> C\<close> j_def by fastforce
+        show "continuous_on (k ` j ` (S \<union> (C - {a}))) f"
+        proof (clarify intro!: continuous_on_subset [OF contf])
+          fix y  assume "y \<in> S \<union> (C - {a})"
+          have ky: "k y \<in> S \<union> C"
+            using homeomorphism_image2 [OF homhk] \<open>y \<in> S \<union> (C - {a})\<close> by blast
+          have jy: "j y \<in> S \<union> C - ball a d"
+            using Un_iff \<open>y \<in> S \<union> (C - {a})\<close> jim by auto
+          show "k (j y) \<in> U - K"
+            apply safe
+            using \<open>C \<subseteq> U\<close> \<open>S \<subseteq> U\<close>  homeomorphism_image2 [OF homhk] jy apply blast
+            by (metis DiffD1 DiffD2 Int_iff Un_iff \<open>disjnt K S\<close> disjnt_def empty_iff hin homeomorphism_apply2 homeomorphism_image2 homhk imageI jy)
+        qed
+      qed
+      have ST: "\<And>x. x \<in> S \<Longrightarrow> (f \<circ> k \<circ> j) x \<in> T"
+        apply (simp add: kj)
+        apply (metis DiffI \<open>S \<subseteq> U\<close> \<open>disjnt K S\<close> subsetD disjnt_iff fim image_subset_iff)
+        done
+      moreover have "(f \<circ> k \<circ> j) x \<in> T" if "x \<in> C" "x \<noteq> a" "x \<notin> S" for x
+      proof -
+        have rx: "r x \<in> sphere a d"
+          using \<open>C \<subseteq> U\<close> rim that by fastforce
+        have jj: "j x \<in> S \<union> C - ball a d"
+          using jim that by blast
+        have "k (j x) = j x \<longrightarrow> k (j x) \<in> C \<or> j x \<in> C"
+          by (metis Diff_iff Int_iff Un_iff \<open>S \<subseteq> U\<close> subsetD d j_def jj rx sphere_cball that(1))
+        then have "k (j x) \<in> C"
+          using homeomorphism_apply2 [OF homhk, of "j x"]   \<open>C \<subseteq> U\<close> \<open>S \<subseteq> U\<close> a rx
+          by (metis (mono_tags, lifting) Diff_iff subsetD jj mem_Collect_eq subC)
+        with jj \<open>C \<subseteq> U\<close> show ?thesis
+          apply safe
+          using ST j_def apply fastforce
+          apply (auto simp: not_less intro!: fT)
+          by (metis DiffD1 DiffD2 Int_iff hin homeomorphism_apply2 [OF homhk] jj)
+      qed
+      ultimately show "(f \<circ> k \<circ> j) ` (S \<union> (C - {a})) \<subseteq> T"
+        by force
+      show "\<forall>x\<in>S. (f \<circ> k \<circ> j) x = f x" using kj by simp
+    qed (auto simp: a)
+  qed
+  then obtain a h where
+    ah: "\<And>C. \<lbrakk>C \<in> components (U - S); C \<inter> K \<noteq> {}\<rbrakk>
+           \<Longrightarrow> a C \<in> C \<and> a C \<in> L \<and> continuous_on (S \<union> (C - {a C})) (h C) \<and>
+               h C ` (S \<union> (C - {a C})) \<subseteq> T \<and> (\<forall>x \<in> S. h C x = f x)"
+    using that by metis
+  define F where "F \<equiv> {C \<in> components (U - S). C \<inter> K \<noteq> {}}"
+  define G where "G \<equiv> {C \<in> components (U - S). C \<inter> K = {}}"
+  define UF where "UF \<equiv> (\<Union>C\<in>F. C - {a C})"
+  have "C0 \<in> F"
+    by (auto simp: F_def C0)
+  have "finite F"
+  proof (subst finite_image_iff [of "\<lambda>C. C \<inter> K" F, symmetric])
+    show "inj_on (\<lambda>C. C \<inter> K) F"
+      unfolding F_def inj_on_def
+      using components_nonoverlap by blast
+    show "finite ((\<lambda>C. C \<inter> K) ` F)"
+      unfolding F_def
+      by (rule finite_subset [of _ "Pow K"]) (auto simp: \<open>finite K\<close>)
+  qed
+  obtain g where contg: "continuous_on (S \<union> UF) g"
+             and gh: "\<And>x i. \<lbrakk>i \<in> F; x \<in> (S \<union> UF) \<inter> (S \<union> (i - {a i}))\<rbrakk>
+                            \<Longrightarrow> g x = h i x"
+  proof (rule pasting_lemma_exists_closed [OF \<open>finite F\<close>, of "S \<union> UF" "\<lambda>C. S \<union> (C - {a C})" h])
+    show "S \<union> UF \<subseteq> (\<Union>C\<in>F. S \<union> (C - {a C}))"
+      using \<open>C0 \<in> F\<close> by (force simp: UF_def)
+    show "closedin (subtopology euclidean (S \<union> UF)) (S \<union> (C - {a C}))"
+         if "C \<in> F" for C
+    proof (rule closedin_closed_subset [of U "S \<union> C"])
+      show "closedin (subtopology euclidean U) (S \<union> C)"
+        apply (rule closedin_Un_complement_component [OF \<open>locally connected U\<close> clo])
+        using F_def that by blast
+    next
+      have "x = a C'" if "C' \<in> F"  "x \<in> C'" "x \<notin> U" for x C'
+      proof -
+        have "\<forall>A. x \<in> \<Union>A \<or> C' \<notin> A"
+          using \<open>x \<in> C'\<close> by blast
+        with that show "x = a C'"
+          by (metis (lifting) DiffD1 F_def Union_components mem_Collect_eq)
+      qed
+      then show "S \<union> UF \<subseteq> U"
+        using \<open>S \<subseteq> U\<close> by (force simp: UF_def)
+    next
+      show "S \<union> (C - {a C}) = (S \<union> C) \<inter> (S \<union> UF)"
+        using F_def UF_def components_nonoverlap that by auto
+    qed
+  next
+    show "continuous_on (S \<union> (C' - {a C'})) (h C')" if "C' \<in> F" for C'
+      using ah F_def that by blast
+    show "\<And>i j x. \<lbrakk>i \<in> F; j \<in> F;
+                   x \<in> (S \<union> UF) \<inter> (S \<union> (i - {a i})) \<inter> (S \<union> (j - {a j}))\<rbrakk>
+                  \<Longrightarrow> h i x = h j x"
+      using components_eq by (fastforce simp: components_eq F_def ah)
+  qed blast
+  have SU': "S \<union> \<Union>G \<union> (S \<union> UF) \<subseteq> U"
+    using \<open>S \<subseteq> U\<close> in_components_subset by (auto simp: F_def G_def UF_def)
+  have clo1: "closedin (subtopology euclidean (S \<union> \<Union>G \<union> (S \<union> UF))) (S \<union> \<Union>G)"
+  proof (rule closedin_closed_subset [OF _ SU'])
+    have *: "\<And>C. C \<in> F \<Longrightarrow> openin (subtopology euclidean U) C"
+      unfolding F_def
+      by clarify (metis (no_types, lifting) \<open>locally connected U\<close> clo closedin_def locally_diff_closed openin_components_locally_connected openin_trans topspace_euclidean_subtopology)
+    show "closedin (subtopology euclidean U) (U - UF)"
+      unfolding UF_def
+      by (force intro: openin_delete *)
+    show "S \<union> \<Union>G = (U - UF) \<inter> (S \<union> \<Union>G \<union> (S \<union> UF))"
+      using \<open>S \<subseteq> U\<close> apply (auto simp: F_def G_def UF_def)
+        apply (metis Diff_iff UnionI Union_components)
+       apply (metis DiffD1 UnionI Union_components)
+      by (metis (no_types, lifting) IntI components_nonoverlap empty_iff)
+  qed
+  have clo2: "closedin (subtopology euclidean (S \<union> \<Union>G \<union> (S \<union> UF))) (S \<union> UF)"
+  proof (rule closedin_closed_subset [OF _ SU'])
+    show "closedin (subtopology euclidean U) (\<Union>C\<in>F. S \<union> C)"
+      apply (rule closedin_Union)
+       apply (simp add: \<open>finite F\<close>)
+      using F_def \<open>locally connected U\<close> clo closedin_Un_complement_component by blast
+    show "S \<union> UF = (\<Union>C\<in>F. S \<union> C) \<inter> (S \<union> \<Union>G \<union> (S \<union> UF))"
+      using \<open>S \<subseteq> U\<close> apply (auto simp: F_def G_def UF_def)
+      using C0 apply blast
+      by (metis components_nonoverlap disjnt_def disjnt_iff)
+  qed
+  have SUG: "S \<union> \<Union>G \<subseteq> U - K"
+    using \<open>S \<subseteq> U\<close> K apply (auto simp: G_def disjnt_iff)
+    by (meson Diff_iff subsetD in_components_subset)
+  then have contf': "continuous_on (S \<union> \<Union>G) f"
+    by (rule continuous_on_subset [OF contf])
+  have contg': "continuous_on (S \<union> UF) g"
+    apply (rule continuous_on_subset [OF contg])
+    using \<open>S \<subseteq> U\<close> by (auto simp: F_def G_def)
+  have  "\<And>x. \<lbrakk>S \<subseteq> U; x \<in> S\<rbrakk> \<Longrightarrow> f x = g x"
+    by (subst gh) (auto simp: ah C0 intro: \<open>C0 \<in> F\<close>)
+  then have f_eq_g: "\<And>x. x \<in> S \<union> UF \<and> x \<in> S \<union> \<Union>G \<Longrightarrow> f x = g x"
+    using \<open>S \<subseteq> U\<close> apply (auto simp: F_def G_def UF_def dest: in_components_subset)
+    using components_eq by blast
+  have cont: "continuous_on (S \<union> \<Union>G \<union> (S \<union> UF)) (\<lambda>x. if x \<in> S \<union> \<Union>G then f x else g x)"
+    by (blast intro: continuous_on_cases_local [OF clo1 clo2 contf' contg' f_eq_g, of "\<lambda>x. x \<in> S \<union> \<Union>G"])
+  show ?thesis
+  proof
+    have UF: "\<Union>F - L \<subseteq> UF"
+      unfolding F_def UF_def using ah by blast
+    have "U - S - L = \<Union>(components (U - S)) - L"
+      by simp
+    also have "... = \<Union>F \<union> \<Union>G - L"
+      unfolding F_def G_def by blast
+    also have "... \<subseteq> UF \<union> \<Union>G"
+      using UF by blast
+    finally have "U - L \<subseteq> S \<union> \<Union>G \<union> (S \<union> UF)"
+      by blast
+    then show "continuous_on (U - L) (\<lambda>x. if x \<in> S \<union> \<Union>G then f x else g x)"
+      by (rule continuous_on_subset [OF cont])
+    have "((U - L) \<inter> {x. x \<notin> S \<and> (\<forall>xa\<in>G. x \<notin> xa)}) \<subseteq>  ((U - L) \<inter> (-S \<inter> UF))"
+      using \<open>U - L \<subseteq> S \<union> \<Union>G \<union> (S \<union> UF)\<close> by auto
+    moreover have "g ` ((U - L) \<inter> (-S \<inter> UF)) \<subseteq> T"
+    proof -
+      have "g x \<in> T" if "x \<in> U" "x \<notin> L" "x \<notin> S" "C \<in> F" "x \<in> C" "x \<noteq> a C" for x C
+      proof (subst gh)
+        show "x \<in> (S \<union> UF) \<inter> (S \<union> (C - {a C}))"
+          using that by (auto simp: UF_def)
+        show "h C x \<in> T"
+          using ah that by (fastforce simp add: F_def)
+      qed (rule that)
+      then show ?thesis
+        by (force simp: UF_def)
+    qed
+    ultimately have "g ` ((U - L) \<inter> {x. x \<notin> S \<and> (\<forall>xa\<in>G. x \<notin> xa)}) \<subseteq> T"
+      using image_mono order_trans by blast
+    moreover have "f ` ((U - L) \<inter> (S \<union> \<Union>G)) \<subseteq> T"
+      using fim SUG by blast
+    ultimately show "(\<lambda>x. if x \<in> S \<union> \<Union>G then f x else g x) ` (U - L) \<subseteq> T"
+       by force
+    show "\<And>x. x \<in> S \<Longrightarrow> (if x \<in> S \<union> \<Union>G then f x else g x) = f x"
+      by (simp add: F_def G_def)
+  qed
+qed
+
+
+lemma extend_map_affine_to_sphere2:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "compact S" "convex U" "bounded U" "affine T" "S \<subseteq> T"
+      and affTU: "aff_dim T \<le> aff_dim U"
+      and contf: "continuous_on S f"
+      and fim: "f ` S \<subseteq> rel_frontier U"
+      and ovlap: "\<And>C. C \<in> components(T - S) \<Longrightarrow> C \<inter> L \<noteq> {}"
+    obtains K g where "finite K" "K \<subseteq> L" "K \<subseteq> T" "disjnt K S"
+                      "continuous_on (T - K) g" "g ` (T - K) \<subseteq> rel_frontier U"
+                      "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof -
+  obtain K g where K: "finite K" "K \<subseteq> T" "disjnt K S"
+               and contg: "continuous_on (T - K) g"
+               and gim: "g ` (T - K) \<subseteq> rel_frontier U"
+               and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+     using assms extend_map_affine_to_sphere_cofinite_simple by metis
+  have "(\<exists>y C. C \<in> components (T - S) \<and> x \<in> C \<and> y \<in> C \<and> y \<in> L)" if "x \<in> K" for x
+  proof -
+    have "x \<in> T-S"
+      using \<open>K \<subseteq> T\<close> \<open>disjnt K S\<close> disjnt_def that by fastforce
+    then obtain C where "C \<in> components(T - S)" "x \<in> C"
+      by (metis UnionE Union_components)
+    with ovlap [of C] show ?thesis
+      by blast
+  qed
+  then obtain \<xi> where \<xi>: "\<And>x. x \<in> K \<Longrightarrow> \<exists>C. C \<in> components (T - S) \<and> x \<in> C \<and> \<xi> x \<in> C \<and> \<xi> x \<in> L"
+    by metis
+  obtain h where conth: "continuous_on (T - \<xi> ` K) h"
+             and him: "h ` (T - \<xi> ` K) \<subseteq> rel_frontier U"
+             and hg: "\<And>x. x \<in> S \<Longrightarrow> h x = g x"
+  proof (rule extend_map_affine_to_sphere1 [OF \<open>finite K\<close> \<open>affine T\<close> contg gim, of S "\<xi> ` K"])
+    show cloTS: "closedin (subtopology euclidean T) S"
+      by (simp add: \<open>compact S\<close> \<open>S \<subseteq> T\<close> closed_subset compact_imp_closed)
+    show "\<And>C. \<lbrakk>C \<in> components (T - S); C \<inter> K \<noteq> {}\<rbrakk> \<Longrightarrow> C \<inter> \<xi> ` K \<noteq> {}"
+      using \<xi> components_eq by blast
+  qed (use K in auto)
+  show ?thesis
+  proof
+    show *: "\<xi> ` K \<subseteq> L"
+      using \<xi> by blast
+    show "finite (\<xi> ` K)"
+      by (simp add: K)
+    show "\<xi> ` K \<subseteq> T"
+      by clarify (meson \<xi> Diff_iff contra_subsetD in_components_subset)
+    show "continuous_on (T - \<xi> ` K) h"
+      by (rule conth)
+    show "disjnt (\<xi> ` K) S"
+      using K
+      apply (auto simp: disjnt_def)
+      by (metis \<xi> DiffD2 UnionI Union_components)
+  qed (simp_all add: him hg gf)
+qed
+
+
+proposition extend_map_affine_to_sphere_cofinite_gen:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes SUT: "compact S" "convex U" "bounded U" "affine T" "S \<subseteq> T"
+      and aff: "aff_dim T \<le> aff_dim U"
+      and contf: "continuous_on S f"
+      and fim: "f ` S \<subseteq> rel_frontier U"
+      and dis: "\<And>C. \<lbrakk>C \<in> components(T - S); bounded C\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
+ obtains K g where "finite K" "K \<subseteq> L" "K \<subseteq> T" "disjnt K S" "continuous_on (T - K) g"
+                   "g ` (T - K) \<subseteq> rel_frontier U"
+                   "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof (cases "S = {}")
+  case True
+  show ?thesis
+  proof (cases "rel_frontier U = {}")
+    case True
+    with aff have "aff_dim T \<le> 0"
+      apply (simp add: rel_frontier_eq_empty)
+      using affine_bounded_eq_lowdim \<open>bounded U\<close> order_trans by auto
+    with aff_dim_geq [of T] consider "aff_dim T = -1" |  "aff_dim T = 0"
+      by linarith
+    then show ?thesis
+    proof cases
+      assume "aff_dim T = -1"
+      then have "T = {}"
+        by (simp add: aff_dim_empty)
+      then show ?thesis
+        by (rule_tac K="{}" in that) auto
+    next
+      assume "aff_dim T = 0"
+      then obtain a where "T = {a}"
+        using aff_dim_eq_0 by blast
+      then have "a \<in> L"
+        using dis [of "{a}"] \<open>S = {}\<close> by (auto simp: in_components_self)
+      with \<open>S = {}\<close> \<open>T = {a}\<close> show ?thesis
+        by (rule_tac K="{a}" and g=f in that) auto
+    qed
+  next
+    case False
+    then obtain y where "y \<in> rel_frontier U"
+      by auto
+    with \<open>S = {}\<close> show ?thesis
+      by (rule_tac K="{}" and g="\<lambda>x. y" in that)  (auto simp: continuous_on_const)
+  qed
+next
+  case False
+  have "bounded S"
+    by (simp add: assms compact_imp_bounded)
+  then obtain b where b: "S \<subseteq> cbox (-b) b"
+    using bounded_subset_cbox_symmetric by blast
+  define LU where "LU \<equiv> L \<union> (\<Union> {C \<in> components (T - S). ~bounded C} - cbox (-(b+One)) (b+One))"
+  obtain K g where "finite K" "K \<subseteq> LU" "K \<subseteq> T" "disjnt K S"
+               and contg: "continuous_on (T - K) g"
+               and gim: "g ` (T - K) \<subseteq> rel_frontier U"
+               and gf:  "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+  proof (rule extend_map_affine_to_sphere2 [OF SUT aff contf fim])
+    show "C \<inter> LU \<noteq> {}" if "C \<in> components (T - S)" for C
+    proof (cases "bounded C")
+      case True
+      with dis that show ?thesis
+        unfolding LU_def by fastforce
+    next
+      case False
+      then have "\<not> bounded (\<Union>{C \<in> components (T - S). \<not> bounded C})"
+        by (metis (no_types, lifting) Sup_upper bounded_subset mem_Collect_eq that)
+      then show ?thesis
+        apply (clarsimp simp: LU_def Int_Un_distrib Diff_Int_distrib Int_UN_distrib)
+        by (metis (no_types, lifting) False Sup_upper bounded_cbox bounded_subset inf.orderE mem_Collect_eq that)
+    qed
+  qed blast
+  have *: False if "x \<in> cbox (- b - m *\<^sub>R One) (b + m *\<^sub>R One)"
+                   "x \<notin> box (- b - n *\<^sub>R One) (b + n *\<^sub>R One)"
+                   "0 \<le> m" "m < n" "n \<le> 1" for m n x
+    using that by (auto simp: mem_box algebra_simps)
+  have "disjoint_family_on (\<lambda>d. frontier (cbox (- b - d *\<^sub>R One) (b + d *\<^sub>R One))) {1 / 2..1}"
+    by (auto simp: disjoint_family_on_def neq_iff frontier_def dest: *)
+  then obtain d where d12: "1/2 \<le> d" "d \<le> 1"
+                  and ddis: "disjnt K (frontier (cbox (-(b + d *\<^sub>R One)) (b + d *\<^sub>R One)))"
+    using disjoint_family_elem_disjnt [of "{1/2..1::real}" K "\<lambda>d. frontier (cbox (-(b + d *\<^sub>R One)) (b + d *\<^sub>R One))"]
+    by (auto simp: \<open>finite K\<close>)
+  define c where "c \<equiv> b + d *\<^sub>R One"
+  have cbsub: "cbox (-b) b \<subseteq> box (-c) c"
+              "cbox (-b) b \<subseteq> cbox (-c) c"
+              "cbox (-c) c \<subseteq> cbox (-(b+One)) (b+One)"
+    using d12 by (simp_all add: subset_box c_def inner_diff_left inner_left_distrib)
+  have clo_cT: "closed (cbox (- c) c \<inter> T)"
+    using affine_closed \<open>affine T\<close> by blast
+  have cT_ne: "cbox (- c) c \<inter> T \<noteq> {}"
+    using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b cbsub by fastforce
+  have S_sub_cc: "S \<subseteq> cbox (- c) c"
+    using \<open>cbox (- b) b \<subseteq> cbox (- c) c\<close> b by auto
+  show ?thesis
+  proof
+    show "finite (K \<inter> cbox (-(b+One)) (b+One))"
+      using \<open>finite K\<close> by blast
+    show "K \<inter> cbox (- (b + One)) (b + One) \<subseteq> L"
+      using \<open>K \<subseteq> LU\<close> by (auto simp: LU_def)
+    show "K \<inter> cbox (- (b + One)) (b + One) \<subseteq> T"
+      using \<open>K \<subseteq> T\<close> by auto
+    show "disjnt (K \<inter> cbox (- (b + One)) (b + One)) S"
+      using \<open>disjnt K S\<close>  by (simp add: disjnt_def disjoint_eq_subset_Compl inf.coboundedI1)
+    have cloTK: "closest_point (cbox (- c) c \<inter> T) x \<in> T - K"
+                if "x \<in> T" and Knot: "x \<in> K \<longrightarrow> x \<notin> cbox (- b - One) (b + One)" for x
+    proof (cases "x \<in> cbox (- c) c")
+      case True
+      with \<open>x \<in> T\<close> show ?thesis
+        using cbsub(3) Knot  by (force simp: closest_point_self)
+    next
+      case False
+      have clo_in_rf: "closest_point (cbox (- c) c \<inter> T) x \<in> rel_frontier (cbox (- c) c \<inter> T)"
+      proof (intro closest_point_in_rel_frontier [OF clo_cT cT_ne] DiffI notI)
+        have "T \<inter> interior (cbox (- c) c) \<noteq> {}"
+          using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b cbsub(1) by fastforce
+        then show "x \<in> affine hull (cbox (- c) c \<inter> T)"
+          by (simp add: Int_commute affine_hull_affine_Int_nonempty_interior \<open>affine T\<close> hull_inc that(1))
+      next
+        show "False" if "x \<in> rel_interior (cbox (- c) c \<inter> T)"
+        proof -
+          have "interior (cbox (- c) c) \<inter> T \<noteq> {}"
+            using \<open>S \<noteq> {}\<close> \<open>S \<subseteq> T\<close> b cbsub(1) by fastforce
+          then have "affine hull (T \<inter> cbox (- c) c) = T"
+            using affine_hull_convex_Int_nonempty_interior [of T "cbox (- c) c"]
+            by (simp add: affine_imp_convex \<open>affine T\<close> inf_commute)
+          then show ?thesis
+            by (meson subsetD le_inf_iff rel_interior_subset that False)
+        qed
+      qed
+      have "closest_point (cbox (- c) c \<inter> T) x \<notin> K"
+      proof
+        assume inK: "closest_point (cbox (- c) c \<inter> T) x \<in> K"
+        have "\<And>x. x \<in> K \<Longrightarrow> x \<notin> frontier (cbox (- (b + d *\<^sub>R One)) (b + d *\<^sub>R One))"
+          by (metis ddis disjnt_iff)
+        then show False
+          by (metis DiffI Int_iff \<open>affine T\<close> cT_ne c_def clo_cT clo_in_rf closest_point_in_set
+                    convex_affine_rel_frontier_Int convex_box(1) empty_iff frontier_cbox inK interior_cbox)
+      qed
+      then show ?thesis
+        using cT_ne clo_cT closest_point_in_set by blast
+    qed
+    show "continuous_on (T - K \<inter> cbox (- (b + One)) (b + One)) (g \<circ> closest_point (cbox (-c) c \<inter> T))"
+      apply (intro continuous_on_compose continuous_on_closest_point continuous_on_subset [OF contg])
+         apply (simp_all add: clo_cT affine_imp_convex \<open>affine T\<close> convex_Int cT_ne)
+      using cloTK by blast
+    have "g (closest_point (cbox (- c) c \<inter> T) x) \<in> rel_frontier U"
+         if "x \<in> T" "x \<in> K \<longrightarrow> x \<notin> cbox (- b - One) (b + One)" for x
+      apply (rule gim [THEN subsetD])
+      using that cloTK by blast
+    then show "(g \<circ> closest_point (cbox (- c) c \<inter> T)) ` (T - K \<inter> cbox (- (b + One)) (b + One))
+               \<subseteq> rel_frontier U"
+      by force
+    show "\<And>x. x \<in> S \<Longrightarrow> (g \<circ> closest_point (cbox (- c) c \<inter> T)) x = f x"
+      by simp (metis (mono_tags, lifting) IntI \<open>S \<subseteq> T\<close> cT_ne clo_cT closest_point_refl gf subsetD S_sub_cc)
+  qed
+qed
+
+
+corollary extend_map_affine_to_sphere_cofinite:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes SUT: "compact S" "affine T" "S \<subseteq> T"
+      and aff: "aff_dim T \<le> DIM('b)" and "0 \<le> r"
+      and contf: "continuous_on S f"
+      and fim: "f ` S \<subseteq> sphere a r"
+      and dis: "\<And>C. \<lbrakk>C \<in> components(T - S); bounded C\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
+  obtains K g where "finite K" "K \<subseteq> L" "K \<subseteq> T" "disjnt K S" "continuous_on (T - K) g"
+                    "g ` (T - K) \<subseteq> sphere a r" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof (cases "r = 0")
+  case True
+  with fim show ?thesis
+    by (rule_tac K="{}" and g = "\<lambda>x. a" in that) (auto simp: continuous_on_const)
+next
+  case False
+  with assms have "0 < r" by auto
+  then have "aff_dim T \<le> aff_dim (cball a r)"
+    by (simp add: aff aff_dim_cball)
+  then show ?thesis
+    apply (rule extend_map_affine_to_sphere_cofinite_gen
+            [OF \<open>compact S\<close> convex_cball bounded_cball \<open>affine T\<close> \<open>S \<subseteq> T\<close> _ contf])
+    using fim apply (auto simp: assms False that dest: dis)
+    done
+qed
+
+corollary extend_map_UNIV_to_sphere_cofinite:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes aff: "DIM('a) \<le> DIM('b)" and "0 \<le> r"
+      and SUT: "compact S"
+      and contf: "continuous_on S f"
+      and fim: "f ` S \<subseteq> sphere a r"
+      and dis: "\<And>C. \<lbrakk>C \<in> components(- S); bounded C\<rbrakk> \<Longrightarrow> C \<inter> L \<noteq> {}"
+  obtains K g where "finite K" "K \<subseteq> L" "disjnt K S" "continuous_on (- K) g"
+                    "g ` (- K) \<subseteq> sphere a r" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+apply (rule extend_map_affine_to_sphere_cofinite
+        [OF \<open>compact S\<close> affine_UNIV subset_UNIV _ \<open>0 \<le> r\<close> contf fim dis])
+ apply (auto simp: assms that Compl_eq_Diff_UNIV [symmetric])
+done
+
+corollary extend_map_UNIV_to_sphere_no_bounded_component:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes aff: "DIM('a) \<le> DIM('b)" and "0 \<le> r"
+      and SUT: "compact S"
+      and contf: "continuous_on S f"
+      and fim: "f ` S \<subseteq> sphere a r"
+      and dis: "\<And>C. C \<in> components(- S) \<Longrightarrow> \<not> bounded C"
+  obtains g where "continuous_on UNIV g" "g ` UNIV \<subseteq> sphere a r" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+apply (rule extend_map_UNIV_to_sphere_cofinite [OF aff \<open>0 \<le> r\<close> \<open>compact S\<close> contf fim, of "{}"])
+   apply (auto simp: that dest: dis)
+done
+
+theorem Borsuk_separation_theorem_gen:
+  fixes S :: "'a::euclidean_space set"
+  assumes "compact S"
+    shows "(\<forall>c \<in> components(- S). ~bounded c) \<longleftrightarrow>
+           (\<forall>f. continuous_on S f \<and> f ` S \<subseteq> sphere (0::'a) 1
+                \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1) f (\<lambda>x. c)))"
+       (is "?lhs = ?rhs")
+proof
+  assume L [rule_format]: ?lhs
+  show ?rhs
+  proof clarify
+    fix f :: "'a \<Rightarrow> 'a"
+    assume contf: "continuous_on S f" and fim: "f ` S \<subseteq> sphere 0 1"
+    obtain g where contg: "continuous_on UNIV g" and gim: "range g \<subseteq> sphere 0 1"
+               and gf: "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+      by (rule extend_map_UNIV_to_sphere_no_bounded_component [OF _ _ \<open>compact S\<close> contf fim L]) auto
+    then show "\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1) f (\<lambda>x. c)"
+      using nullhomotopic_from_contractible [OF contg gim]
+      by (metis assms compact_imp_closed contf empty_iff fim homotopic_with_equal nullhomotopic_into_sphere_extension)
+  qed
+next
+  assume R [rule_format]: ?rhs
+  show ?lhs
+    unfolding components_def
+  proof clarify
+    fix a
+    assume "a \<notin> S" and a: "bounded (connected_component_set (- S) a)"
+    have cont: "continuous_on S (\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a))"
+      apply (intro continuous_intros)
+      using \<open>a \<notin> S\<close> by auto
+    have im: "(\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a)) ` S \<subseteq> sphere 0 1"
+      by clarsimp (metis \<open>a \<notin> S\<close> eq_iff_diff_eq_0 left_inverse norm_eq_zero)
+    show False
+      using R cont im Borsuk_map_essential_bounded_component [OF \<open>compact S\<close> \<open>a \<notin> S\<close>] a by blast
+  qed
+qed
+
+
+corollary Borsuk_separation_theorem:
+  fixes S :: "'a::euclidean_space set"
+  assumes "compact S" and 2: "2 \<le> DIM('a)"
+    shows "connected(- S) \<longleftrightarrow>
+           (\<forall>f. continuous_on S f \<and> f ` S \<subseteq> sphere (0::'a) 1
+                \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1) f (\<lambda>x. c)))"
+       (is "?lhs = ?rhs")
+proof
+  assume L: ?lhs
+  show ?rhs
+  proof (cases "S = {}")
+    case True
+    then show ?thesis by auto
+  next
+    case False
+    then have "(\<forall>c\<in>components (- S). \<not> bounded c)"
+      by (metis L assms(1) bounded_empty cobounded_imp_unbounded compact_imp_bounded in_components_maximal order_refl)
+    then show ?thesis
+      by (simp add: Borsuk_separation_theorem_gen [OF \<open>compact S\<close>])
+  qed
+next
+  assume R: ?rhs
+  then show ?lhs
+    apply (simp add: Borsuk_separation_theorem_gen [OF \<open>compact S\<close>, symmetric])
+    apply (auto simp: components_def connected_iff_eq_connected_component_set)
+    using connected_component_in apply fastforce
+    using cobounded_unique_unbounded_component [OF _ 2, of "-S"] \<open>compact S\<close> compact_eq_bounded_closed by fastforce
+qed
+
+
+lemma homotopy_eqv_separation:
+  fixes S :: "'a::euclidean_space set" and T :: "'a set"
+  assumes "S homotopy_eqv T" and "compact S" and "compact T"
+  shows "connected(- S) \<longleftrightarrow> connected(- T)"
+proof -
+  consider "DIM('a) = 1" | "2 \<le> DIM('a)"
+    by (metis DIM_ge_Suc0 One_nat_def Suc_1 dual_order.antisym not_less_eq_eq)
+  then show ?thesis
+  proof cases
+    case 1
+    then show ?thesis
+      using bounded_connected_Compl_1 compact_imp_bounded homotopy_eqv_empty1 homotopy_eqv_empty2 assms by metis
+  next
+    case 2
+    with assms show ?thesis
+      by (simp add: Borsuk_separation_theorem homotopy_eqv_cohomotopic_triviality_null)
+  qed
+qed
+
+lemma Jordan_Brouwer_separation:
+  fixes S :: "'a::euclidean_space set" and a::'a
+  assumes hom: "S homeomorphic sphere a r" and "0 < r"
+    shows "\<not> connected(- S)"
+proof -
+  have "- sphere a r \<inter> ball a r \<noteq> {}"
+    using \<open>0 < r\<close> by (simp add: Int_absorb1 subset_eq)
+  moreover
+  have eq: "- sphere a r - ball a r = - cball a r"
+    by auto
+  have "- cball a r \<noteq> {}"
+  proof -
+    have "frontier (cball a r) \<noteq> {}"
+      using \<open>0 < r\<close> by auto
+    then show ?thesis
+      by (metis frontier_complement frontier_empty)
+  qed
+  with eq have "- sphere a r - ball a r \<noteq> {}"
+    by auto
+  moreover
+  have "connected (- S) = connected (- sphere a r)"
+  proof (rule homotopy_eqv_separation)
+    show "S homotopy_eqv sphere a r"
+      using hom homeomorphic_imp_homotopy_eqv by blast
+    show "compact (sphere a r)"
+      by simp
+    then show " compact S"
+      using hom homeomorphic_compactness by blast
+  qed
+  ultimately show ?thesis
+    using connected_Int_frontier [of "- sphere a r" "ball a r"] by (auto simp: \<open>0 < r\<close>)
+qed
+
+
+lemma Jordan_Brouwer_frontier:
+  fixes S :: "'a::euclidean_space set" and a::'a
+  assumes S: "S homeomorphic sphere a r" and T: "T \<in> components(- S)" and 2: "2 \<le> DIM('a)"
+    shows "frontier T = S"
+proof (cases r rule: linorder_cases)
+  assume "r < 0"
+  with S T show ?thesis by auto
+next
+  assume "r = 0"
+  with S T card_eq_SucD obtain b where "S = {b}"
+    by (auto simp: homeomorphic_finite [of "{a}" S])
+  have "components (- {b}) = { -{b}}"
+    using T \<open>S = {b}\<close> by (auto simp: components_eq_sing_iff connected_punctured_universe 2)
+  with T show ?thesis
+    by (metis \<open>S = {b}\<close> cball_trivial frontier_cball frontier_complement singletonD sphere_trivial)
+next
+  assume "r > 0"
+  have "compact S"
+    using homeomorphic_compactness compact_sphere S by blast
+  show ?thesis
+  proof (rule frontier_minimal_separating_closed)
+    show "closed S"
+      using \<open>compact S\<close> compact_eq_bounded_closed by blast
+    show "\<not> connected (- S)"
+      using Jordan_Brouwer_separation S \<open>0 < r\<close> by blast
+    obtain f g where hom: "homeomorphism S (sphere a r) f g"
+      using S by (auto simp: homeomorphic_def)
+    show "connected (- T)" if "closed T" "T \<subset> S" for T
+    proof -
+      have "f ` T \<subseteq> sphere a r"
+        using \<open>T \<subset> S\<close> hom homeomorphism_image1 by blast
+      moreover have "f ` T \<noteq> sphere a r"
+        using \<open>T \<subset> S\<close> hom
+        by (metis homeomorphism_image2 homeomorphism_of_subsets order_refl psubsetE)
+      ultimately have "f ` T \<subset> sphere a r" by blast
+      then have "connected (- f ` T)"
+        by (rule psubset_sphere_Compl_connected [OF _ \<open>0 < r\<close> 2])
+      moreover have "compact T"
+        using \<open>compact S\<close> bounded_subset compact_eq_bounded_closed that by blast
+      moreover then have "compact (f ` T)"
+        by (meson compact_continuous_image continuous_on_subset hom homeomorphism_def psubsetE \<open>T \<subset> S\<close>)
+      moreover have "T homotopy_eqv f ` T"
+        by (meson \<open>f ` T \<subseteq> sphere a r\<close> dual_order.strict_implies_order hom homeomorphic_def homeomorphic_imp_homotopy_eqv homeomorphism_of_subsets \<open>T \<subset> S\<close>)
+      ultimately show ?thesis
+        using homotopy_eqv_separation [of T "f`T"] by blast
+    qed
+  qed (rule T)
+qed
+
+lemma Jordan_Brouwer_nonseparation:
+  fixes S :: "'a::euclidean_space set" and a::'a
+  assumes S: "S homeomorphic sphere a r" and "T \<subset> S" and 2: "2 \<le> DIM('a)"
+    shows "connected(- T)"
+proof -
+  have *: "connected(C \<union> (S - T))" if "C \<in> components(- S)" for C
+  proof (rule connected_intermediate_closure)
+    show "connected C"
+      using in_components_connected that by auto
+    have "S = frontier C"
+      using "2" Jordan_Brouwer_frontier S that by blast
+    with closure_subset show "C \<union> (S - T) \<subseteq> closure C"
+      by (auto simp: frontier_def)
+  qed auto
+  have "components(- S) \<noteq> {}"
+    by (metis S bounded_empty cobounded_imp_unbounded compact_eq_bounded_closed compact_sphere
+              components_eq_empty homeomorphic_compactness)
+  then have "- T = (\<Union>C \<in> components(- S). C \<union> (S - T))"
+    using Union_components [of "-S"] \<open>T \<subset> S\<close> by auto
+  then show ?thesis
+    apply (rule ssubst)
+    apply (rule connected_Union)
+    using \<open>T \<subset> S\<close> apply (auto simp: *)
+    done
+qed
+
+subsection\<open> Invariance of domain and corollaries\<close>
+
+lemma invariance_of_domain_ball:
+  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
+  assumes contf: "continuous_on (cball a r) f" and "0 < r"
+     and inj: "inj_on f (cball a r)"
+   shows "open(f ` ball a r)"
+proof (cases "DIM('a) = 1")
+  case True
+  obtain h::"'a\<Rightarrow>real" and k
+        where "linear h" "linear k" "h ` UNIV = UNIV" "k ` UNIV = UNIV"
+              "\<And>x. norm(h x) = norm x" "\<And>x. norm(k x) = norm x"
+              "\<And>x. k(h x) = x" "\<And>x. h(k x) = x"
+    apply (rule isomorphisms_UNIV_UNIV [where 'M='a and 'N=real])
+      using True
+       apply force
+      by (metis UNIV_I UNIV_eq_I imageI)
+    have cont: "continuous_on S h"  "continuous_on T k" for S T
+      by (simp_all add: \<open>linear h\<close> \<open>linear k\<close> linear_continuous_on linear_linear)
+    have "continuous_on (h ` cball a r) (h \<circ> f \<circ> k)"
+      apply (intro continuous_on_compose cont continuous_on_subset [OF contf])
+      apply (auto simp: \<open>\<And>x. k (h x) = x\<close>)
+      done
+    moreover have "is_interval (h ` cball a r)"
+      by (simp add: is_interval_connected_1 \<open>linear h\<close> linear_continuous_on linear_linear connected_continuous_image)
+    moreover have "inj_on (h \<circ> f \<circ> k) (h ` cball a r)"
+      using inj by (simp add: inj_on_def) (metis \<open>\<And>x. k (h x) = x\<close>)
+    ultimately have *: "\<And>T. \<lbrakk>open T; T \<subseteq> h ` cball a r\<rbrakk> \<Longrightarrow> open ((h \<circ> f \<circ> k) ` T)"
+      using injective_eq_1d_open_map_UNIV by blast
+    have "open ((h \<circ> f \<circ> k) ` (h ` ball a r))"
+      by (rule *) (auto simp: \<open>linear h\<close> \<open>range h = UNIV\<close> open_surjective_linear_image)
+    then have "open ((h \<circ> f) ` ball a r)"
+      by (simp add: image_comp \<open>\<And>x. k (h x) = x\<close> cong: image_cong)
+    then show ?thesis
+      apply (simp add: image_comp [symmetric])
+      apply (metis open_bijective_linear_image_eq \<open>linear h\<close> \<open>\<And>x. k (h x) = x\<close> \<open>range h = UNIV\<close> bijI inj_on_def)
+      done
+next
+  case False
+  then have 2: "DIM('a) \<ge> 2"
+    by (metis DIM_ge_Suc0 One_nat_def Suc_1 antisym not_less_eq_eq)
+  have fimsub: "f ` ball a r \<subseteq> - f ` sphere a r"
+    using inj  by clarsimp (metis inj_onD less_eq_real_def mem_cball order_less_irrefl)
+  have hom: "f ` sphere a r homeomorphic sphere a r"
+    by (meson compact_sphere contf continuous_on_subset homeomorphic_compact homeomorphic_sym inj inj_on_subset sphere_cball)
+  then have nconn: "\<not> connected (- f ` sphere a r)"
+    by (rule Jordan_Brouwer_separation) (auto simp: \<open>0 < r\<close>)
+  obtain C where C: "C \<in> components (- f ` sphere a r)" and "bounded C"
+    apply (rule cobounded_has_bounded_component [OF _ nconn])
+      apply (simp_all add: 2)
+    by (meson compact_imp_bounded compact_continuous_image_eq compact_sphere contf inj sphere_cball)
+  moreover have "f ` (ball a r) = C"
+  proof
+    have "C \<noteq> {}"
+      by (rule in_components_nonempty [OF C])
+    show "C \<subseteq> f ` ball a r"
+    proof (rule ccontr)
+      assume nonsub: "\<not> C \<subseteq> f ` ball a r"
+      have "- f ` cball a r \<subseteq> C"
+      proof (rule components_maximal [OF C])
+        have "f ` cball a r homeomorphic cball a r"
+          using compact_cball contf homeomorphic_compact homeomorphic_sym inj by blast
+        then show "connected (- f ` cball a r)"
+          by (auto intro: connected_complement_homeomorphic_convex_compact 2)
+        show "- f ` cball a r \<subseteq> - f ` sphere a r"
+          by auto
+        then show "C \<inter> - f ` cball a r \<noteq> {}"
+          using \<open>C \<noteq> {}\<close> in_components_subset [OF C] nonsub
+          using image_iff by fastforce
+      qed
+      then have "bounded (- f ` cball a r)"
+        using bounded_subset \<open>bounded C\<close> by auto
+      then have "\<not> bounded (f ` cball a r)"
+        using cobounded_imp_unbounded by blast
+      then show "False"
+        using compact_continuous_image [OF contf] compact_cball compact_imp_bounded by blast
+    qed
+    with \<open>C \<noteq> {}\<close> have "C \<inter> f ` ball a r \<noteq> {}"
+      by (simp add: inf.absorb_iff1)
+    then show "f ` ball a r \<subseteq> C"
+      by (metis components_maximal [OF C _ fimsub] connected_continuous_image ball_subset_cball connected_ball contf continuous_on_subset)
+  qed
+  moreover have "open (- f ` sphere a r)"
+    using hom compact_eq_bounded_closed compact_sphere homeomorphic_compactness by blast
+  ultimately show ?thesis
+    using open_components by blast
+qed
+
+
+text\<open>Proved by L. E. J. Brouwer (1912)\<close>
+theorem invariance_of_domain:
+  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
+  assumes "continuous_on S f" "open S" "inj_on f S"
+    shows "open(f ` S)"
+  unfolding open_subopen [of "f`S"]
+proof clarify
+  fix a
+  assume "a \<in> S"
+  obtain \<delta> where "\<delta> > 0" and \<delta>: "cball a \<delta> \<subseteq> S"
+    using \<open>open S\<close> \<open>a \<in> S\<close> open_contains_cball_eq by blast
+  show "\<exists>T. open T \<and> f a \<in> T \<and> T \<subseteq> f ` S"
+  proof (intro exI conjI)
+    show "open (f ` (ball a \<delta>))"
+      by (meson \<delta> \<open>0 < \<delta>\<close> assms continuous_on_subset inj_on_subset invariance_of_domain_ball)
+    show "f a \<in> f ` ball a \<delta>"
+      by (simp add: \<open>0 < \<delta>\<close>)
+    show "f ` ball a \<delta> \<subseteq> f ` S"
+      using \<delta> ball_subset_cball by blast
+  qed
+qed
+
+lemma inv_of_domain_ss0:
+  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
+  assumes contf: "continuous_on U f" and injf: "inj_on f U" and fim: "f ` U \<subseteq> S"
+      and "subspace S" and dimS: "dim S = DIM('b::euclidean_space)"
+      and ope: "openin (subtopology euclidean S) U"
+    shows "openin (subtopology euclidean S) (f ` U)"
+proof -
+  have "U \<subseteq> S"
+    using ope openin_imp_subset by blast
+  have "(UNIV::'b set) homeomorphic S"
+    by (simp add: \<open>subspace S\<close> dimS dim_UNIV homeomorphic_subspaces)
+  then obtain h k where homhk: "homeomorphism (UNIV::'b set) S h k"
+    using homeomorphic_def by blast
+  have homkh: "homeomorphism S (k ` S) k h"
+    using homhk homeomorphism_image2 homeomorphism_sym by fastforce
+  have "open ((k \<circ> f \<circ> h) ` k ` U)"
+  proof (rule invariance_of_domain)
+    show "continuous_on (k ` U) (k \<circ> f \<circ> h)"
+    proof (intro continuous_intros)
+      show "continuous_on (k ` U) h"
+        by (meson continuous_on_subset [OF homeomorphism_cont1 [OF homhk]] top_greatest)
+      show "continuous_on (h ` k ` U) f"
+        apply (rule continuous_on_subset [OF contf], clarify)
+        apply (metis homhk homeomorphism_def ope openin_imp_subset rev_subsetD)
+        done
+      show "continuous_on (f ` h ` k ` U) k"
+        apply (rule continuous_on_subset [OF homeomorphism_cont2 [OF homhk]])
+        using fim homhk homeomorphism_apply2 ope openin_subset by fastforce
+    qed
+    have ope_iff: "\<And>T. open T \<longleftrightarrow> openin (subtopology euclidean (k ` S)) T"
+      using homhk homeomorphism_image2 open_openin by fastforce
+    show "open (k ` U)"
+      by (simp add: ope_iff homeomorphism_imp_open_map [OF homkh ope])
+    show "inj_on (k \<circ> f \<circ> h) (k ` U)"
+      apply (clarsimp simp: inj_on_def)
+      by (metis subsetD fim homeomorphism_apply2 [OF homhk] image_subset_iff inj_on_eq_iff injf \<open>U \<subseteq> S\<close>)
+  qed
+  moreover
+  have eq: "f ` U = h ` (k \<circ> f \<circ> h \<circ> k) ` U"
+    apply (auto simp: image_comp [symmetric])
+    apply (metis homkh \<open>U \<subseteq> S\<close> fim homeomorphism_image2 homeomorphism_of_subsets homhk imageI subset_UNIV)
+    by (metis \<open>U \<subseteq> S\<close> subsetD fim homeomorphism_def homhk image_eqI)
+  ultimately show ?thesis
+    by (metis (no_types, hide_lams) homeomorphism_imp_open_map homhk image_comp open_openin subtopology_UNIV)
+qed
+
+lemma inv_of_domain_ss1:
+  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
+  assumes contf: "continuous_on U f" and injf: "inj_on f U" and fim: "f ` U \<subseteq> S"
+      and "subspace S"
+      and ope: "openin (subtopology euclidean S) U"
+    shows "openin (subtopology euclidean S) (f ` U)"
+proof -
+  define S' where "S' \<equiv> {y. \<forall>x \<in> S. orthogonal x y}"
+  have "subspace S'"
+    by (simp add: S'_def subspace_orthogonal_to_vectors)
+  define g where "g \<equiv> \<lambda>z::'a*'a. ((f \<circ> fst)z, snd z)"
+  have "openin (subtopology euclidean (S \<times> S')) (g ` (U \<times> S'))"
+  proof (rule inv_of_domain_ss0)
+    show "continuous_on (U \<times> S') g"
+      apply (simp add: g_def)
+      apply (intro continuous_intros continuous_on_compose2 [OF contf continuous_on_fst], auto)
+      done
+    show "g ` (U \<times> S') \<subseteq> S \<times> S'"
+      using fim  by (auto simp: g_def)
+    show "inj_on g (U \<times> S')"
+      using injf by (auto simp: g_def inj_on_def)
+    show "subspace (S \<times> S')"
+      by (simp add: \<open>subspace S'\<close> \<open>subspace S\<close> subspace_Times)
+    show "openin (subtopology euclidean (S \<times> S')) (U \<times> S')"
+      by (simp add: openin_Times [OF ope])
+    have "dim (S \<times> S') = dim S + dim S'"
+      by (simp add: \<open>subspace S'\<close> \<open>subspace S\<close> dim_Times)
+    also have "... = DIM('a)"
+      using dim_subspace_orthogonal_to_vectors [OF \<open>subspace S\<close> subspace_UNIV]
+      by (simp add: add.commute S'_def)
+    finally show "dim (S \<times> S') = DIM('a)" .
+  qed
+  moreover have "g ` (U \<times> S') = f ` U \<times> S'"
+    by (auto simp: g_def image_iff)
+  moreover have "0 \<in> S'"
+    using \<open>subspace S'\<close> subspace_affine by blast
+  ultimately show ?thesis
+    by (auto simp: openin_Times_eq)
+qed
+
+
+corollary invariance_of_domain_subspaces:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes ope: "openin (subtopology euclidean U) S"
+      and "subspace U" "subspace V" and VU: "dim V \<le> dim U"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
+      and injf: "inj_on f S"
+    shows "openin (subtopology euclidean V) (f ` S)"
+proof -
+  obtain V' where "subspace V'" "V' \<subseteq> U" "dim V' = dim V"
+    using choose_subspace_of_subspace [OF VU]
+    by (metis span_eq \<open>subspace U\<close>)
+  then have "V homeomorphic V'"
+    by (simp add: \<open>subspace V\<close> homeomorphic_subspaces)
+  then obtain h k where homhk: "homeomorphism V V' h k"
+    using homeomorphic_def by blast
+  have eq: "f ` S = k ` (h \<circ> f) ` S"
+  proof -
+    have "k ` h ` f ` S = f ` S"
+      by (meson fim homeomorphism_def homeomorphism_of_subsets homhk subset_refl)
+    then show ?thesis
+      by (simp add: image_comp)
+  qed
+  show ?thesis
+    unfolding eq
+  proof (rule homeomorphism_imp_open_map)
+    show homkh: "homeomorphism V' V k h"
+      by (simp add: homeomorphism_symD homhk)
+    have hfV': "(h \<circ> f) ` S \<subseteq> V'"
+      using fim homeomorphism_image1 homhk by fastforce
+    moreover have "openin (subtopology euclidean U) ((h \<circ> f) ` S)"
+    proof (rule inv_of_domain_ss1)
+      show "continuous_on S (h \<circ> f)"
+        by (meson contf continuous_on_compose continuous_on_subset fim homeomorphism_cont1 homhk)
+      show "inj_on (h \<circ> f) S"
+        apply (clarsimp simp: inj_on_def)
+        by (metis fim homeomorphism_apply2 [OF homkh] image_subset_iff inj_onD injf)
+      show "(h \<circ> f) ` S \<subseteq> U"
+        using \<open>V' \<subseteq> U\<close> hfV' by auto
+      qed (auto simp: assms)
+    ultimately show "openin (subtopology euclidean V') ((h \<circ> f) ` S)"
+      using openin_subset_trans \<open>V' \<subseteq> U\<close> by force
+  qed
+qed
+
+corollary invariance_of_dimension_subspaces:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes ope: "openin (subtopology euclidean U) S"
+      and "subspace U" "subspace V"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
+      and injf: "inj_on f S" and "S \<noteq> {}"
+    shows "dim U \<le> dim V"
+proof -
+  have "False" if "dim V < dim U"
+  proof -
+    obtain T where "subspace T" "T \<subseteq> U" "dim T = dim V"
+      using choose_subspace_of_subspace [of "dim V" U]
+      by (metis span_eq \<open>subspace U\<close> \<open>dim V < dim U\<close> linear not_le)
+    then have "V homeomorphic T"
+      by (simp add: \<open>subspace V\<close> homeomorphic_subspaces)
+    then obtain h k where homhk: "homeomorphism V T h k"
+      using homeomorphic_def  by blast
+    have "continuous_on S (h \<circ> f)"
+      by (meson contf continuous_on_compose continuous_on_subset fim homeomorphism_cont1 homhk)
+    moreover have "(h \<circ> f) ` S \<subseteq> U"
+      using \<open>T \<subseteq> U\<close> fim homeomorphism_image1 homhk by fastforce
+    moreover have "inj_on (h \<circ> f) S"
+      apply (clarsimp simp: inj_on_def)
+      by (metis fim homeomorphism_apply1 homhk image_subset_iff inj_onD injf)
+    ultimately have ope_hf: "openin (subtopology euclidean U) ((h \<circ> f) ` S)"
+      using invariance_of_domain_subspaces [OF ope \<open>subspace U\<close> \<open>subspace U\<close>] by auto
+    have "(h \<circ> f) ` S \<subseteq> T"
+      using fim homeomorphism_image1 homhk by fastforce
+    then show ?thesis
+      by (metis dim_openin \<open>dim T = dim V\<close> ope_hf \<open>subspace U\<close> \<open>S \<noteq> {}\<close> dim_subset image_is_empty not_le that)
+  qed
+  then show ?thesis
+    using not_less by blast
+qed
+
+corollary invariance_of_domain_affine_sets:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes ope: "openin (subtopology euclidean U) S"
+      and aff: "affine U" "affine V" "aff_dim V \<le> aff_dim U"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
+      and injf: "inj_on f S"
+    shows "openin (subtopology euclidean V) (f ` S)"
+proof (cases "S = {}")
+  case True
+  then show ?thesis by auto
+next
+  case False
+  obtain a b where "a \<in> S" "a \<in> U" "b \<in> V"
+    using False fim ope openin_contains_cball by fastforce
+  have "openin (subtopology euclidean (op + (- b) ` V)) ((op + (- b) \<circ> f \<circ> op + a) ` op + (- a) ` S)"
+  proof (rule invariance_of_domain_subspaces)
+    show "openin (subtopology euclidean (op + (- a) ` U)) (op + (- a) ` S)"
+      by (metis ope homeomorphism_imp_open_map homeomorphism_translation translation_galois)
+    show "subspace (op + (- a) ` U)"
+      by (simp add: \<open>a \<in> U\<close> affine_diffs_subspace \<open>affine U\<close>)
+    show "subspace (op + (- b) ` V)"
+      by (simp add: \<open>b \<in> V\<close> affine_diffs_subspace \<open>affine V\<close>)
+    show "dim (op + (- b) ` V) \<le> dim (op + (- a) ` U)"
+      by (metis \<open>a \<in> U\<close> \<open>b \<in> V\<close> aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff)
+    show "continuous_on (op + (- a) ` S) (op + (- b) \<circ> f \<circ> op + a)"
+      by (metis contf continuous_on_compose homeomorphism_cont2 homeomorphism_translation translation_galois)
+    show "(op + (- b) \<circ> f \<circ> op + a) ` op + (- a) ` S \<subseteq> op + (- b) ` V"
+      using fim by auto
+    show "inj_on (op + (- b) \<circ> f \<circ> op + a) (op + (- a) ` S)"
+      by (auto simp: inj_on_def) (meson inj_onD injf)
+  qed
+  then show ?thesis
+    by (metis (no_types, lifting) homeomorphism_imp_open_map homeomorphism_translation image_comp translation_galois)
+qed
+
+corollary invariance_of_dimension_affine_sets:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes ope: "openin (subtopology euclidean U) S"
+      and aff: "affine U" "affine V"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> V"
+      and injf: "inj_on f S" and "S \<noteq> {}"
+    shows "aff_dim U \<le> aff_dim V"
+proof -
+  obtain a b where "a \<in> S" "a \<in> U" "b \<in> V"
+    using \<open>S \<noteq> {}\<close> fim ope openin_contains_cball by fastforce
+  have "dim (op + (- a) ` U) \<le> dim (op + (- b) ` V)"
+  proof (rule invariance_of_dimension_subspaces)
+    show "openin (subtopology euclidean (op + (- a) ` U)) (op + (- a) ` S)"
+      by (metis ope homeomorphism_imp_open_map homeomorphism_translation translation_galois)
+    show "subspace (op + (- a) ` U)"
+      by (simp add: \<open>a \<in> U\<close> affine_diffs_subspace \<open>affine U\<close>)
+    show "subspace (op + (- b) ` V)"
+      by (simp add: \<open>b \<in> V\<close> affine_diffs_subspace \<open>affine V\<close>)
+    show "continuous_on (op + (- a) ` S) (op + (- b) \<circ> f \<circ> op + a)"
+      by (metis contf continuous_on_compose homeomorphism_cont2 homeomorphism_translation translation_galois)
+    show "(op + (- b) \<circ> f \<circ> op + a) ` op + (- a) ` S \<subseteq> op + (- b) ` V"
+      using fim by auto
+    show "inj_on (op + (- b) \<circ> f \<circ> op + a) (op + (- a) ` S)"
+      by (auto simp: inj_on_def) (meson inj_onD injf)
+  qed (use \<open>S \<noteq> {}\<close> in auto)
+  then show ?thesis
+    by (metis \<open>a \<in> U\<close> \<open>b \<in> V\<close> aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff)
+qed
+
+corollary invariance_of_dimension:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes contf: "continuous_on S f" and "open S"
+      and injf: "inj_on f S" and "S \<noteq> {}"
+    shows "DIM('a) \<le> DIM('b)"
+  using invariance_of_dimension_subspaces [of UNIV S UNIV f] assms
+  by auto
+
+
+corollary continuous_injective_image_subspace_dim_le:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "subspace S" "subspace T"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> T"
+      and injf: "inj_on f S"
+    shows "dim S \<le> dim T"
+  apply (rule invariance_of_dimension_subspaces [of S S _ f])
+  using assms by (auto simp: subspace_affine)
+
+lemma invariance_of_dimension_convex_domain:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "convex S"
+      and contf: "continuous_on S f" and fim: "f ` S \<subseteq> affine hull T"
+      and injf: "inj_on f S"
+    shows "aff_dim S \<le> aff_dim T"
+proof (cases "S = {}")
+  case True
+  then show ?thesis by (simp add: aff_dim_geq)
+next
+  case False
+  have "aff_dim (affine hull S) \<le> aff_dim (affine hull T)"
+  proof (rule invariance_of_dimension_affine_sets)
+    show "openin (subtopology euclidean (affine hull S)) (rel_interior S)"
+      by (simp add: openin_rel_interior)
+    show "continuous_on (rel_interior S) f"
+      using contf continuous_on_subset rel_interior_subset by blast
+    show "f ` rel_interior S \<subseteq> affine hull T"
+      using fim rel_interior_subset by blast
+    show "inj_on f (rel_interior S)"
+      using inj_on_subset injf rel_interior_subset by blast
+    show "rel_interior S \<noteq> {}"
+      by (simp add: False \<open>convex S\<close> rel_interior_eq_empty)
+  qed auto
+  then show ?thesis
+    by simp
+qed
+
+
+lemma homeomorphic_convex_sets_le:
+  assumes "convex S" "S homeomorphic T"
+  shows "aff_dim S \<le> aff_dim T"
+proof -
+  obtain h k where homhk: "homeomorphism S T h k"
+    using homeomorphic_def assms  by blast
+  show ?thesis
+  proof (rule invariance_of_dimension_convex_domain [OF \<open>convex S\<close>])
+    show "continuous_on S h"
+      using homeomorphism_def homhk by blast
+    show "h ` S \<subseteq> affine hull T"
+      by (metis homeomorphism_def homhk hull_subset)
+    show "inj_on h S"
+      by (meson homeomorphism_apply1 homhk inj_on_inverseI)
+  qed
+qed
+
+lemma homeomorphic_convex_sets:
+  assumes "convex S" "convex T" "S homeomorphic T"
+  shows "aff_dim S = aff_dim T"
+  by (meson assms dual_order.antisym homeomorphic_convex_sets_le homeomorphic_sym)
+
+lemma homeomorphic_convex_compact_sets_eq:
+  assumes "convex S" "compact S" "convex T" "compact T"
+  shows "S homeomorphic T \<longleftrightarrow> aff_dim S = aff_dim T"
+  by (meson assms homeomorphic_convex_compact_sets homeomorphic_convex_sets)
+
+lemma invariance_of_domain_gen:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "open S" "continuous_on S f" "inj_on f S" "DIM('b) \<le> DIM('a)"
+    shows "open(f ` S)"
+  using invariance_of_domain_subspaces [of UNIV S UNIV f] assms by auto
+
+lemma injective_into_1d_imp_open_map_UNIV:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes "open T" "continuous_on S f" "inj_on f S" "T \<subseteq> S"
+    shows "open (f ` T)"
+  apply (rule invariance_of_domain_gen [OF \<open>open T\<close>])
+  using assms apply (auto simp: elim: continuous_on_subset subset_inj_on)
+  done
+
+lemma continuous_on_inverse_open:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" and gf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
+    shows "continuous_on (f ` S) g"
+proof (clarsimp simp add: continuous_openin_preimage_eq)
+  fix T :: "'a set"
+  assume "open T"
+  have eq: "{x. x \<in> f ` S \<and> g x \<in> T} = f ` (S \<inter> T)"
+    by (auto simp: gf)
+  show "openin (subtopology euclidean (f ` S)) {x \<in> f ` S. g x \<in> T}"
+    apply (subst eq)
+    apply (rule open_openin_trans)
+      apply (rule invariance_of_domain_gen)
+    using assms
+         apply auto
+    using inj_on_inverseI apply auto[1]
+    by (metis \<open>open T\<close> continuous_on_subset inj_onI inj_on_subset invariance_of_domain_gen openin_open openin_open_eq)
+qed
+
+lemma invariance_of_domain_homeomorphism:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" "inj_on f S"
+  obtains g where "homeomorphism S (f ` S) f g"
+proof
+  show "homeomorphism S (f ` S) f (inv_into S f)"
+    by (simp add: assms continuous_on_inverse_open homeomorphism_def)
+qed
+
+corollary invariance_of_domain_homeomorphic:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "open S" "continuous_on S f" "DIM('b) \<le> DIM('a)" "inj_on f S"
+  shows "S homeomorphic (f ` S)"
+  using invariance_of_domain_homeomorphism [OF assms]
+  by (meson homeomorphic_def)
+
+lemma continuous_image_subset_interior:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "continuous_on S f" "inj_on f S" "DIM('b) \<le> DIM('a)"
+  shows "f ` (interior S) \<subseteq> interior(f ` S)"
+  apply (rule interior_maximal)
+   apply (simp add: image_mono interior_subset)
+  apply (rule invariance_of_domain_gen)
+  using assms
+     apply (auto simp: subset_inj_on interior_subset continuous_on_subset)
+  done
+
+lemma homeomorphic_interiors_same_dimension:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" and dimeq: "DIM('a) = DIM('b)"
+  shows "(interior S) homeomorphic (interior T)"
+  using assms [unfolded homeomorphic_minimal]
+  unfolding homeomorphic_def
+proof (clarify elim!: ex_forward)
+  fix f g
+  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
+     and contf: "continuous_on S f" and contg: "continuous_on T g"
+  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
+    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
+  have fim: "f ` interior S \<subseteq> interior T"
+    using continuous_image_subset_interior [OF contf \<open>inj_on f S\<close>] dimeq fST by simp
+  have gim: "g ` interior T \<subseteq> interior S"
+    using continuous_image_subset_interior [OF contg \<open>inj_on g T\<close>] dimeq gTS by simp
+  show "homeomorphism (interior S) (interior T) f g"
+    unfolding homeomorphism_def
+  proof (intro conjI ballI)
+    show "\<And>x. x \<in> interior S \<Longrightarrow> g (f x) = x"
+      by (meson \<open>\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x\<close> subsetD interior_subset)
+    have "interior T \<subseteq> f ` interior S"
+    proof
+      fix x assume "x \<in> interior T"
+      then have "g x \<in> interior S"
+        using gim by blast
+      then show "x \<in> f ` interior S"
+        by (metis T \<open>x \<in> interior T\<close> image_iff interior_subset subsetCE)
+    qed
+    then show "f ` interior S = interior T"
+      using fim by blast
+    show "continuous_on (interior S) f"
+      by (metis interior_subset continuous_on_subset contf)
+    show "\<And>y. y \<in> interior T \<Longrightarrow> f (g y) = y"
+      by (meson T subsetD interior_subset)
+    have "interior S \<subseteq> g ` interior T"
+    proof
+      fix x assume "x \<in> interior S"
+      then have "f x \<in> interior T"
+        using fim by blast
+      then show "x \<in> g ` interior T"
+        by (metis S \<open>x \<in> interior S\<close> image_iff interior_subset subsetCE)
+    qed
+    then show "g ` interior T = interior S"
+      using gim by blast
+    show "continuous_on (interior T) g"
+      by (metis interior_subset continuous_on_subset contg)
+  qed
+qed
+
+lemma homeomorphic_open_imp_same_dimension:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" "open S" "S \<noteq> {}" "open T" "T \<noteq> {}"
+  shows "DIM('a) = DIM('b)"
+    using assms
+    apply (simp add: homeomorphic_minimal)
+    apply (rule order_antisym; metis inj_onI invariance_of_dimension)
+    done
+
+lemma homeomorphic_interiors:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" "interior S = {} \<longleftrightarrow> interior T = {}"
+    shows "(interior S) homeomorphic (interior T)"
+proof (cases "interior T = {}")
+  case True
+  with assms show ?thesis by auto
+next
+  case False
+  then have "DIM('a) = DIM('b)"
+    using assms
+    apply (simp add: homeomorphic_minimal)
+    apply (rule order_antisym; metis continuous_on_subset inj_onI inj_on_subset interior_subset invariance_of_dimension open_interior)
+    done
+  then show ?thesis
+    by (rule homeomorphic_interiors_same_dimension [OF \<open>S homeomorphic T\<close>])
+qed
+
+lemma homeomorphic_frontiers_same_dimension:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" "closed S" "closed T" and dimeq: "DIM('a) = DIM('b)"
+  shows "(frontier S) homeomorphic (frontier T)"
+  using assms [unfolded homeomorphic_minimal]
+  unfolding homeomorphic_def
+proof (clarify elim!: ex_forward)
+  fix f g
+  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
+     and contf: "continuous_on S f" and contg: "continuous_on T g"
+  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
+    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
+  have "g ` interior T \<subseteq> interior S"
+    using continuous_image_subset_interior [OF contg \<open>inj_on g T\<close>] dimeq gTS by simp
+  then have fim: "f ` frontier S \<subseteq> frontier T"
+    apply (simp add: frontier_def)
+    using continuous_image_subset_interior assms(2) assms(3) S by auto
+  have "f ` interior S \<subseteq> interior T"
+    using continuous_image_subset_interior [OF contf \<open>inj_on f S\<close>] dimeq fST by simp
+  then have gim: "g ` frontier T \<subseteq> frontier S"
+    apply (simp add: frontier_def)
+    using continuous_image_subset_interior T assms(2) assms(3) by auto
+  show "homeomorphism (frontier S) (frontier T) f g"
+    unfolding homeomorphism_def
+  proof (intro conjI ballI)
+    show gf: "\<And>x. x \<in> frontier S \<Longrightarrow> g (f x) = x"
+      by (simp add: S assms(2) frontier_def)
+    show fg: "\<And>y. y \<in> frontier T \<Longrightarrow> f (g y) = y"
+      by (simp add: T assms(3) frontier_def)
+    have "frontier T \<subseteq> f ` frontier S"
+    proof
+      fix x assume "x \<in> frontier T"
+      then have "g x \<in> frontier S"
+        using gim by blast
+      then show "x \<in> f ` frontier S"
+        by (metis fg \<open>x \<in> frontier T\<close> imageI)
+    qed
+    then show "f ` frontier S = frontier T"
+      using fim by blast
+    show "continuous_on (frontier S) f"
+      by (metis Diff_subset assms(2) closure_eq contf continuous_on_subset frontier_def)
+    have "frontier S \<subseteq> g ` frontier T"
+    proof
+      fix x assume "x \<in> frontier S"
+      then have "f x \<in> frontier T"
+        using fim by blast
+      then show "x \<in> g ` frontier T"
+        by (metis gf \<open>x \<in> frontier S\<close> imageI)
+    qed
+    then show "g ` frontier T = frontier S"
+      using gim by blast
+    show "continuous_on (frontier T) g"
+      by (metis Diff_subset assms(3) closure_closed contg continuous_on_subset frontier_def)
+  qed
+qed
+
+lemma homeomorphic_frontiers:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" "closed S" "closed T"
+          "interior S = {} \<longleftrightarrow> interior T = {}"
+    shows "(frontier S) homeomorphic (frontier T)"
+proof (cases "interior T = {}")
+  case True
+  then show ?thesis
+    by (metis Diff_empty assms closure_eq frontier_def)
+next
+  case False
+  show ?thesis
+    apply (rule homeomorphic_frontiers_same_dimension)
+       apply (simp_all add: assms)
+    using False assms homeomorphic_interiors homeomorphic_open_imp_same_dimension by blast
+qed
+
+lemma continuous_image_subset_rel_interior:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes contf: "continuous_on S f" and injf: "inj_on f S" and fim: "f ` S \<subseteq> T"
+      and TS: "aff_dim T \<le> aff_dim S"
+  shows "f ` (rel_interior S) \<subseteq> rel_interior(f ` S)"
+proof (rule rel_interior_maximal)
+  show "f ` rel_interior S \<subseteq> f ` S"
+    by(simp add: image_mono rel_interior_subset)
+  show "openin (subtopology euclidean (affine hull f ` S)) (f ` rel_interior S)"
+  proof (rule invariance_of_domain_affine_sets)
+    show "openin (subtopology euclidean (affine hull S)) (rel_interior S)"
+      by (simp add: openin_rel_interior)
+    show "aff_dim (affine hull f ` S) \<le> aff_dim (affine hull S)"
+      by (metis aff_dim_affine_hull aff_dim_subset fim TS order_trans)
+    show "f ` rel_interior S \<subseteq> affine hull f ` S"
+      by (meson \<open>f ` rel_interior S \<subseteq> f ` S\<close> hull_subset order_trans)
+    show "continuous_on (rel_interior S) f"
+      using contf continuous_on_subset rel_interior_subset by blast
+    show "inj_on f (rel_interior S)"
+      using inj_on_subset injf rel_interior_subset by blast
+  qed auto
+qed
+
+lemma homeomorphic_rel_interiors_same_dimension:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" and aff: "aff_dim S = aff_dim T"
+  shows "(rel_interior S) homeomorphic (rel_interior T)"
+  using assms [unfolded homeomorphic_minimal]
+  unfolding homeomorphic_def
+proof (clarify elim!: ex_forward)
+  fix f g
+  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
+     and contf: "continuous_on S f" and contg: "continuous_on T g"
+  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
+    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
+  have fim: "f ` rel_interior S \<subseteq> rel_interior T"
+    by (metis \<open>inj_on f S\<close> aff contf continuous_image_subset_rel_interior fST order_refl)
+  have gim: "g ` rel_interior T \<subseteq> rel_interior S"
+    by (metis \<open>inj_on g T\<close> aff contg continuous_image_subset_rel_interior gTS order_refl)
+  show "homeomorphism (rel_interior S) (rel_interior T) f g"
+    unfolding homeomorphism_def
+  proof (intro conjI ballI)
+    show gf: "\<And>x. x \<in> rel_interior S \<Longrightarrow> g (f x) = x"
+      using S rel_interior_subset by blast
+    show fg: "\<And>y. y \<in> rel_interior T \<Longrightarrow> f (g y) = y"
+      using T mem_rel_interior_ball by blast
+    have "rel_interior T \<subseteq> f ` rel_interior S"
+    proof
+      fix x assume "x \<in> rel_interior T"
+      then have "g x \<in> rel_interior S"
+        using gim by blast
+      then show "x \<in> f ` rel_interior S"
+        by (metis fg \<open>x \<in> rel_interior T\<close> imageI)
+    qed
+    moreover have "f ` rel_interior S \<subseteq> rel_interior T"
+      by (metis \<open>inj_on f S\<close> aff contf continuous_image_subset_rel_interior fST order_refl)
+    ultimately show "f ` rel_interior S = rel_interior T"
+      by blast
+    show "continuous_on (rel_interior S) f"
+      using contf continuous_on_subset rel_interior_subset by blast
+    have "rel_interior S \<subseteq> g ` rel_interior T"
+    proof
+      fix x assume "x \<in> rel_interior S"
+      then have "f x \<in> rel_interior T"
+        using fim by blast
+      then show "x \<in> g ` rel_interior T"
+        by (metis gf \<open>x \<in> rel_interior S\<close> imageI)
+    qed
+    then show "g ` rel_interior T = rel_interior S"
+      using gim by blast
+    show "continuous_on (rel_interior T) g"
+      using contg continuous_on_subset rel_interior_subset by blast
+  qed
+qed
+
+lemma homeomorphic_rel_interiors:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" "rel_interior S = {} \<longleftrightarrow> rel_interior T = {}"
+    shows "(rel_interior S) homeomorphic (rel_interior T)"
+proof (cases "rel_interior T = {}")
+  case True
+  with assms show ?thesis by auto
+next
+  case False
+  obtain f g
+    where S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
+      and contf: "continuous_on S f" and contg: "continuous_on T g"
+    using  assms [unfolded homeomorphic_minimal] by auto
+  have "aff_dim (affine hull S) \<le> aff_dim (affine hull T)"
+    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior S" _ f])
+          apply (simp_all add: openin_rel_interior False assms)
+    using contf continuous_on_subset rel_interior_subset apply blast
+      apply (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)
+    apply (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
+    done
+  moreover have "aff_dim (affine hull T) \<le> aff_dim (affine hull S)"
+    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior T" _ g])
+          apply (simp_all add: openin_rel_interior False assms)
+    using contg continuous_on_subset rel_interior_subset apply blast
+      apply (meson T hull_subset image_subsetI rel_interior_subset rev_subsetD)
+    apply (metis T inj_on_inverseI inj_on_subset rel_interior_subset)
+    done
+  ultimately have "aff_dim S = aff_dim T" by force
+  then show ?thesis
+    by (rule homeomorphic_rel_interiors_same_dimension [OF \<open>S homeomorphic T\<close>])
+qed
+
+
+lemma homeomorphic_rel_boundaries_same_dimension:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" and aff: "aff_dim S = aff_dim T"
+  shows "(S - rel_interior S) homeomorphic (T - rel_interior T)"
+  using assms [unfolded homeomorphic_minimal]
+  unfolding homeomorphic_def
+proof (clarify elim!: ex_forward)
+  fix f g
+  assume S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
+     and contf: "continuous_on S f" and contg: "continuous_on T g"
+  then have fST: "f ` S = T" and gTS: "g ` T = S" and "inj_on f S" "inj_on g T"
+    by (auto simp: inj_on_def intro: rev_image_eqI) metis+
+  have fim: "f ` rel_interior S \<subseteq> rel_interior T"
+    by (metis \<open>inj_on f S\<close> aff contf continuous_image_subset_rel_interior fST order_refl)
+  have gim: "g ` rel_interior T \<subseteq> rel_interior S"
+    by (metis \<open>inj_on g T\<close> aff contg continuous_image_subset_rel_interior gTS order_refl)
+  show "homeomorphism (S - rel_interior S) (T - rel_interior T) f g"
+    unfolding homeomorphism_def
+  proof (intro conjI ballI)
+    show gf: "\<And>x. x \<in> S - rel_interior S \<Longrightarrow> g (f x) = x"
+      using S rel_interior_subset by blast
+    show fg: "\<And>y. y \<in> T - rel_interior T \<Longrightarrow> f (g y) = y"
+      using T mem_rel_interior_ball by blast
+    show "f ` (S - rel_interior S) = T - rel_interior T"
+      using S fST fim gim by auto
+    show "continuous_on (S - rel_interior S) f"
+      using contf continuous_on_subset rel_interior_subset by blast
+    show "g ` (T - rel_interior T) = S - rel_interior S"
+      using T gTS gim fim by auto
+    show "continuous_on (T - rel_interior T) g"
+      using contg continuous_on_subset rel_interior_subset by blast
+  qed
+qed
+
+lemma homeomorphic_rel_boundaries:
+  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
+  assumes "S homeomorphic T" "rel_interior S = {} \<longleftrightarrow> rel_interior T = {}"
+    shows "(S - rel_interior S) homeomorphic (T - rel_interior T)"
+proof (cases "rel_interior T = {}")
+  case True
+  with assms show ?thesis by auto
+next
+  case False
+  obtain f g
+    where S: "\<forall>x\<in>S. f x \<in> T \<and> g (f x) = x" and T: "\<forall>y\<in>T. g y \<in> S \<and> f (g y) = y"
+      and contf: "continuous_on S f" and contg: "continuous_on T g"
+    using  assms [unfolded homeomorphic_minimal] by auto
+  have "aff_dim (affine hull S) \<le> aff_dim (affine hull T)"
+    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior S" _ f])
+          apply (simp_all add: openin_rel_interior False assms)
+    using contf continuous_on_subset rel_interior_subset apply blast
+      apply (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)
+    apply (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
+    done
+  moreover have "aff_dim (affine hull T) \<le> aff_dim (affine hull S)"
+    apply (rule invariance_of_dimension_affine_sets [of _ "rel_interior T" _ g])
+          apply (simp_all add: openin_rel_interior False assms)
+    using contg continuous_on_subset rel_interior_subset apply blast
+      apply (meson T hull_subset image_subsetI rel_interior_subset rev_subsetD)
+    apply (metis T inj_on_inverseI inj_on_subset rel_interior_subset)
+    done
+  ultimately have "aff_dim S = aff_dim T" by force
+  then show ?thesis
+    by (rule homeomorphic_rel_boundaries_same_dimension [OF \<open>S homeomorphic T\<close>])
+qed
+
+proposition uniformly_continuous_homeomorphism_UNIV_trivial:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a"
+  assumes contf: "uniformly_continuous_on S f" and hom: "homeomorphism S UNIV f g"
+  shows "S = UNIV"
+proof (cases "S = {}")
+  case True
+  then show ?thesis
+    by (metis UNIV_I hom empty_iff homeomorphism_def image_eqI)
+next
+  case False
+  have "inj g"
+    by (metis UNIV_I hom homeomorphism_apply2 injI)
+  then have "open (g ` UNIV)"
+    by (blast intro: invariance_of_domain hom homeomorphism_cont2)
+  then have "open S"
+    using hom homeomorphism_image2 by blast
+  moreover have "complete S"
+    unfolding complete_def
+  proof clarify
+    fix \<sigma>
+    assume \<sigma>: "\<forall>n. \<sigma> n \<in> S" and "Cauchy \<sigma>"
+    have "Cauchy (f o \<sigma>)"
+      using uniformly_continuous_imp_Cauchy_continuous \<open>Cauchy \<sigma>\<close> \<sigma> contf by blast
+    then obtain l where "(f \<circ> \<sigma>) \<longlonglongrightarrow> l"
+      by (auto simp: convergent_eq_Cauchy [symmetric])
+    show "\<exists>l\<in>S. \<sigma> \<longlonglongrightarrow> l"
+    proof
+      show "g l \<in> S"
+        using hom homeomorphism_image2 by blast
+      have "(g \<circ> (f \<circ> \<sigma>)) \<longlonglongrightarrow> g l"
+        by (meson UNIV_I \<open>(f \<circ> \<sigma>) \<longlonglongrightarrow> l\<close> continuous_on_sequentially hom homeomorphism_cont2)
+      then show "\<sigma> \<longlonglongrightarrow> g l"
+      proof -
+        have "\<forall>n. \<sigma> n = (g \<circ> (f \<circ> \<sigma>)) n"
+          by (metis (no_types) \<sigma> comp_eq_dest_lhs hom homeomorphism_apply1)
+        then show ?thesis
+          by (metis (no_types) LIMSEQ_iff \<open>(g \<circ> (f \<circ> \<sigma>)) \<longlonglongrightarrow> g l\<close>)
+      qed
+    qed
+  qed
+  then have "closed S"
+    by (simp add: complete_eq_closed)
+  ultimately show ?thesis
+    using clopen [of S] False  by simp
+qed
+
+subsection\<open>The power, squaring and exponential functions as covering maps\<close>
+
+proposition covering_space_power_punctured_plane:
+  assumes "0 < n"
+    shows "covering_space (- {0}) (\<lambda>z::complex. z^n) (- {0})"
+proof -
+  consider "n = 1" | "2 \<le> n" using assms by linarith
+  then obtain e where "0 < e"
+                and e: "\<And>w z. cmod(w - z) < e * cmod z \<Longrightarrow> (w^n = z^n \<longleftrightarrow> w = z)"
+  proof cases
+    assume "n = 1" then show ?thesis
+      by (rule_tac e=1 in that) auto
+  next
+    assume "2 \<le> n"
+    have eq_if_pow_eq:
+         "w = z" if lt: "cmod (w - z) < 2 * sin (pi / real n) * cmod z"
+                 and eq: "w^n = z^n" for w z
+    proof (cases "z = 0")
+      case True with eq assms show ?thesis by (auto simp: power_0_left)
+    next
+      case False
+      then have "z \<noteq> 0" by auto
+      have "(w/z)^n = 1"
+        by (metis False divide_self_if eq power_divide power_one)
+      then obtain j where j: "w / z = exp (2 * of_real pi * \<i> * j / n)" and "j < n"
+        using Suc_leI assms \<open>2 \<le> n\<close> complex_roots_unity [THEN eqset_imp_iff, of n "w/z"]
+        by force
+      have "cmod (w/z - 1) < 2 * sin (pi / real n)"
+        using lt assms \<open>z \<noteq> 0\<close> by (simp add: divide_simps norm_divide)
+      then have "cmod (exp (\<i> * of_real (2 * pi * j / n)) - 1) < 2 * sin (pi / real n)"
+        by (simp add: j field_simps)
+      then have "2 * \<bar>sin((2 * pi * j / n) / 2)\<bar> < 2 * sin (pi / real n)"
+        by (simp only: dist_exp_ii_1)
+      then have sin_less: "sin((pi * j / n)) < sin (pi / real n)"
+        by (simp add: field_simps)
+      then have "w / z = 1"
+      proof (cases "j = 0")
+        case True then show ?thesis by (auto simp: j)
+      next
+        case False
+        then have "sin (pi / real n) \<le> sin((pi * j / n))"
+        proof (cases "j / n \<le> 1/2")
+          case True
+          show ?thesis
+            apply (rule sin_monotone_2pi_le)
+            using \<open>j \<noteq> 0 \<close> \<open>j < n\<close> True
+            apply (auto simp: field_simps intro: order_trans [of _ 0])
+            done
+        next
+          case False
+          then have seq: "sin(pi * j / n) = sin(pi * (n - j) / n)"
+            using \<open>j < n\<close> by (simp add: algebra_simps diff_divide_distrib of_nat_diff)
+          show ?thesis
+            apply (simp only: seq)
+            apply (rule sin_monotone_2pi_le)
+            using \<open>j < n\<close> False
+            apply (auto simp: field_simps intro: order_trans [of _ 0])
+            done
+        qed
+        with sin_less show ?thesis by force
+      qed
+      then show ?thesis by simp
+    qed
+    show ?thesis
+      apply (rule_tac e = "2 * sin(pi / n)" in that)
+       apply (force simp: \<open>2 \<le> n\<close> sin_pi_divide_n_gt_0)
+      apply (meson eq_if_pow_eq)
+      done
+  qed
+  have zn1: "continuous_on (- {0}) (\<lambda>z::complex. z^n)"
+    by (rule continuous_intros)+
+  have zn2: "(\<lambda>z::complex. z^n) ` (- {0}) = - {0}"
+    using assms by (auto simp: image_def elim: exists_complex_root_nonzero [where n = n])
+  have zn3: "\<exists>T. z^n \<in> T \<and> open T \<and> 0 \<notin> T \<and>
+               (\<exists>v. \<Union>v = {x. x \<noteq> 0 \<and> x^n \<in> T} \<and>
+                    (\<forall>u\<in>v. open u \<and> 0 \<notin> u) \<and>
+                    pairwise disjnt v \<and>
+                    (\<forall>u\<in>v. Ex (homeomorphism u T (\<lambda>z. z^n))))"
+           if "z \<noteq> 0" for z::complex
+  proof -
+    def d \<equiv> "min (1/2) (e/4) * norm z"
+    have "0 < d"
+      by (simp add: d_def \<open>0 < e\<close> \<open>z \<noteq> 0\<close>)
+    have iff_x_eq_y: "x^n = y^n \<longleftrightarrow> x = y"
+         if eq: "w^n = z^n" and x: "x \<in> ball w d" and y: "y \<in> ball w d" for w x y
+    proof -
+      have [simp]: "norm z = norm w" using that
+        by (simp add: assms power_eq_imp_eq_norm)
+      show ?thesis
+      proof (cases "w = 0")
+        case True with \<open>z \<noteq> 0\<close> assms eq
+        show ?thesis by (auto simp: power_0_left)
+      next
+        case False
+        have "cmod (x - y) < 2*d"
+          using x y
+          by (simp add: dist_norm [symmetric]) (metis dist_commute mult_2 dist_triangle_less_add)
+        also have "... \<le> 2 * e / 4 * norm w"
+          using \<open>e > 0\<close> by (simp add: d_def min_mult_distrib_right)
+        also have "... = e * (cmod w / 2)"
+          by simp
+        also have "... \<le> e * cmod y"
+          apply (rule mult_left_mono)
+          using \<open>e > 0\<close> y
+           apply (simp_all add: dist_norm d_def min_mult_distrib_right del: divide_const_simps)
+          apply (metis dist_0_norm dist_complex_def dist_triangle_half_l linorder_not_less order_less_irrefl)
+          done
+        finally have "cmod (x - y) < e * cmod y" .
+        then show ?thesis by (rule e)
+      qed
+    qed
+    then have inj: "inj_on (\<lambda>w. w^n) (ball z d)"
+      by (simp add: inj_on_def)
+    have cont: "continuous_on (ball z d) (\<lambda>w. w ^ n)"
+      by (intro continuous_intros)
+    have noncon: "\<not> (\<lambda>w::complex. w^n) constant_on UNIV"
+      by (metis UNIV_I assms constant_on_def power_one zero_neq_one zero_power)
+    have open_imball: "open ((\<lambda>w. w^n) ` ball z d)"
+      by (rule invariance_of_domain [OF cont open_ball inj])
+    have im_eq: "(\<lambda>w. w^n) ` ball z' d = (\<lambda>w. w^n) ` ball z d"
+                if z': "z'^n = z^n" for z'
+    proof -
+      have nz': "norm z' = norm z" using that assms power_eq_imp_eq_norm by blast
+      have "(w \<in> (\<lambda>w. w^n) ` ball z' d) = (w \<in> (\<lambda>w. w^n) ` ball z d)" for w
+      proof (cases "w=0")
+        case True with assms show ?thesis
+          by (simp add: image_def ball_def nz')
+      next
+        case False
+        have "z' \<noteq> 0" using \<open>z \<noteq> 0\<close> nz' by force
+        have [simp]: "(z*x / z')^n = x^n" if "x \<noteq> 0" for x
+          using z' that by (simp add: field_simps \<open>z \<noteq> 0\<close>)
+        have [simp]: "cmod (z - z * x / z') = cmod (z' - x)" if "x \<noteq> 0" for x
+        proof -
+          have "cmod (z - z * x / z') = cmod z * cmod (1 - x / z')"
+            by (metis (no_types) ab_semigroup_mult_class.mult_ac(1) complex_divide_def mult.right_neutral norm_mult right_diff_distrib')
+          also have "... = cmod z' * cmod (1 - x / z')"
+            by (simp add: nz')
+          also have "... = cmod (z' - x)"
+            by (simp add: \<open>z' \<noteq> 0\<close> diff_divide_eq_iff norm_divide)
+          finally show ?thesis .
+        qed
+        have [simp]: "(z'*x / z)^n = x^n" if "x \<noteq> 0" for x
+          using z' that by (simp add: field_simps \<open>z \<noteq> 0\<close>)
+        have [simp]: "cmod (z' - z' * x / z) = cmod (z - x)" if "x \<noteq> 0" for x
+        proof -
+          have "cmod (z * (1 - x * inverse z)) = cmod (z - x)"
+            by (metis \<open>z \<noteq> 0\<close> diff_divide_distrib divide_complex_def divide_self_if nonzero_eq_divide_eq semiring_normalization_rules(7))
+          then show ?thesis
+            by (metis (no_types) mult.assoc complex_divide_def mult.right_neutral norm_mult nz' right_diff_distrib')
+        qed
+        show ?thesis
+          unfolding image_def ball_def
+          apply safe
+          apply simp_all
+          apply (rule_tac x="z/z' * x" in exI)
+          using assms False apply (simp add: dist_norm)
+          apply (rule_tac x="z'/z * x" in exI)
+          using assms False apply (simp add: dist_norm)
+          done
+      qed
+      then show ?thesis by blast
+    qed
+    have ex_ball: "\<exists>B. (\<exists>z'. B = ball z' d \<and> z'^n = z^n) \<and> x \<in> B"
+                  if "x \<noteq> 0" and eq: "x^n = w^n" and dzw: "dist z w < d" for x w
+    proof -
+      have "w \<noteq> 0" by (metis assms power_eq_0_iff that(1) that(2))
+      have [simp]: "cmod x = cmod w"
+        using assms power_eq_imp_eq_norm eq by blast
+      have [simp]: "cmod (x * z / w - x) = cmod (z - w)"
+      proof -
+        have "cmod (x * z / w - x) = cmod x * cmod (z / w - 1)"
+          by (metis (no_types) mult.right_neutral norm_mult right_diff_distrib' times_divide_eq_right)
+        also have "... = cmod w * cmod (z / w - 1)"
+          by simp
+        also have "... = cmod (z - w)"
+          by (simp add: \<open>w \<noteq> 0\<close> divide_diff_eq_iff nonzero_norm_divide)
+        finally show ?thesis .
+      qed
+      show ?thesis
+        apply (rule_tac x="ball (z / w * x) d" in exI)
+        using \<open>d > 0\<close> that
+        apply (simp add: ball_eq_ball_iff)
+        apply (simp add: \<open>z \<noteq> 0\<close> \<open>w \<noteq> 0\<close> field_simps)
+        apply (simp add: dist_norm)
+        done
+    qed
+    have ball1: "\<Union>{ball z' d |z'. z'^n = z^n} = {x. x \<noteq> 0 \<and> x^n \<in> (\<lambda>w. w^n) ` ball z d}"
+      apply (rule equalityI)
+       prefer 2 apply (force simp: ex_ball, clarsimp)
+      apply (subst im_eq [symmetric], assumption)
+      using assms
+      apply (force simp: dist_norm d_def min_mult_distrib_right dest: power_eq_imp_eq_norm)
+      done
+    have ball2: "pairwise disjnt {ball z' d |z'. z'^n = z^n}"
+    proof (clarsimp simp add: pairwise_def disjnt_iff)
+      fix \<xi> \<zeta> x
+      assume "\<xi>^n = z^n" "\<zeta>^n = z^n" "ball \<xi> d \<noteq> ball \<zeta> d"
+         and "dist \<xi> x < d" "dist \<zeta> x < d"
+      then have "dist \<xi> \<zeta> < d+d"
+        using dist_triangle_less_add by blast
+      then have "cmod (\<xi> - \<zeta>) < 2*d"
+        by (simp add: dist_norm)
+      also have "... \<le> e * cmod z"
+        using mult_right_mono \<open>0 < e\<close> that by (auto simp: d_def)
+      finally have "cmod (\<xi> - \<zeta>) < e * cmod z" .
+      with e have "\<xi> = \<zeta>"
+        by (metis \<open>\<xi>^n = z^n\<close> \<open>\<zeta>^n = z^n\<close> assms power_eq_imp_eq_norm)
+      then show "False"
+        using \<open>ball \<xi> d \<noteq> ball \<zeta> d\<close> by blast
+    qed
+    have ball3: "Ex (homeomorphism (ball z' d) ((\<lambda>w. w^n) ` ball z d) (\<lambda>z. z^n))"
+            if zeq: "z'^n = z^n" for z'
+    proof -
+      have inj: "inj_on (\<lambda>z. z ^ n) (ball z' d)"
+        by (meson iff_x_eq_y inj_onI zeq)
+      show ?thesis
+        apply (rule invariance_of_domain_homeomorphism [of "ball z' d" "\<lambda>z. z^n"])
+          apply (rule open_ball continuous_intros order_refl inj)+
+        apply (force simp: im_eq [OF zeq])
+        done
+    qed
+    show ?thesis
+      apply (rule_tac x = "(\<lambda>w. w^n) ` (ball z d)" in exI)
+      apply (intro conjI open_imball)
+        using \<open>d > 0\<close> apply simp
+       using \<open>z \<noteq> 0\<close> assms apply (force simp: d_def)
+      apply (rule_tac x="{ ball z' d |z'. z'^n = z^n}" in exI)
+      apply (intro conjI ball1 ball2)
+       apply (force simp: assms d_def power_eq_imp_eq_norm that, clarify)
+      by (metis ball3)
+  qed
+  show ?thesis
+    using assms
+    apply (simp add: covering_space_def zn1 zn2)
+    apply (subst zn2 [symmetric])
+    apply (simp add: openin_open_eq open_Compl)
+    apply (blast intro: zn3)
+    done
+qed
+
+corollary covering_space_square_punctured_plane:
+  "covering_space (- {0}) (\<lambda>z::complex. z^2) (- {0})"
+  by (simp add: covering_space_power_punctured_plane)
+
+
+
+proposition covering_space_exp_punctured_plane:
+  "covering_space UNIV (\<lambda>z::complex. exp z) (- {0})"
+proof (simp add: covering_space_def, intro conjI ballI)
+  show "continuous_on UNIV (\<lambda>z::complex. exp z)"
+    by (rule continuous_on_exp [OF continuous_on_id])
+  show "range exp = - {0::complex}"
+    by auto (metis exp_Ln range_eqI)
+  show "\<exists>T. z \<in> T \<and> openin (subtopology euclidean (- {0})) T \<and>
+             (\<exists>v. \<Union>v = {z. exp z \<in> T} \<and> (\<forall>u\<in>v. open u) \<and> disjoint v \<and>
+                  (\<forall>u\<in>v. \<exists>q. homeomorphism u T exp q))"
+        if "z \<in> - {0::complex}" for z
+  proof -
+    have "z \<noteq> 0"
+      using that by auto
+    have inj_exp: "inj_on exp (ball (Ln z) 1)"
+      apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]])
+      using pi_ge_two by (simp add: ball_subset_ball_iff)
+    define \<V> where "\<V> \<equiv> range (\<lambda>n. (\<lambda>x. x + of_real (2 * of_int n * pi) * ii) ` (ball(Ln z) 1))"
+    show ?thesis
+    proof (intro exI conjI)
+      show "z \<in> exp ` (ball(Ln z) 1)"
+        by (metis \<open>z \<noteq> 0\<close> centre_in_ball exp_Ln rev_image_eqI zero_less_one)
+      have "open (- {0::complex})"
+        by blast
+      moreover have "inj_on exp (ball (Ln z) 1)"
+        apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]])
+        using pi_ge_two by (simp add: ball_subset_ball_iff)
+      ultimately show "openin (subtopology euclidean (- {0})) (exp ` ball (Ln z) 1)"
+        by (auto simp: openin_open_eq invariance_of_domain continuous_on_exp [OF continuous_on_id])
+      show "\<Union>\<V> = {w. exp w \<in> exp ` ball (Ln z) 1}"
+        by (auto simp: \<V>_def Complex_Transcendental.exp_eq image_iff)
+      show "\<forall>V\<in>\<V>. open V"
+        by (auto simp: \<V>_def inj_on_def continuous_intros invariance_of_domain)
+      have xy: "2 \<le> cmod (2 * of_int x * of_real pi * \<i> - 2 * of_int y * of_real pi * \<i>)"
+               if "x < y" for x y
+      proof -
+        have "1 \<le> abs (x - y)"
+          using that by linarith
+        then have "1 \<le> cmod (of_int x - of_int y) * 1"
+          by (metis mult.right_neutral norm_of_int of_int_1_le_iff of_int_abs of_int_diff)
+        also have "... \<le> cmod (of_int x - of_int y) * of_real pi"
+          apply (rule mult_left_mono)
+          using pi_ge_two by auto
+        also have "... \<le> cmod ((of_int x - of_int y) * of_real pi * \<i>)"
+          by (simp add: norm_mult)
+        also have "... \<le> cmod (of_int x * of_real pi * \<i> - of_int y * of_real pi * \<i>)"
+          by (simp add: algebra_simps)
+        finally have "1 \<le> cmod (of_int x * of_real pi * \<i> - of_int y * of_real pi * \<i>)" .
+        then have "2 * 1 \<le> cmod (2 * (of_int x * of_real pi * \<i> - of_int y * of_real pi * \<i>))"
+          by (metis mult_le_cancel_left_pos norm_mult_numeral1 zero_less_numeral)
+        then show ?thesis
+          by (simp add: algebra_simps)
+      qed
+      show "disjoint \<V>"
+        apply (clarsimp simp add: \<V>_def pairwise_def disjnt_def add.commute [of _ "x*y" for x y]
+                        image_add_ball ball_eq_ball_iff)
+        apply (rule disjoint_ballI)
+        apply (auto simp: dist_norm neq_iff)
+        by (metis norm_minus_commute xy)+
+      show "\<forall>u\<in>\<V>. \<exists>q. homeomorphism u (exp ` ball (Ln z) 1) exp q"
+      proof
+        fix u
+        assume "u \<in> \<V>"
+        then obtain n where n: "u = (\<lambda>x. x + of_real (2 * of_int n * pi) * ii) ` (ball(Ln z) 1)"
+          by (auto simp: \<V>_def)
+        have "compact (cball (Ln z) 1)"
+          by simp
+        moreover have "continuous_on (cball (Ln z) 1) exp"
+          by (rule continuous_on_exp [OF continuous_on_id])
+        moreover have "inj_on exp (cball (Ln z) 1)"
+          apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]])
+          using pi_ge_two by (simp add: cball_subset_ball_iff)
+        ultimately obtain \<gamma> where hom: "homeomorphism (cball (Ln z) 1) (exp ` cball (Ln z) 1) exp \<gamma>"
+          using homeomorphism_compact  by blast
+        have eq1: "exp ` u = exp ` ball (Ln z) 1"
+          unfolding n
+          apply (auto simp: algebra_simps)
+          apply (rename_tac w)
+          apply (rule_tac x = "w + \<i> * (of_int n * (of_real pi * 2))" in image_eqI)
+          apply (auto simp: image_iff)
+          done
+        have \<gamma>exp: "\<gamma> (exp x) + 2 * of_int n * of_real pi * \<i> = x" if "x \<in> u" for x
+        proof -
+          have "exp x = exp (x - 2 * of_int n * of_real pi * \<i>)"
+            by (simp add: exp_eq)
+          then have "\<gamma> (exp x) = \<gamma> (exp (x - 2 * of_int n * of_real pi * \<i>))"
+            by simp
+          also have "... = x - 2 * of_int n * of_real pi * \<i>"
+            apply (rule homeomorphism_apply1 [OF hom])
+            using \<open>x \<in> u\<close> by (auto simp: n)
+          finally show ?thesis
+            by simp
+        qed
+        have exp2n: "exp (\<gamma> (exp x) + 2 * of_int n * complex_of_real pi * \<i>) = exp x"
+                if "dist (Ln z) x < 1" for x
+          using that by (auto simp: exp_eq homeomorphism_apply1 [OF hom])
+        have cont: "continuous_on (exp ` ball (Ln z) 1) (\<lambda>x. \<gamma> x + 2 * of_int n * complex_of_real pi * \<i>)"
+          apply (intro continuous_intros)
+          apply (rule continuous_on_subset [OF homeomorphism_cont2 [OF hom]])
+          apply (force simp:)
+          done
+        show "\<exists>q. homeomorphism u (exp ` ball (Ln z) 1) exp q"
+          apply (rule_tac x="(\<lambda>x. x + of_real(2 * n * pi) * ii) \<circ> \<gamma>" in exI)
+          unfolding homeomorphism_def
+          apply (intro conjI ballI eq1 continuous_on_exp [OF continuous_on_id])
+             apply (auto simp: \<gamma>exp exp2n cont n)
+           apply (simp add:  homeomorphism_apply1 [OF hom])
+          apply (simp add: image_comp [symmetric])
+          using hom homeomorphism_apply1  apply (force simp: image_iff)
+          done
+      qed
+    qed
+  qed
+qed
+
+end
--- a/src/HOL/Probability/Probability.thy	Tue Oct 18 16:05:24 2016 +0100
+++ b/src/HOL/Probability/Probability.thy	Tue Oct 18 17:29:28 2016 +0200
@@ -12,6 +12,7 @@
   SPMF
   Stream_Space
   Conditional_Expectation
+  Essential_Supremum
 begin
 
 end