transfer rules for divides relation on integer and natural
authorhaftmann
Sun, 16 Oct 2016 09:31:04 +0200
changeset 64241 430d74089d4d
parent 64240 eabf80376aab
child 64242 93c6f0da5c70
transfer rules for divides relation on integer and natural
src/HOL/Code_Numeral.thy
--- a/src/HOL/Code_Numeral.thy	Sun Oct 16 09:31:04 2016 +0200
+++ b/src/HOL/Code_Numeral.thy	Sun Oct 16 09:31:04 2016 +0200
@@ -75,6 +75,12 @@
 
 end
 
+instance integer :: Rings.dvd ..
+
+lemma [transfer_rule]:
+  "rel_fun pcr_integer (rel_fun pcr_integer HOL.iff) Rings.dvd Rings.dvd"
+  unfolding dvd_def by transfer_prover
+
 lemma [transfer_rule]:
   "rel_fun HOL.eq pcr_integer (of_nat :: nat \<Rightarrow> int) (of_nat :: nat \<Rightarrow> integer)"
   by (rule transfer_rule_of_nat) transfer_prover+
@@ -716,6 +722,12 @@
 
 end
 
+instance natural :: Rings.dvd ..
+
+lemma [transfer_rule]:
+  "rel_fun pcr_natural (rel_fun pcr_natural HOL.iff) Rings.dvd Rings.dvd"
+  unfolding dvd_def by transfer_prover
+
 lemma [transfer_rule]:
   "rel_fun HOL.eq pcr_natural (\<lambda>n::nat. n) (of_nat :: nat \<Rightarrow> natural)"
 proof -