Moved FTA into Lib and cleaned it up a little.
--- a/src/HOL/Complex_Main.thy Wed Feb 11 11:22:42 2009 -0800
+++ b/src/HOL/Complex_Main.thy Thu Feb 12 18:14:43 2009 +0100
@@ -4,7 +4,7 @@
imports
Main
Real
- Fundamental_Theorem_Algebra
+ Complex
Log
Ln
Taylor
--- a/src/HOL/Finite_Set.thy Wed Feb 11 11:22:42 2009 -0800
+++ b/src/HOL/Finite_Set.thy Thu Feb 12 18:14:43 2009 +0100
@@ -2029,6 +2029,19 @@
show False by simp (blast dest: Suc_neq_Zero surjD)
qed
+lemma infinite_UNIV_char_0:
+ "\<not> finite (UNIV::'a::semiring_char_0 set)"
+proof
+ assume "finite (UNIV::'a set)"
+ with subset_UNIV have "finite (range of_nat::'a set)"
+ by (rule finite_subset)
+ moreover have "inj (of_nat::nat \<Rightarrow> 'a)"
+ by (simp add: inj_on_def)
+ ultimately have "finite (UNIV::nat set)"
+ by (rule finite_imageD)
+ then show "False"
+ by (simp add: infinite_UNIV_nat)
+qed
subsection{* A fold functional for non-empty sets *}
--- a/src/HOL/Fundamental_Theorem_Algebra.thy Wed Feb 11 11:22:42 2009 -0800
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1396 +0,0 @@
-(* Author: Amine Chaieb, TU Muenchen *)
-
-header{*Fundamental Theorem of Algebra*}
-
-theory Fundamental_Theorem_Algebra
-imports Polynomial Complex
-begin
-
-subsection {* Square root of complex numbers *}
-definition csqrt :: "complex \<Rightarrow> complex" where
-"csqrt z = (if Im z = 0 then
- if 0 \<le> Re z then Complex (sqrt(Re z)) 0
- else Complex 0 (sqrt(- Re z))
- else Complex (sqrt((cmod z + Re z) /2))
- ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))"
-
-lemma csqrt[algebra]: "csqrt z ^ 2 = z"
-proof-
- obtain x y where xy: "z = Complex x y" by (cases z)
- {assume y0: "y = 0"
- {assume x0: "x \<ge> 0"
- then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
- by (simp add: csqrt_def power2_eq_square)}
- moreover
- {assume "\<not> x \<ge> 0" hence x0: "- x \<ge> 0" by arith
- then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
- by (simp add: csqrt_def power2_eq_square) }
- ultimately have ?thesis by blast}
- moreover
- {assume y0: "y\<noteq>0"
- {fix x y
- let ?z = "Complex x y"
- from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z" by auto
- hence "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0" by arith+
- hence "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0" by (simp_all add: power2_eq_square) }
- note th = this
- have sq4: "\<And>x::real. x^2 / 4 = (x / 2) ^ 2"
- by (simp add: power2_eq_square)
- from th[of x y]
- have sq4': "sqrt (((sqrt (x * x + y * y) + x)^2 / 4)) = (sqrt (x * x + y * y) + x) / 2" "sqrt (((sqrt (x * x + y * y) - x)^2 / 4)) = (sqrt (x * x + y * y) - x) / 2" unfolding sq4 by simp_all
- then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) - sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x"
- unfolding power2_eq_square by simp
- have "sqrt 4 = sqrt (2^2)" by simp
- hence sqrt4: "sqrt 4 = 2" by (simp only: real_sqrt_abs)
- have th2: "2 *(y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y"
- using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0
- unfolding power2_eq_square
- by (simp add: algebra_simps real_sqrt_divide sqrt4)
- from y0 xy have ?thesis apply (simp add: csqrt_def power2_eq_square)
- apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y] real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square] real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square] real_sqrt_mult[symmetric])
- using th1 th2 ..}
- ultimately show ?thesis by blast
-qed
-
-
-subsection{* More lemmas about module of complex numbers *}
-
-lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)"
- by (rule of_real_power [symmetric])
-
-lemma real_down2: "(0::real) < d1 \<Longrightarrow> 0 < d2 ==> EX e. 0 < e & e < d1 & e < d2"
- apply (rule exI[where x = "min d1 d2 / 2"])
- by (simp add: field_simps min_def)
-
-text{* The triangle inequality for cmod *}
-lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
- using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
-
-subsection{* Basic lemmas about complex polynomials *}
-
-lemma poly_bound_exists:
- shows "\<exists>m. m > 0 \<and> (\<forall>z. cmod z <= r \<longrightarrow> cmod (poly p z) \<le> m)"
-proof(induct p)
- case 0 thus ?case by (rule exI[where x=1], simp)
-next
- case (pCons c cs)
- from pCons.hyps obtain m where m: "\<forall>z. cmod z \<le> r \<longrightarrow> cmod (poly cs z) \<le> m"
- by blast
- let ?k = " 1 + cmod c + \<bar>r * m\<bar>"
- have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith
- {fix z
- assume H: "cmod z \<le> r"
- from m H have th: "cmod (poly cs z) \<le> m" by blast
- from H have rp: "r \<ge> 0" using norm_ge_zero[of z] by arith
- have "cmod (poly (pCons c cs) z) \<le> cmod c + cmod (z* poly cs z)"
- using norm_triangle_ineq[of c "z* poly cs z"] by simp
- also have "\<dots> \<le> cmod c + r*m" using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] by (simp add: norm_mult)
- also have "\<dots> \<le> ?k" by simp
- finally have "cmod (poly (pCons c cs) z) \<le> ?k" .}
- with kp show ?case by blast
-qed
-
-
-text{* Offsetting the variable in a polynomial gives another of same degree *}
-
-definition
- "offset_poly p h = poly_rec 0 (\<lambda>a p q. smult h q + pCons a q) p"
-
-lemma offset_poly_0: "offset_poly 0 h = 0"
- unfolding offset_poly_def by (simp add: poly_rec_0)
-
-lemma offset_poly_pCons:
- "offset_poly (pCons a p) h =
- smult h (offset_poly p h) + pCons a (offset_poly p h)"
- unfolding offset_poly_def by (simp add: poly_rec_pCons)
-
-lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
-by (simp add: offset_poly_pCons offset_poly_0)
-
-lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
-apply (induct p)
-apply (simp add: offset_poly_0)
-apply (simp add: offset_poly_pCons algebra_simps)
-done
-
-lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
-by (induct p arbitrary: a, simp, force)
-
-lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
-apply (safe intro!: offset_poly_0)
-apply (induct p, simp)
-apply (simp add: offset_poly_pCons)
-apply (frule offset_poly_eq_0_lemma, simp)
-done
-
-lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
-apply (induct p)
-apply (simp add: offset_poly_0)
-apply (case_tac "p = 0")
-apply (simp add: offset_poly_0 offset_poly_pCons)
-apply (simp add: offset_poly_pCons)
-apply (subst degree_add_eq_right)
-apply (rule le_less_trans [OF degree_smult_le])
-apply (simp add: offset_poly_eq_0_iff)
-apply (simp add: offset_poly_eq_0_iff)
-done
-
-definition
- "psize p = (if p = 0 then 0 else Suc (degree p))"
-
-lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"
- unfolding psize_def by simp
-
-lemma poly_offset: "\<exists> q. psize q = psize p \<and> (\<forall>x. poly q (x::complex) = poly p (a + x))"
-proof (intro exI conjI)
- show "psize (offset_poly p a) = psize p"
- unfolding psize_def
- by (simp add: offset_poly_eq_0_iff degree_offset_poly)
- show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
- by (simp add: poly_offset_poly)
-qed
-
-text{* An alternative useful formulation of completeness of the reals *}
-lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
- shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
-proof-
- from ex bz obtain x Y where x: "P x" and Y: "\<And>x. P x \<Longrightarrow> x < Y" by blast
- from ex have thx:"\<exists>x. x \<in> Collect P" by blast
- from bz have thY: "\<exists>Y. isUb UNIV (Collect P) Y"
- by(auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def order_le_less)
- from reals_complete[OF thx thY] obtain L where L: "isLub UNIV (Collect P) L"
- by blast
- from Y[OF x] have xY: "x < Y" .
- from L have L': "\<forall>x. P x \<longrightarrow> x \<le> L" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
- from Y have Y': "\<forall>x. P x \<longrightarrow> x \<le> Y"
- apply (clarsimp, atomize (full)) by auto
- from L Y' have "L \<le> Y" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
- {fix y
- {fix z assume z: "P z" "y < z"
- from L' z have "y < L" by auto }
- moreover
- {assume yL: "y < L" "\<forall>z. P z \<longrightarrow> \<not> y < z"
- hence nox: "\<forall>z. P z \<longrightarrow> y \<ge> z" by auto
- from nox L have "y \<ge> L" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
- with yL(1) have False by arith}
- ultimately have "(\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < L" by blast}
- thus ?thesis by blast
-qed
-
-
-subsection{* Some theorems about Sequences*}
-text{* Given a binary function @{text "f:: nat \<Rightarrow> 'a \<Rightarrow> 'a"}, its values are uniquely determined by a function g *}
-
-lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))"
- unfolding Ex1_def
- apply (rule_tac x="nat_rec e f" in exI)
- apply (rule conjI)+
-apply (rule def_nat_rec_0, simp)
-apply (rule allI, rule def_nat_rec_Suc, simp)
-apply (rule allI, rule impI, rule ext)
-apply (erule conjE)
-apply (induct_tac x)
-apply (simp add: nat_rec_0)
-apply (erule_tac x="n" in allE)
-apply (simp)
-done
-
- text{* An equivalent formulation of monotony -- Not used here, but might be useful *}
-lemma mono_Suc: "mono f = (\<forall>n. (f n :: 'a :: order) \<le> f (Suc n))"
-unfolding mono_def
-proof auto
- fix A B :: nat
- assume H: "\<forall>n. f n \<le> f (Suc n)" "A \<le> B"
- hence "\<exists>k. B = A + k" apply - apply (thin_tac "\<forall>n. f n \<le> f (Suc n)")
- by presburger
- then obtain k where k: "B = A + k" by blast
- {fix a k
- have "f a \<le> f (a + k)"
- proof (induct k)
- case 0 thus ?case by simp
- next
- case (Suc k)
- from Suc.hyps H(1)[rule_format, of "a + k"] show ?case by simp
- qed}
- with k show "f A \<le> f B" by blast
-qed
-
-text{* for any sequence, there is a mootonic subsequence *}
-lemma seq_monosub: "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"
-proof-
- {assume H: "\<forall>n. \<exists>p >n. \<forall> m\<ge>p. s m \<le> s p"
- let ?P = "\<lambda> p n. p > n \<and> (\<forall>m \<ge> p. s m \<le> s p)"
- from num_Axiom[of "SOME p. ?P p 0" "\<lambda>p n. SOME p. ?P p n"]
- obtain f where f: "f 0 = (SOME p. ?P p 0)" "\<forall>n. f (Suc n) = (SOME p. ?P p (f n))" by blast
- have "?P (f 0) 0" unfolding f(1) some_eq_ex[of "\<lambda>p. ?P p 0"]
- using H apply -
- apply (erule allE[where x=0], erule exE, rule_tac x="p" in exI)
- unfolding order_le_less by blast
- hence f0: "f 0 > 0" "\<forall>m \<ge> f 0. s m \<le> s (f 0)" by blast+
- {fix n
- have "?P (f (Suc n)) (f n)"
- unfolding f(2)[rule_format, of n] some_eq_ex[of "\<lambda>p. ?P p (f n)"]
- using H apply -
- apply (erule allE[where x="f n"], erule exE, rule_tac x="p" in exI)
- unfolding order_le_less by blast
- hence "f (Suc n) > f n" "\<forall>m \<ge> f (Suc n). s m \<le> s (f (Suc n))" by blast+}
- note fSuc = this
- {fix p q assume pq: "p \<ge> f q"
- have "s p \<le> s(f(q))" using f0(2)[rule_format, of p] pq fSuc
- by (cases q, simp_all) }
- note pqth = this
- {fix q
- have "f (Suc q) > f q" apply (induct q)
- using f0(1) fSuc(1)[of 0] apply simp by (rule fSuc(1))}
- note fss = this
- from fss have th1: "subseq f" unfolding subseq_Suc_iff ..
- {fix a b
- have "f a \<le> f (a + b)"
- proof(induct b)
- case 0 thus ?case by simp
- next
- case (Suc b)
- from fSuc(1)[of "a + b"] Suc.hyps show ?case by simp
- qed}
- note fmon0 = this
- have "monoseq (\<lambda>n. s (f n))"
- proof-
- {fix n
- have "s (f n) \<ge> s (f (Suc n))"
- proof(cases n)
- case 0
- assume n0: "n = 0"
- from fSuc(1)[of 0] have th0: "f 0 \<le> f (Suc 0)" by simp
- from f0(2)[rule_format, OF th0] show ?thesis using n0 by simp
- next
- case (Suc m)
- assume m: "n = Suc m"
- from fSuc(1)[of n] m have th0: "f (Suc m) \<le> f (Suc (Suc m))" by simp
- from m fSuc(2)[rule_format, OF th0] show ?thesis by simp
- qed}
- thus "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc by blast
- qed
- with th1 have ?thesis by blast}
- moreover
- {fix N assume N: "\<forall>p >N. \<exists> m\<ge>p. s m > s p"
- {fix p assume p: "p \<ge> Suc N"
- hence pN: "p > N" by arith with N obtain m where m: "m \<ge> p" "s m > s p" by blast
- have "m \<noteq> p" using m(2) by auto
- with m have "\<exists>m>p. s p < s m" by - (rule exI[where x=m], auto)}
- note th0 = this
- let ?P = "\<lambda>m x. m > x \<and> s x < s m"
- from num_Axiom[of "SOME x. ?P x (Suc N)" "\<lambda>m x. SOME y. ?P y x"]
- obtain f where f: "f 0 = (SOME x. ?P x (Suc N))"
- "\<forall>n. f (Suc n) = (SOME m. ?P m (f n))" by blast
- have "?P (f 0) (Suc N)" unfolding f(1) some_eq_ex[of "\<lambda>p. ?P p (Suc N)"]
- using N apply -
- apply (erule allE[where x="Suc N"], clarsimp)
- apply (rule_tac x="m" in exI)
- apply auto
- apply (subgoal_tac "Suc N \<noteq> m")
- apply simp
- apply (rule ccontr, simp)
- done
- hence f0: "f 0 > Suc N" "s (Suc N) < s (f 0)" by blast+
- {fix n
- have "f n > N \<and> ?P (f (Suc n)) (f n)"
- unfolding f(2)[rule_format, of n] some_eq_ex[of "\<lambda>p. ?P p (f n)"]
- proof (induct n)
- case 0 thus ?case
- using f0 N apply auto
- apply (erule allE[where x="f 0"], clarsimp)
- apply (rule_tac x="m" in exI, simp)
- by (subgoal_tac "f 0 \<noteq> m", auto)
- next
- case (Suc n)
- from Suc.hyps have Nfn: "N < f n" by blast
- from Suc.hyps obtain m where m: "m > f n" "s (f n) < s m" by blast
- with Nfn have mN: "m > N" by arith
- note key = Suc.hyps[unfolded some_eq_ex[of "\<lambda>p. ?P p (f n)", symmetric] f(2)[rule_format, of n, symmetric]]
-
- from key have th0: "f (Suc n) > N" by simp
- from N[rule_format, OF th0]
- obtain m' where m': "m' \<ge> f (Suc n)" "s (f (Suc n)) < s m'" by blast
- have "m' \<noteq> f (Suc (n))" apply (rule ccontr) using m'(2) by auto
- hence "m' > f (Suc n)" using m'(1) by simp
- with key m'(2) show ?case by auto
- qed}
- note fSuc = this
- {fix n
- have "f n \<ge> Suc N \<and> f(Suc n) > f n \<and> s(f n) < s(f(Suc n))" using fSuc[of n] by auto
- hence "f n \<ge> Suc N" "f(Suc n) > f n" "s(f n) < s(f(Suc n))" by blast+}
- note thf = this
- have sqf: "subseq f" unfolding subseq_Suc_iff using thf by simp
- have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc using thf
- apply -
- apply (rule disjI1)
- apply auto
- apply (rule order_less_imp_le)
- apply blast
- done
- then have ?thesis using sqf by blast}
- ultimately show ?thesis unfolding linorder_not_less[symmetric] by blast
-qed
-
-lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
-proof(induct n)
- case 0 thus ?case by simp
-next
- case (Suc n)
- from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
- have "n < f (Suc n)" by arith
- thus ?case by arith
-qed
-
-subsection {* Fundamental theorem of algebra *}
-lemma unimodular_reduce_norm:
- assumes md: "cmod z = 1"
- shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"
-proof-
- obtain x y where z: "z = Complex x y " by (cases z, auto)
- from md z have xy: "x^2 + y^2 = 1" by (simp add: cmod_def)
- {assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
- from C z xy have "2*x \<le> 1" "2*x \<ge> -1" "2*y \<le> 1" "2*y \<ge> -1"
- by (simp_all add: cmod_def power2_eq_square algebra_simps)
- hence "abs (2*x) \<le> 1" "abs (2*y) \<le> 1" by simp_all
- hence "(abs (2 * x))^2 <= 1^2" "(abs (2 * y)) ^2 <= 1^2"
- by - (rule power_mono, simp, simp)+
- hence th0: "4*x^2 \<le> 1" "4*y^2 \<le> 1"
- by (simp_all add: power2_abs power_mult_distrib)
- from add_mono[OF th0] xy have False by simp }
- thus ?thesis unfolding linorder_not_le[symmetric] by blast
-qed
-
-text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
-lemma reduce_poly_simple:
- assumes b: "b \<noteq> 0" and n: "n\<noteq>0"
- shows "\<exists>z. cmod (1 + b * z^n) < 1"
-using n
-proof(induct n rule: nat_less_induct)
- fix n
- assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" and n: "n \<noteq> 0"
- let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
- {assume e: "even n"
- hence "\<exists>m. n = 2*m" by presburger
- then obtain m where m: "n = 2*m" by blast
- from n m have "m\<noteq>0" "m < n" by presburger+
- with IH[rule_format, of m] obtain z where z: "?P z m" by blast
- from z have "?P (csqrt z) n" by (simp add: m power_mult csqrt)
- hence "\<exists>z. ?P z n" ..}
- moreover
- {assume o: "odd n"
- from b have b': "b^2 \<noteq> 0" unfolding power2_eq_square by simp
- have "Im (inverse b) * (Im (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) +
- Re (inverse b) * (Re (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) =
- ((Re (inverse b))^2 + (Im (inverse b))^2) * \<bar>Im b * Im b + Re b * Re b\<bar>" by algebra
- also have "\<dots> = cmod (inverse b) ^2 * cmod b ^ 2"
- apply (simp add: cmod_def) using realpow_two_le_add_order[of "Re b" "Im b"]
- by (simp add: power2_eq_square)
- finally
- have th0: "Im (inverse b) * (Im (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) +
- Re (inverse b) * (Re (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) =
- 1"
- apply (simp add: power2_eq_square norm_mult[symmetric] norm_inverse[symmetric])
- using right_inverse[OF b']
- by (simp add: power2_eq_square[symmetric] power_inverse[symmetric] algebra_simps)
- have th0: "cmod (complex_of_real (cmod b) / b) = 1"
- apply (simp add: complex_Re_mult cmod_def power2_eq_square Re_complex_of_real Im_complex_of_real divide_inverse algebra_simps )
- by (simp add: real_sqrt_mult[symmetric] th0)
- from o have "\<exists>m. n = Suc (2*m)" by presburger+
- then obtain m where m: "n = Suc (2*m)" by blast
- from unimodular_reduce_norm[OF th0] o
- have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
- apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp)
- apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp add: diff_def)
- apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
- apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult)
- apply (rule_tac x="- ii" in exI, simp add: m power_mult)
- apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult diff_def)
- apply (rule_tac x="ii" in exI, simp add: m power_mult diff_def)
- done
- then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast
- let ?w = "v / complex_of_real (root n (cmod b))"
- from odd_real_root_pow[OF o, of "cmod b"]
- have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
- by (simp add: power_divide complex_of_real_power)
- have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: norm_divide)
- hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp
- have th4: "cmod (complex_of_real (cmod b) / b) *
- cmod (1 + b * (v ^ n / complex_of_real (cmod b)))
- < cmod (complex_of_real (cmod b) / b) * 1"
- apply (simp only: norm_mult[symmetric] right_distrib)
- using b v by (simp add: th2)
-
- from mult_less_imp_less_left[OF th4 th3]
- have "?P ?w n" unfolding th1 .
- hence "\<exists>z. ?P z n" .. }
- ultimately show "\<exists>z. ?P z n" by blast
-qed
-
-
-text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
-
-lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
- using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ]
- unfolding cmod_def by simp
-
-lemma bolzano_weierstrass_complex_disc:
- assumes r: "\<forall>n. cmod (s n) \<le> r"
- shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
-proof-
- from seq_monosub[of "Re o s"]
- obtain f g where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"
- unfolding o_def by blast
- from seq_monosub[of "Im o s o f"]
- obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast
- let ?h = "f o g"
- from r[rule_format, of 0] have rp: "r \<ge> 0" using norm_ge_zero[of "s 0"] by arith
- have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>"
- proof
- fix n
- from abs_Re_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
- qed
- have conv1: "convergent (\<lambda>n. Re (s ( f n)))"
- apply (rule Bseq_monoseq_convergent)
- apply (simp add: Bseq_def)
- apply (rule exI[where x= "r + 1"])
- using th rp apply simp
- using f(2) .
- have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>"
- proof
- fix n
- from abs_Im_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith
- qed
-
- have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
- apply (rule Bseq_monoseq_convergent)
- apply (simp add: Bseq_def)
- apply (rule exI[where x= "r + 1"])
- using th rp apply simp
- using g(2) .
-
- from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
- by blast
- hence x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r"
- unfolding LIMSEQ_def real_norm_def .
-
- from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
- by blast
- hence y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r"
- unfolding LIMSEQ_def real_norm_def .
- let ?w = "Complex x y"
- from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto
- {fix e assume ep: "e > (0::real)"
- hence e2: "e/2 > 0" by simp
- from x[rule_format, OF e2] y[rule_format, OF e2]
- obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast
- {fix n assume nN12: "n \<ge> N1 + N2"
- hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+
- from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
- have "cmod (s (?h n) - ?w) < e"
- using metric_bound_lemma[of "s (f (g n))" ?w] by simp }
- hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast }
- with hs show ?thesis by blast
-qed
-
-text{* Polynomial is continuous. *}
-
-lemma poly_cont:
- assumes ep: "e > 0"
- shows "\<exists>d >0. \<forall>w. 0 < cmod (w - z) \<and> cmod (w - z) < d \<longrightarrow> cmod (poly p w - poly p z) < e"
-proof-
- obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)"
- proof
- show "degree (offset_poly p z) = degree p"
- by (rule degree_offset_poly)
- show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
- by (rule poly_offset_poly)
- qed
- {fix w
- note q(2)[of "w - z", simplified]}
- note th = this
- show ?thesis unfolding th[symmetric]
- proof(induct q)
- case 0 thus ?case using ep by auto
- next
- case (pCons c cs)
- from poly_bound_exists[of 1 "cs"]
- obtain m where m: "m > 0" "\<And>z. cmod z \<le> 1 \<Longrightarrow> cmod (poly cs z) \<le> m" by blast
- from ep m(1) have em0: "e/m > 0" by (simp add: field_simps)
- have one0: "1 > (0::real)" by arith
- from real_lbound_gt_zero[OF one0 em0]
- obtain d where d: "d >0" "d < 1" "d < e / m" by blast
- from d(1,3) m(1) have dm: "d*m > 0" "d*m < e"
- by (simp_all add: field_simps real_mult_order)
- show ?case
- proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)
- fix d w
- assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "cmod (w-z) < d"
- hence d1: "cmod (w-z) \<le> 1" "d \<ge> 0" by simp_all
- from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps)
- from H have th: "cmod (w-z) \<le> d" by simp
- from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
- show "cmod (w - z) * cmod (poly cs (w - z)) < e" by simp
- qed
- qed
-qed
-
-text{* Hence a polynomial attains minimum on a closed disc
- in the complex plane. *}
-lemma poly_minimum_modulus_disc:
- "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
-proof-
- {assume "\<not> r \<ge> 0" hence ?thesis unfolding linorder_not_le
- apply -
- apply (rule exI[where x=0])
- apply auto
- apply (subgoal_tac "cmod w < 0")
- apply simp
- apply arith
- done }
- moreover
- {assume rp: "r \<ge> 0"
- from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp
- hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" by blast
- {fix x z
- assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1"
- hence "- x < 0 " by arith
- with H(2) norm_ge_zero[of "poly p z"] have False by simp }
- then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast
- from real_sup_exists[OF mth1 mth2] obtain s where
- s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast
- let ?m = "-s"
- {fix y
- from s[rule_format, of "-y"] have
- "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y"
- unfolding minus_less_iff[of y ] equation_minus_iff by blast }
- note s1 = this[unfolded minus_minus]
- from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
- by auto
- {fix n::nat
- from s1[rule_format, of "?m + 1/real (Suc n)"]
- have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"
- by simp}
- hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
- from choice[OF th] obtain g where
- g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)"
- by blast
- from bolzano_weierstrass_complex_disc[OF g(1)]
- obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
- by blast
- {fix w
- assume wr: "cmod w \<le> r"
- let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
- {assume e: "?e > 0"
- hence e2: "?e/2 > 0" by simp
- from poly_cont[OF e2, of z p] obtain d where
- d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast
- {fix w assume w: "cmod (w - z) < d"
- have "cmod(poly p w - poly p z) < ?e / 2"
- using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)}
- note th1 = this
-
- from fz(2)[rule_format, OF d(1)] obtain N1 where
- N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast
- from reals_Archimedean2[of "2/?e"] obtain N2::nat where
- N2: "2/?e < real N2" by blast
- have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2"
- using N1[rule_format, of "N1 + N2"] th1 by simp
- {fix a b e2 m :: real
- have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a
- ==> False" by arith}
- note th0 = this
- have ath:
- "\<And>m x e. m <= x \<Longrightarrow> x < m + e ==> abs(x - m::real) < e" by arith
- from s1m[OF g(1)[rule_format]]
- have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
- from seq_suble[OF fz(1), of "N1+N2"]
- have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp
- have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0"
- using N2 by auto
- from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp
- from g(2)[rule_format, of "f (N1 + N2)"]
- have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
- from order_less_le_trans[OF th01 th00]
- have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
- from N2 have "2/?e < real (Suc (N1 + N2))" by arith
- with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
- have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide)
- with ath[OF th31 th32]
- have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith
- have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c"
- by arith
- have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar>
-\<le> cmod (poly p (g (f (N1 + N2))) - poly p z)"
- by (simp add: norm_triangle_ineq3)
- from ath2[OF th22, of ?m]
- have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp
- from th0[OF th2 thc1 thc2] have False .}
- hence "?e = 0" by auto
- then have "cmod (poly p z) = ?m" by simp
- with s1m[OF wr]
- have "cmod (poly p z) \<le> cmod (poly p w)" by simp }
- hence ?thesis by blast}
- ultimately show ?thesis by blast
-qed
-
-lemma "(rcis (sqrt (abs r)) (a/2)) ^ 2 = rcis (abs r) a"
- unfolding power2_eq_square
- apply (simp add: rcis_mult)
- apply (simp add: power2_eq_square[symmetric])
- done
-
-lemma cispi: "cis pi = -1"
- unfolding cis_def
- by simp
-
-lemma "(rcis (sqrt (abs r)) ((pi + a)/2)) ^ 2 = rcis (- abs r) a"
- unfolding power2_eq_square
- apply (simp add: rcis_mult add_divide_distrib)
- apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric])
- done
-
-text {* Nonzero polynomial in z goes to infinity as z does. *}
-
-lemma poly_infinity:
- assumes ex: "p \<noteq> 0"
- shows "\<exists>r. \<forall>z. r \<le> cmod z \<longrightarrow> d \<le> cmod (poly (pCons a p) z)"
-using ex
-proof(induct p arbitrary: a d)
- case (pCons c cs a d)
- {assume H: "cs \<noteq> 0"
- with pCons.hyps obtain r where r: "\<forall>z. r \<le> cmod z \<longrightarrow> d + cmod a \<le> cmod (poly (pCons c cs) z)" by blast
- let ?r = "1 + \<bar>r\<bar>"
- {fix z assume h: "1 + \<bar>r\<bar> \<le> cmod z"
- have r0: "r \<le> cmod z" using h by arith
- from r[rule_format, OF r0]
- have th0: "d + cmod a \<le> 1 * cmod(poly (pCons c cs) z)" by arith
- from h have z1: "cmod z \<ge> 1" by arith
- from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
- have th1: "d \<le> cmod(z * poly (pCons c cs) z) - cmod a"
- unfolding norm_mult by (simp add: algebra_simps)
- from complex_mod_triangle_sub[of "z * poly (pCons c cs) z" a]
- have th2: "cmod(z * poly (pCons c cs) z) - cmod a \<le> cmod (poly (pCons a (pCons c cs)) z)"
- by (simp add: diff_le_eq algebra_simps)
- from th1 th2 have "d \<le> cmod (poly (pCons a (pCons c cs)) z)" by arith}
- hence ?case by blast}
- moreover
- {assume cs0: "\<not> (cs \<noteq> 0)"
- with pCons.prems have c0: "c \<noteq> 0" by simp
- from cs0 have cs0': "cs = 0" by simp
- {fix z
- assume h: "(\<bar>d\<bar> + cmod a) / cmod c \<le> cmod z"
- from c0 have "cmod c > 0" by simp
- from h c0 have th0: "\<bar>d\<bar> + cmod a \<le> cmod (z*c)"
- by (simp add: field_simps norm_mult)
- have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith
- from complex_mod_triangle_sub[of "z*c" a ]
- have th1: "cmod (z * c) \<le> cmod (a + z * c) + cmod a"
- by (simp add: algebra_simps)
- from ath[OF th1 th0] have "d \<le> cmod (poly (pCons a (pCons c cs)) z)"
- using cs0' by simp}
- then have ?case by blast}
- ultimately show ?case by blast
-qed simp
-
-text {* Hence polynomial's modulus attains its minimum somewhere. *}
-lemma poly_minimum_modulus:
- "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
-proof(induct p)
- case (pCons c cs)
- {assume cs0: "cs \<noteq> 0"
- from poly_infinity[OF cs0, of "cmod (poly (pCons c cs) 0)" c]
- obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" by blast
- have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith
- from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
- obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" by blast
- {fix z assume z: "r \<le> cmod z"
- from v[of 0] r[OF z]
- have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)"
- by simp }
- note v0 = this
- from v0 v ath[of r] have ?case by blast}
- moreover
- {assume cs0: "\<not> (cs \<noteq> 0)"
- hence th:"cs = 0" by simp
- from th pCons.hyps have ?case by simp}
- ultimately show ?case by blast
-qed simp
-
-text{* Constant function (non-syntactic characterization). *}
-definition "constant f = (\<forall>x y. f x = f y)"
-
-lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> psize p \<ge> 2"
- unfolding constant_def psize_def
- apply (induct p, auto)
- done
-
-lemma poly_replicate_append:
- "poly (monom 1 n * p) (x::'a::{recpower, comm_ring_1}) = x^n * poly p x"
- by (simp add: poly_monom)
-
-text {* Decomposition of polynomial, skipping zero coefficients
- after the first. *}
-
-lemma poly_decompose_lemma:
- assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{recpower,idom}))"
- shows "\<exists>k a q. a\<noteq>0 \<and> Suc (psize q + k) = psize p \<and>
- (\<forall>z. poly p z = z^k * poly (pCons a q) z)"
-unfolding psize_def
-using nz
-proof(induct p)
- case 0 thus ?case by simp
-next
- case (pCons c cs)
- {assume c0: "c = 0"
- from pCons.hyps pCons.prems c0 have ?case apply auto
- apply (rule_tac x="k+1" in exI)
- apply (rule_tac x="a" in exI, clarsimp)
- apply (rule_tac x="q" in exI)
- by (auto simp add: power_Suc)}
- moreover
- {assume c0: "c\<noteq>0"
- hence ?case apply-
- apply (rule exI[where x=0])
- apply (rule exI[where x=c], clarsimp)
- apply (rule exI[where x=cs])
- apply auto
- done}
- ultimately show ?case by blast
-qed
-
-lemma poly_decompose:
- assumes nc: "~constant(poly p)"
- shows "\<exists>k a q. a\<noteq>(0::'a::{recpower,idom}) \<and> k\<noteq>0 \<and>
- psize q + k + 1 = psize p \<and>
- (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
-using nc
-proof(induct p)
- case 0 thus ?case by (simp add: constant_def)
-next
- case (pCons c cs)
- {assume C:"\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
- {fix x y
- from C have "poly (pCons c cs) x = poly (pCons c cs) y" by (cases "x=0", auto)}
- with pCons.prems have False by (auto simp add: constant_def)}
- hence th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..
- from poly_decompose_lemma[OF th]
- show ?case
- apply clarsimp
- apply (rule_tac x="k+1" in exI)
- apply (rule_tac x="a" in exI)
- apply simp
- apply (rule_tac x="q" in exI)
- apply (auto simp add: power_Suc)
- apply (auto simp add: psize_def split: if_splits)
- done
-qed
-
-text{* Fundamental theorem of algebral *}
-
-lemma fundamental_theorem_of_algebra:
- assumes nc: "~constant(poly p)"
- shows "\<exists>z::complex. poly p z = 0"
-using nc
-proof(induct n\<equiv> "psize p" arbitrary: p rule: nat_less_induct)
- fix n fix p :: "complex poly"
- let ?p = "poly p"
- assume H: "\<forall>m<n. \<forall>p. \<not> constant (poly p) \<longrightarrow> m = psize p \<longrightarrow> (\<exists>(z::complex). poly p z = 0)" and nc: "\<not> constant ?p" and n: "n = psize p"
- let ?ths = "\<exists>z. ?p z = 0"
-
- from nonconstant_length[OF nc] have n2: "n\<ge> 2" by (simp add: n)
- from poly_minimum_modulus obtain c where
- c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" by blast
- {assume pc: "?p c = 0" hence ?ths by blast}
- moreover
- {assume pc0: "?p c \<noteq> 0"
- from poly_offset[of p c] obtain q where
- q: "psize q = psize p" "\<forall>x. poly q x = ?p (c+x)" by blast
- {assume h: "constant (poly q)"
- from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto
- {fix x y
- from th have "?p x = poly q (x - c)" by auto
- also have "\<dots> = poly q (y - c)"
- using h unfolding constant_def by blast
- also have "\<dots> = ?p y" using th by auto
- finally have "?p x = ?p y" .}
- with nc have False unfolding constant_def by blast }
- hence qnc: "\<not> constant (poly q)" by blast
- from q(2) have pqc0: "?p c = poly q 0" by simp
- from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp
- let ?a0 = "poly q 0"
- from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp
- from a00
- have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"
- by simp
- let ?r = "smult (inverse ?a0) q"
- have lgqr: "psize q = psize ?r"
- using a00 unfolding psize_def degree_def
- by (simp add: expand_poly_eq)
- {assume h: "\<And>x y. poly ?r x = poly ?r y"
- {fix x y
- from qr[rule_format, of x]
- have "poly q x = poly ?r x * ?a0" by auto
- also have "\<dots> = poly ?r y * ?a0" using h by simp
- also have "\<dots> = poly q y" using qr[rule_format, of y] by simp
- finally have "poly q x = poly q y" .}
- with qnc have False unfolding constant_def by blast}
- hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast
- from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" by auto
- {fix w
- have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
- using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac)
- also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
- using a00 unfolding norm_divide by (simp add: field_simps)
- finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .}
- note mrmq_eq = this
- from poly_decompose[OF rnc] obtain k a s where
- kas: "a\<noteq>0" "k\<noteq>0" "psize s + k + 1 = psize ?r"
- "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
- {assume "k + 1 = n"
- with kas(3) lgqr[symmetric] q(1) n[symmetric] have s0:"s=0" by auto
- {fix w
- have "cmod (poly ?r w) = cmod (1 + a * w ^ k)"
- using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)}
- note hth = this [symmetric]
- from reduce_poly_simple[OF kas(1,2)]
- have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast}
- moreover
- {assume kn: "k+1 \<noteq> n"
- from kn kas(3) q(1) n[symmetric] lgqr have k1n: "k + 1 < n" by simp
- have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
- unfolding constant_def poly_pCons poly_monom
- using kas(1) apply simp
- by (rule exI[where x=0], rule exI[where x=1], simp)
- from kas(1) kas(2) have th02: "k+1 = psize (pCons 1 (monom a (k - 1)))"
- by (simp add: psize_def degree_monom_eq)
- from H[rule_format, OF k1n th01 th02]
- obtain w where w: "1 + w^k * a = 0"
- unfolding poly_pCons poly_monom
- using kas(2) by (cases k, auto simp add: algebra_simps)
- from poly_bound_exists[of "cmod w" s] obtain m where
- m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
- have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left)
- from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp
- then have wm1: "w^k * a = - 1" by simp
- have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
- using norm_ge_zero[of w] w0 m(1)
- by (simp add: inverse_eq_divide zero_less_mult_iff)
- with real_down2[OF zero_less_one] obtain t where
- t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
- let ?ct = "complex_of_real t"
- let ?w = "?ct * w"
- have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: algebra_simps power_mult_distrib)
- also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
- unfolding wm1 by (simp)
- finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
- apply -
- apply (rule cong[OF refl[of cmod]])
- apply assumption
- done
- with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
- have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding norm_of_real by simp
- have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith
- have "t *cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto
- then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: norm_mult)
- from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1"
- by (simp add: inverse_eq_divide field_simps)
- with zero_less_power[OF t(1), of k]
- have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
- apply - apply (rule mult_strict_left_mono) by simp_all
- have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))" using w0 t(1)
- by (simp add: algebra_simps power_mult_distrib norm_of_real norm_power norm_mult)
- then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
- using t(1,2) m(2)[rule_format, OF tw] w0
- apply (simp only: )
- apply auto
- apply (rule mult_mono, simp_all add: norm_ge_zero)+
- apply (simp add: zero_le_mult_iff zero_le_power)
- done
- with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp
- from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
- by auto
- from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
- have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
- from th11 th12
- have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" by arith
- then have "cmod (poly ?r ?w) < 1"
- unfolding kas(4)[rule_format, of ?w] r01 by simp
- then have "\<exists>w. cmod (poly ?r w) < 1" by blast}
- ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast
- from cr0_contr cq0 q(2)
- have ?ths unfolding mrmq_eq not_less[symmetric] by auto}
- ultimately show ?ths by blast
-qed
-
-text {* Alternative version with a syntactic notion of constant polynomial. *}
-
-lemma fundamental_theorem_of_algebra_alt:
- assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"
- shows "\<exists>z. poly p z = (0::complex)"
-using nc
-proof(induct p)
- case (pCons c cs)
- {assume "c=0" hence ?case by auto}
- moreover
- {assume c0: "c\<noteq>0"
- {assume nc: "constant (poly (pCons c cs))"
- from nc[unfolded constant_def, rule_format, of 0]
- have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
- hence "cs = 0"
- proof(induct cs)
- case (pCons d ds)
- {assume "d=0" hence ?case using pCons.prems pCons.hyps by simp}
- moreover
- {assume d0: "d\<noteq>0"
- from poly_bound_exists[of 1 ds] obtain m where
- m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
- have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps)
- from real_down2[OF dm zero_less_one] obtain x where
- x: "x > 0" "x < cmod d / m" "x < 1" by blast
- let ?x = "complex_of_real x"
- from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" by simp_all
- from pCons.prems[rule_format, OF cx(1)]
- have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric])
- from m(2)[rule_format, OF cx(2)] x(1)
- have th0: "cmod (?x*poly ds ?x) \<le> x*m"
- by (simp add: norm_mult)
- from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps)
- with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto
- with cth have ?case by blast}
- ultimately show ?case by blast
- qed simp}
- then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems c0
- by blast
- from fundamental_theorem_of_algebra[OF nc] have ?case .}
- ultimately show ?case by blast
-qed simp
-
-subsection {* Order of polynomial roots *}
-
-definition
- order :: "'a::{idom,recpower} \<Rightarrow> 'a poly \<Rightarrow> nat"
-where
- [code del]:
- "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
-
-lemma degree_power_le: "degree (p ^ n) \<le> degree p * n"
-by (induct n, simp, auto intro: order_trans degree_mult_le)
-
-lemma coeff_linear_power:
- fixes a :: "'a::{comm_semiring_1,recpower}"
- shows "coeff ([:a, 1:] ^ n) n = 1"
-apply (induct n, simp_all)
-apply (subst coeff_eq_0)
-apply (auto intro: le_less_trans degree_power_le)
-done
-
-lemma degree_linear_power:
- fixes a :: "'a::{comm_semiring_1,recpower}"
- shows "degree ([:a, 1:] ^ n) = n"
-apply (rule order_antisym)
-apply (rule ord_le_eq_trans [OF degree_power_le], simp)
-apply (rule le_degree, simp add: coeff_linear_power)
-done
-
-lemma order_1: "[:-a, 1:] ^ order a p dvd p"
-apply (cases "p = 0", simp)
-apply (cases "order a p", simp)
-apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)")
-apply (drule not_less_Least, simp)
-apply (fold order_def, simp)
-done
-
-lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
-unfolding order_def
-apply (rule LeastI_ex)
-apply (rule_tac x="degree p" in exI)
-apply (rule notI)
-apply (drule (1) dvd_imp_degree_le)
-apply (simp only: degree_linear_power)
-done
-
-lemma order:
- "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
-by (rule conjI [OF order_1 order_2])
-
-lemma order_degree:
- assumes p: "p \<noteq> 0"
- shows "order a p \<le> degree p"
-proof -
- have "order a p = degree ([:-a, 1:] ^ order a p)"
- by (simp only: degree_linear_power)
- also have "\<dots> \<le> degree p"
- using order_1 p by (rule dvd_imp_degree_le)
- finally show ?thesis .
-qed
-
-lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0"
-apply (cases "p = 0", simp_all)
-apply (rule iffI)
-apply (rule ccontr, simp)
-apply (frule order_2 [where a=a], simp)
-apply (simp add: poly_eq_0_iff_dvd)
-apply (simp add: poly_eq_0_iff_dvd)
-apply (simp only: order_def)
-apply (drule not_less_Least, simp)
-done
-
-lemma UNIV_nat_infinite:
- "\<not> finite (UNIV :: nat set)" (is "\<not> finite ?U")
-proof
- assume "finite ?U"
- moreover have "Suc (Max ?U) \<in> ?U" ..
- ultimately have "Suc (Max ?U) \<le> Max ?U" by (rule Max_ge)
- then show "False" by simp
-qed
-
-lemma UNIV_char_0_infinite:
- "\<not> finite (UNIV::'a::semiring_char_0 set)"
-proof
- assume "finite (UNIV::'a set)"
- with subset_UNIV have "finite (range of_nat::'a set)"
- by (rule finite_subset)
- moreover have "inj (of_nat::nat \<Rightarrow> 'a)"
- by (simp add: inj_on_def)
- ultimately have "finite (UNIV::nat set)"
- by (rule finite_imageD)
- then show "False"
- by (simp add: UNIV_nat_infinite)
-qed
-
-lemma poly_zero:
- fixes p :: "'a::{idom,ring_char_0} poly"
- shows "poly p = poly 0 \<longleftrightarrow> p = 0"
-apply (cases "p = 0", simp_all)
-apply (drule poly_roots_finite)
-apply (auto simp add: UNIV_char_0_infinite)
-done
-
-lemma poly_eq_iff:
- fixes p q :: "'a::{idom,ring_char_0} poly"
- shows "poly p = poly q \<longleftrightarrow> p = q"
- using poly_zero [of "p - q"]
- by (simp add: expand_fun_eq)
-
-
-subsection{* Nullstellenstatz, degrees and divisibility of polynomials *}
-
-lemma nullstellensatz_lemma:
- fixes p :: "complex poly"
- assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
- and "degree p = n" and "n \<noteq> 0"
- shows "p dvd (q ^ n)"
-using prems
-proof(induct n arbitrary: p q rule: nat_less_induct)
- fix n::nat fix p q :: "complex poly"
- assume IH: "\<forall>m<n. \<forall>p q.
- (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
- degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"
- and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
- and dpn: "degree p = n" and n0: "n \<noteq> 0"
- from dpn n0 have pne: "p \<noteq> 0" by auto
- let ?ths = "p dvd (q ^ n)"
- {fix a assume a: "poly p a = 0"
- {assume oa: "order a p \<noteq> 0"
- let ?op = "order a p"
- from pne have ap: "([:- a, 1:] ^ ?op) dvd p"
- "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" using order by blast+
- note oop = order_degree[OF pne, unfolded dpn]
- {assume q0: "q = 0"
- hence ?ths using n0
- by (simp add: power_0_left)}
- moreover
- {assume q0: "q \<noteq> 0"
- from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]
- obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)
- from ap(1) obtain s where
- s: "p = [:- a, 1:] ^ ?op * s" by (rule dvdE)
- have sne: "s \<noteq> 0"
- using s pne by auto
- {assume ds0: "degree s = 0"
- from ds0 have "\<exists>k. s = [:k:]"
- by (cases s, simp split: if_splits)
- then obtain k where kpn: "s = [:k:]" by blast
- from sne kpn have k: "k \<noteq> 0" by simp
- let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"
- from k oop [of a] have "q ^ n = p * ?w"
- apply -
- apply (subst r, subst s, subst kpn)
- apply (subst power_mult_distrib, simp)
- apply (subst power_add [symmetric], simp)
- done
- hence ?ths unfolding dvd_def by blast}
- moreover
- {assume ds0: "degree s \<noteq> 0"
- from ds0 sne dpn s oa
- have dsn: "degree s < n" apply auto
- apply (erule ssubst)
- apply (simp add: degree_mult_eq degree_linear_power)
- done
- {fix x assume h: "poly s x = 0"
- {assume xa: "x = a"
- from h[unfolded xa poly_eq_0_iff_dvd] obtain u where
- u: "s = [:- a, 1:] * u" by (rule dvdE)
- have "p = [:- a, 1:] ^ (Suc ?op) * u"
- by (subst s, subst u, simp only: power_Suc mult_ac)
- with ap(2)[unfolded dvd_def] have False by blast}
- note xa = this
- from h have "poly p x = 0" by (subst s, simp)
- with pq0 have "poly q x = 0" by blast
- with r xa have "poly r x = 0"
- by (auto simp add: uminus_add_conv_diff)}
- note impth = this
- from IH[rule_format, OF dsn, of s r] impth ds0
- have "s dvd (r ^ (degree s))" by blast
- then obtain u where u: "r ^ (degree s) = s * u" ..
- hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
- by (simp only: poly_mult[symmetric] poly_power[symmetric])
- let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
- from oop[of a] dsn have "q ^ n = p * ?w"
- apply -
- apply (subst s, subst r)
- apply (simp only: power_mult_distrib)
- apply (subst mult_assoc [where b=s])
- apply (subst mult_assoc [where a=u])
- apply (subst mult_assoc [where b=u, symmetric])
- apply (subst u [symmetric])
- apply (simp add: mult_ac power_add [symmetric])
- done
- hence ?ths unfolding dvd_def by blast}
- ultimately have ?ths by blast }
- ultimately have ?ths by blast}
- then have ?ths using a order_root pne by blast}
- moreover
- {assume exa: "\<not> (\<exists>a. poly p a = 0)"
- from fundamental_theorem_of_algebra_alt[of p] exa obtain c where
- ccs: "c\<noteq>0" "p = pCons c 0" by blast
-
- then have pp: "\<And>x. poly p x = c" by simp
- let ?w = "[:1/c:] * (q ^ n)"
- from ccs
- have "(q ^ n) = (p * ?w) "
- by (simp add: smult_smult)
- hence ?ths unfolding dvd_def by blast}
- ultimately show ?ths by blast
-qed
-
-lemma nullstellensatz_univariate:
- "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>
- p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"
-proof-
- {assume pe: "p = 0"
- hence eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
- apply auto
- apply (rule poly_zero [THEN iffD1])
- by (rule ext, simp)
- {assume "p dvd (q ^ (degree p))"
- then obtain r where r: "q ^ (degree p) = p * r" ..
- from r pe have False by simp}
- with eq pe have ?thesis by blast}
- moreover
- {assume pe: "p \<noteq> 0"
- {assume dp: "degree p = 0"
- then obtain k where k: "p = [:k:]" "k\<noteq>0" using pe
- by (cases p, simp split: if_splits)
- hence th1: "\<forall>x. poly p x \<noteq> 0" by simp
- from k dp have "q ^ (degree p) = p * [:1/k:]"
- by (simp add: one_poly_def)
- hence th2: "p dvd (q ^ (degree p))" ..
- from th1 th2 pe have ?thesis by blast}
- moreover
- {assume dp: "degree p \<noteq> 0"
- then obtain n where n: "degree p = Suc n " by (cases "degree p", auto)
- {assume "p dvd (q ^ (Suc n))"
- then obtain u where u: "q ^ (Suc n) = p * u" ..
- {fix x assume h: "poly p x = 0" "poly q x \<noteq> 0"
- hence "poly (q ^ (Suc n)) x \<noteq> 0" by simp
- hence False using u h(1) by (simp only: poly_mult) simp}}
- with n nullstellensatz_lemma[of p q "degree p"] dp
- have ?thesis by auto}
- ultimately have ?thesis by blast}
- ultimately show ?thesis by blast
-qed
-
-text{* Useful lemma *}
-
-lemma constant_degree:
- fixes p :: "'a::{idom,ring_char_0} poly"
- shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
-proof
- assume l: ?lhs
- from l[unfolded constant_def, rule_format, of _ "0"]
- have th: "poly p = poly [:poly p 0:]" apply - by (rule ext, simp)
- then have "p = [:poly p 0:]" by (simp add: poly_eq_iff)
- then have "degree p = degree [:poly p 0:]" by simp
- then show ?rhs by simp
-next
- assume r: ?rhs
- then obtain k where "p = [:k:]"
- by (cases p, simp split: if_splits)
- then show ?lhs unfolding constant_def by auto
-qed
-
-lemma divides_degree: assumes pq: "p dvd (q:: complex poly)"
- shows "degree p \<le> degree q \<or> q = 0"
-apply (cases "q = 0", simp_all)
-apply (erule dvd_imp_degree_le [OF pq])
-done
-
-(* Arithmetic operations on multivariate polynomials. *)
-
-lemma mpoly_base_conv:
- "(0::complex) \<equiv> poly 0 x" "c \<equiv> poly [:c:] x" "x \<equiv> poly [:0,1:] x" by simp_all
-
-lemma mpoly_norm_conv:
- "poly [:0:] (x::complex) \<equiv> poly 0 x" "poly [:poly 0 y:] x \<equiv> poly 0 x" by simp_all
-
-lemma mpoly_sub_conv:
- "poly p (x::complex) - poly q x \<equiv> poly p x + -1 * poly q x"
- by (simp add: diff_def)
-
-lemma poly_pad_rule: "poly p x = 0 ==> poly (pCons 0 p) x = (0::complex)" by simp
-
-lemma poly_cancel_eq_conv: "p = (0::complex) \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (q = 0) \<equiv> (a * q - b * p = 0)" apply (atomize (full)) by auto
-
-lemma resolve_eq_raw: "poly 0 x \<equiv> 0" "poly [:c:] x \<equiv> (c::complex)" by auto
-lemma resolve_eq_then: "(P \<Longrightarrow> (Q \<equiv> Q1)) \<Longrightarrow> (\<not>P \<Longrightarrow> (Q \<equiv> Q2))
- \<Longrightarrow> Q \<equiv> P \<and> Q1 \<or> \<not>P\<and> Q2" apply (atomize (full)) by blast
-
-lemma poly_divides_pad_rule:
- fixes p q :: "complex poly"
- assumes pq: "p dvd q"
- shows "p dvd (pCons (0::complex) q)"
-proof-
- have "pCons 0 q = q * [:0,1:]" by simp
- then have "q dvd (pCons 0 q)" ..
- with pq show ?thesis by (rule dvd_trans)
-qed
-
-lemma poly_divides_pad_const_rule:
- fixes p q :: "complex poly"
- assumes pq: "p dvd q"
- shows "p dvd (smult a q)"
-proof-
- have "smult a q = q * [:a:]" by simp
- then have "q dvd smult a q" ..
- with pq show ?thesis by (rule dvd_trans)
-qed
-
-
-lemma poly_divides_conv0:
- fixes p :: "complex poly"
- assumes lgpq: "degree q < degree p" and lq:"p \<noteq> 0"
- shows "p dvd q \<equiv> q = 0" (is "?lhs \<equiv> ?rhs")
-proof-
- {assume r: ?rhs
- hence "q = p * 0" by simp
- hence ?lhs ..}
- moreover
- {assume l: ?lhs
- {assume q0: "q = 0"
- hence ?rhs by simp}
- moreover
- {assume q0: "q \<noteq> 0"
- from l q0 have "degree p \<le> degree q"
- by (rule dvd_imp_degree_le)
- with lgpq have ?rhs by simp }
- ultimately have ?rhs by blast }
- ultimately show "?lhs \<equiv> ?rhs" by - (atomize (full), blast)
-qed
-
-lemma poly_divides_conv1:
- assumes a0: "a\<noteq> (0::complex)" and pp': "(p::complex poly) dvd p'"
- and qrp': "smult a q - p' \<equiv> r"
- shows "p dvd q \<equiv> p dvd (r::complex poly)" (is "?lhs \<equiv> ?rhs")
-proof-
- {
- from pp' obtain t where t: "p' = p * t" ..
- {assume l: ?lhs
- then obtain u where u: "q = p * u" ..
- have "r = p * (smult a u - t)"
- using u qrp' [symmetric] t by (simp add: algebra_simps mult_smult_right)
- then have ?rhs ..}
- moreover
- {assume r: ?rhs
- then obtain u where u: "r = p * u" ..
- from u [symmetric] t qrp' [symmetric] a0
- have "q = p * smult (1/a) (u + t)"
- by (simp add: algebra_simps mult_smult_right smult_smult)
- hence ?lhs ..}
- ultimately have "?lhs = ?rhs" by blast }
-thus "?lhs \<equiv> ?rhs" by - (atomize(full), blast)
-qed
-
-lemma basic_cqe_conv1:
- "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<equiv> False"
- "(\<exists>x. poly 0 x \<noteq> 0) \<equiv> False"
- "(\<exists>x. poly [:c:] x \<noteq> 0) \<equiv> c\<noteq>0"
- "(\<exists>x. poly 0 x = 0) \<equiv> True"
- "(\<exists>x. poly [:c:] x = 0) \<equiv> c = 0" by simp_all
-
-lemma basic_cqe_conv2:
- assumes l:"p \<noteq> 0"
- shows "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)) \<equiv> True"
-proof-
- {fix h t
- assume h: "h\<noteq>0" "t=0" "pCons a (pCons b p) = pCons h t"
- with l have False by simp}
- hence th: "\<not> (\<exists> h t. h\<noteq>0 \<and> t=0 \<and> pCons a (pCons b p) = pCons h t)"
- by blast
- from fundamental_theorem_of_algebra_alt[OF th]
- show "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)) \<equiv> True" by auto
-qed
-
-lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> (p \<noteq> 0)"
-proof-
- have "p = 0 \<longleftrightarrow> poly p = poly 0"
- by (simp add: poly_zero)
- also have "\<dots> \<longleftrightarrow> (\<not> (\<exists>x. poly p x \<noteq> 0))" by (auto intro: ext)
- finally show "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> p \<noteq> 0"
- by - (atomize (full), blast)
-qed
-
-lemma basic_cqe_conv3:
- fixes p q :: "complex poly"
- assumes l: "p \<noteq> 0"
- shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((pCons a p) dvd (q ^ (psize p)))"
-proof-
- from l have dp:"degree (pCons a p) = psize p" by (simp add: psize_def)
- from nullstellensatz_univariate[of "pCons a p" q] l
- show "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((pCons a p) dvd (q ^ (psize p)))"
- unfolding dp
- by - (atomize (full), auto)
-qed
-
-lemma basic_cqe_conv4:
- fixes p q :: "complex poly"
- assumes h: "\<And>x. poly (q ^ n) x \<equiv> poly r x"
- shows "p dvd (q ^ n) \<equiv> p dvd r"
-proof-
- from h have "poly (q ^ n) = poly r" by (auto intro: ext)
- then have "(q ^ n) = r" by (simp add: poly_eq_iff)
- thus "p dvd (q ^ n) \<equiv> p dvd r" by simp
-qed
-
-lemma pmult_Cons_Cons: "(pCons (a::complex) (pCons b p) * q = (smult a q) + (pCons 0 (pCons b p * q)))"
- by simp
-
-lemma elim_neg_conv: "- z \<equiv> (-1) * (z::complex)" by simp
-lemma eqT_intr: "PROP P \<Longrightarrow> (True \<Longrightarrow> PROP P )" "PROP P \<Longrightarrow> True" by blast+
-lemma negate_negate_rule: "Trueprop P \<equiv> \<not> P \<equiv> False" by (atomize (full), auto)
-
-lemma complex_entire: "(z::complex) \<noteq> 0 \<and> w \<noteq> 0 \<equiv> z*w \<noteq> 0" by simp
-lemma resolve_eq_ne: "(P \<equiv> True) \<equiv> (\<not>P \<equiv> False)" "(P \<equiv> False) \<equiv> (\<not>P \<equiv> True)"
- by (atomize (full)) simp_all
-lemma cqe_conv1: "poly 0 x = 0 \<longleftrightarrow> True" by simp
-lemma cqe_conv2: "(p \<Longrightarrow> (q \<equiv> r)) \<equiv> ((p \<and> q) \<equiv> (p \<and> r))" (is "?l \<equiv> ?r")
-proof
- assume "p \<Longrightarrow> q \<equiv> r" thus "p \<and> q \<equiv> p \<and> r" apply - apply (atomize (full)) by blast
-next
- assume "p \<and> q \<equiv> p \<and> r" "p"
- thus "q \<equiv> r" apply - apply (atomize (full)) apply blast done
-qed
-lemma poly_const_conv: "poly [:c:] (x::complex) = y \<longleftrightarrow> c = y" by simp
-
-end
--- a/src/HOL/IsaMakefile Wed Feb 11 11:22:42 2009 -0800
+++ b/src/HOL/IsaMakefile Thu Feb 12 18:14:43 2009 +0100
@@ -270,7 +270,6 @@
$(OUT)/HOL: ROOT.ML $(MAIN_DEPENDENCIES) \
Complex_Main.thy \
Complex.thy \
- Fundamental_Theorem_Algebra.thy \
Deriv.thy \
Fact.thy \
FrechetDeriv.thy \
@@ -317,6 +316,7 @@
Library/Executable_Set.thy Library/Infinite_Set.thy \
Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\
Library/Finite_Cartesian_Product.thy \
+ Library/Fundamental_Theorem_Algebra.thy \
Library/Library.thy Library/List_Prefix.thy Library/State_Monad.thy \
Library/Multiset.thy Library/Permutation.thy \
Library/Primes.thy Library/Pocklington.thy Library/Quotient.thy \
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Fundamental_Theorem_Algebra.thy Thu Feb 12 18:14:43 2009 +0100
@@ -0,0 +1,1353 @@
+(* Author: Amine Chaieb, TU Muenchen *)
+
+header{*Fundamental Theorem of Algebra*}
+
+theory Fundamental_Theorem_Algebra
+imports Polynomial Complex
+begin
+
+subsection {* Square root of complex numbers *}
+definition csqrt :: "complex \<Rightarrow> complex" where
+"csqrt z = (if Im z = 0 then
+ if 0 \<le> Re z then Complex (sqrt(Re z)) 0
+ else Complex 0 (sqrt(- Re z))
+ else Complex (sqrt((cmod z + Re z) /2))
+ ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))"
+
+lemma csqrt[algebra]: "csqrt z ^ 2 = z"
+proof-
+ obtain x y where xy: "z = Complex x y" by (cases z)
+ {assume y0: "y = 0"
+ {assume x0: "x \<ge> 0"
+ then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
+ by (simp add: csqrt_def power2_eq_square)}
+ moreover
+ {assume "\<not> x \<ge> 0" hence x0: "- x \<ge> 0" by arith
+ then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
+ by (simp add: csqrt_def power2_eq_square) }
+ ultimately have ?thesis by blast}
+ moreover
+ {assume y0: "y\<noteq>0"
+ {fix x y
+ let ?z = "Complex x y"
+ from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z" by auto
+ hence "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0" by arith+
+ hence "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0" by (simp_all add: power2_eq_square) }
+ note th = this
+ have sq4: "\<And>x::real. x^2 / 4 = (x / 2) ^ 2"
+ by (simp add: power2_eq_square)
+ from th[of x y]
+ have sq4': "sqrt (((sqrt (x * x + y * y) + x)^2 / 4)) = (sqrt (x * x + y * y) + x) / 2" "sqrt (((sqrt (x * x + y * y) - x)^2 / 4)) = (sqrt (x * x + y * y) - x) / 2" unfolding sq4 by simp_all
+ then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) - sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x"
+ unfolding power2_eq_square by simp
+ have "sqrt 4 = sqrt (2^2)" by simp
+ hence sqrt4: "sqrt 4 = 2" by (simp only: real_sqrt_abs)
+ have th2: "2 *(y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y"
+ using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0
+ unfolding power2_eq_square
+ by (simp add: algebra_simps real_sqrt_divide sqrt4)
+ from y0 xy have ?thesis apply (simp add: csqrt_def power2_eq_square)
+ apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y] real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square] real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square] real_sqrt_mult[symmetric])
+ using th1 th2 ..}
+ ultimately show ?thesis by blast
+qed
+
+
+subsection{* More lemmas about module of complex numbers *}
+
+lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)"
+ by (rule of_real_power [symmetric])
+
+lemma real_down2: "(0::real) < d1 \<Longrightarrow> 0 < d2 ==> EX e. 0 < e & e < d1 & e < d2"
+ apply (rule exI[where x = "min d1 d2 / 2"])
+ by (simp add: field_simps min_def)
+
+text{* The triangle inequality for cmod *}
+lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
+ using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
+
+subsection{* Basic lemmas about complex polynomials *}
+
+lemma poly_bound_exists:
+ shows "\<exists>m. m > 0 \<and> (\<forall>z. cmod z <= r \<longrightarrow> cmod (poly p z) \<le> m)"
+proof(induct p)
+ case 0 thus ?case by (rule exI[where x=1], simp)
+next
+ case (pCons c cs)
+ from pCons.hyps obtain m where m: "\<forall>z. cmod z \<le> r \<longrightarrow> cmod (poly cs z) \<le> m"
+ by blast
+ let ?k = " 1 + cmod c + \<bar>r * m\<bar>"
+ have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith
+ {fix z
+ assume H: "cmod z \<le> r"
+ from m H have th: "cmod (poly cs z) \<le> m" by blast
+ from H have rp: "r \<ge> 0" using norm_ge_zero[of z] by arith
+ have "cmod (poly (pCons c cs) z) \<le> cmod c + cmod (z* poly cs z)"
+ using norm_triangle_ineq[of c "z* poly cs z"] by simp
+ also have "\<dots> \<le> cmod c + r*m" using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] by (simp add: norm_mult)
+ also have "\<dots> \<le> ?k" by simp
+ finally have "cmod (poly (pCons c cs) z) \<le> ?k" .}
+ with kp show ?case by blast
+qed
+
+
+text{* Offsetting the variable in a polynomial gives another of same degree *}
+
+definition
+ "offset_poly p h = poly_rec 0 (\<lambda>a p q. smult h q + pCons a q) p"
+
+lemma offset_poly_0: "offset_poly 0 h = 0"
+ unfolding offset_poly_def by (simp add: poly_rec_0)
+
+lemma offset_poly_pCons:
+ "offset_poly (pCons a p) h =
+ smult h (offset_poly p h) + pCons a (offset_poly p h)"
+ unfolding offset_poly_def by (simp add: poly_rec_pCons)
+
+lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
+by (simp add: offset_poly_pCons offset_poly_0)
+
+lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
+apply (induct p)
+apply (simp add: offset_poly_0)
+apply (simp add: offset_poly_pCons algebra_simps)
+done
+
+lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
+by (induct p arbitrary: a, simp, force)
+
+lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
+apply (safe intro!: offset_poly_0)
+apply (induct p, simp)
+apply (simp add: offset_poly_pCons)
+apply (frule offset_poly_eq_0_lemma, simp)
+done
+
+lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
+apply (induct p)
+apply (simp add: offset_poly_0)
+apply (case_tac "p = 0")
+apply (simp add: offset_poly_0 offset_poly_pCons)
+apply (simp add: offset_poly_pCons)
+apply (subst degree_add_eq_right)
+apply (rule le_less_trans [OF degree_smult_le])
+apply (simp add: offset_poly_eq_0_iff)
+apply (simp add: offset_poly_eq_0_iff)
+done
+
+definition
+ "psize p = (if p = 0 then 0 else Suc (degree p))"
+
+lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"
+ unfolding psize_def by simp
+
+lemma poly_offset: "\<exists> q. psize q = psize p \<and> (\<forall>x. poly q (x::complex) = poly p (a + x))"
+proof (intro exI conjI)
+ show "psize (offset_poly p a) = psize p"
+ unfolding psize_def
+ by (simp add: offset_poly_eq_0_iff degree_offset_poly)
+ show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
+ by (simp add: poly_offset_poly)
+qed
+
+text{* An alternative useful formulation of completeness of the reals *}
+lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
+ shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
+proof-
+ from ex bz obtain x Y where x: "P x" and Y: "\<And>x. P x \<Longrightarrow> x < Y" by blast
+ from ex have thx:"\<exists>x. x \<in> Collect P" by blast
+ from bz have thY: "\<exists>Y. isUb UNIV (Collect P) Y"
+ by(auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def order_le_less)
+ from reals_complete[OF thx thY] obtain L where L: "isLub UNIV (Collect P) L"
+ by blast
+ from Y[OF x] have xY: "x < Y" .
+ from L have L': "\<forall>x. P x \<longrightarrow> x \<le> L" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
+ from Y have Y': "\<forall>x. P x \<longrightarrow> x \<le> Y"
+ apply (clarsimp, atomize (full)) by auto
+ from L Y' have "L \<le> Y" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
+ {fix y
+ {fix z assume z: "P z" "y < z"
+ from L' z have "y < L" by auto }
+ moreover
+ {assume yL: "y < L" "\<forall>z. P z \<longrightarrow> \<not> y < z"
+ hence nox: "\<forall>z. P z \<longrightarrow> y \<ge> z" by auto
+ from nox L have "y \<ge> L" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
+ with yL(1) have False by arith}
+ ultimately have "(\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < L" by blast}
+ thus ?thesis by blast
+qed
+
+
+subsection{* Some theorems about Sequences*}
+text{* Given a binary function @{text "f:: nat \<Rightarrow> 'a \<Rightarrow> 'a"}, its values are uniquely determined by a function g *}
+
+lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))"
+ unfolding Ex1_def
+ apply (rule_tac x="nat_rec e f" in exI)
+ apply (rule conjI)+
+apply (rule def_nat_rec_0, simp)
+apply (rule allI, rule def_nat_rec_Suc, simp)
+apply (rule allI, rule impI, rule ext)
+apply (erule conjE)
+apply (induct_tac x)
+apply (simp add: nat_rec_0)
+apply (erule_tac x="n" in allE)
+apply (simp)
+done
+
+text{* for any sequence, there is a mootonic subsequence *}
+lemma seq_monosub: "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"
+proof-
+ {assume H: "\<forall>n. \<exists>p >n. \<forall> m\<ge>p. s m \<le> s p"
+ let ?P = "\<lambda> p n. p > n \<and> (\<forall>m \<ge> p. s m \<le> s p)"
+ from num_Axiom[of "SOME p. ?P p 0" "\<lambda>p n. SOME p. ?P p n"]
+ obtain f where f: "f 0 = (SOME p. ?P p 0)" "\<forall>n. f (Suc n) = (SOME p. ?P p (f n))" by blast
+ have "?P (f 0) 0" unfolding f(1) some_eq_ex[of "\<lambda>p. ?P p 0"]
+ using H apply -
+ apply (erule allE[where x=0], erule exE, rule_tac x="p" in exI)
+ unfolding order_le_less by blast
+ hence f0: "f 0 > 0" "\<forall>m \<ge> f 0. s m \<le> s (f 0)" by blast+
+ {fix n
+ have "?P (f (Suc n)) (f n)"
+ unfolding f(2)[rule_format, of n] some_eq_ex[of "\<lambda>p. ?P p (f n)"]
+ using H apply -
+ apply (erule allE[where x="f n"], erule exE, rule_tac x="p" in exI)
+ unfolding order_le_less by blast
+ hence "f (Suc n) > f n" "\<forall>m \<ge> f (Suc n). s m \<le> s (f (Suc n))" by blast+}
+ note fSuc = this
+ {fix p q assume pq: "p \<ge> f q"
+ have "s p \<le> s(f(q))" using f0(2)[rule_format, of p] pq fSuc
+ by (cases q, simp_all) }
+ note pqth = this
+ {fix q
+ have "f (Suc q) > f q" apply (induct q)
+ using f0(1) fSuc(1)[of 0] apply simp by (rule fSuc(1))}
+ note fss = this
+ from fss have th1: "subseq f" unfolding subseq_Suc_iff ..
+ {fix a b
+ have "f a \<le> f (a + b)"
+ proof(induct b)
+ case 0 thus ?case by simp
+ next
+ case (Suc b)
+ from fSuc(1)[of "a + b"] Suc.hyps show ?case by simp
+ qed}
+ note fmon0 = this
+ have "monoseq (\<lambda>n. s (f n))"
+ proof-
+ {fix n
+ have "s (f n) \<ge> s (f (Suc n))"
+ proof(cases n)
+ case 0
+ assume n0: "n = 0"
+ from fSuc(1)[of 0] have th0: "f 0 \<le> f (Suc 0)" by simp
+ from f0(2)[rule_format, OF th0] show ?thesis using n0 by simp
+ next
+ case (Suc m)
+ assume m: "n = Suc m"
+ from fSuc(1)[of n] m have th0: "f (Suc m) \<le> f (Suc (Suc m))" by simp
+ from m fSuc(2)[rule_format, OF th0] show ?thesis by simp
+ qed}
+ thus "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc by blast
+ qed
+ with th1 have ?thesis by blast}
+ moreover
+ {fix N assume N: "\<forall>p >N. \<exists> m\<ge>p. s m > s p"
+ {fix p assume p: "p \<ge> Suc N"
+ hence pN: "p > N" by arith with N obtain m where m: "m \<ge> p" "s m > s p" by blast
+ have "m \<noteq> p" using m(2) by auto
+ with m have "\<exists>m>p. s p < s m" by - (rule exI[where x=m], auto)}
+ note th0 = this
+ let ?P = "\<lambda>m x. m > x \<and> s x < s m"
+ from num_Axiom[of "SOME x. ?P x (Suc N)" "\<lambda>m x. SOME y. ?P y x"]
+ obtain f where f: "f 0 = (SOME x. ?P x (Suc N))"
+ "\<forall>n. f (Suc n) = (SOME m. ?P m (f n))" by blast
+ have "?P (f 0) (Suc N)" unfolding f(1) some_eq_ex[of "\<lambda>p. ?P p (Suc N)"]
+ using N apply -
+ apply (erule allE[where x="Suc N"], clarsimp)
+ apply (rule_tac x="m" in exI)
+ apply auto
+ apply (subgoal_tac "Suc N \<noteq> m")
+ apply simp
+ apply (rule ccontr, simp)
+ done
+ hence f0: "f 0 > Suc N" "s (Suc N) < s (f 0)" by blast+
+ {fix n
+ have "f n > N \<and> ?P (f (Suc n)) (f n)"
+ unfolding f(2)[rule_format, of n] some_eq_ex[of "\<lambda>p. ?P p (f n)"]
+ proof (induct n)
+ case 0 thus ?case
+ using f0 N apply auto
+ apply (erule allE[where x="f 0"], clarsimp)
+ apply (rule_tac x="m" in exI, simp)
+ by (subgoal_tac "f 0 \<noteq> m", auto)
+ next
+ case (Suc n)
+ from Suc.hyps have Nfn: "N < f n" by blast
+ from Suc.hyps obtain m where m: "m > f n" "s (f n) < s m" by blast
+ with Nfn have mN: "m > N" by arith
+ note key = Suc.hyps[unfolded some_eq_ex[of "\<lambda>p. ?P p (f n)", symmetric] f(2)[rule_format, of n, symmetric]]
+
+ from key have th0: "f (Suc n) > N" by simp
+ from N[rule_format, OF th0]
+ obtain m' where m': "m' \<ge> f (Suc n)" "s (f (Suc n)) < s m'" by blast
+ have "m' \<noteq> f (Suc (n))" apply (rule ccontr) using m'(2) by auto
+ hence "m' > f (Suc n)" using m'(1) by simp
+ with key m'(2) show ?case by auto
+ qed}
+ note fSuc = this
+ {fix n
+ have "f n \<ge> Suc N \<and> f(Suc n) > f n \<and> s(f n) < s(f(Suc n))" using fSuc[of n] by auto
+ hence "f n \<ge> Suc N" "f(Suc n) > f n" "s(f n) < s(f(Suc n))" by blast+}
+ note thf = this
+ have sqf: "subseq f" unfolding subseq_Suc_iff using thf by simp
+ have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc using thf
+ apply -
+ apply (rule disjI1)
+ apply auto
+ apply (rule order_less_imp_le)
+ apply blast
+ done
+ then have ?thesis using sqf by blast}
+ ultimately show ?thesis unfolding linorder_not_less[symmetric] by blast
+qed
+
+lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
+proof(induct n)
+ case 0 thus ?case by simp
+next
+ case (Suc n)
+ from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
+ have "n < f (Suc n)" by arith
+ thus ?case by arith
+qed
+
+subsection {* Fundamental theorem of algebra *}
+lemma unimodular_reduce_norm:
+ assumes md: "cmod z = 1"
+ shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"
+proof-
+ obtain x y where z: "z = Complex x y " by (cases z, auto)
+ from md z have xy: "x^2 + y^2 = 1" by (simp add: cmod_def)
+ {assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
+ from C z xy have "2*x \<le> 1" "2*x \<ge> -1" "2*y \<le> 1" "2*y \<ge> -1"
+ by (simp_all add: cmod_def power2_eq_square algebra_simps)
+ hence "abs (2*x) \<le> 1" "abs (2*y) \<le> 1" by simp_all
+ hence "(abs (2 * x))^2 <= 1^2" "(abs (2 * y)) ^2 <= 1^2"
+ by - (rule power_mono, simp, simp)+
+ hence th0: "4*x^2 \<le> 1" "4*y^2 \<le> 1"
+ by (simp_all add: power2_abs power_mult_distrib)
+ from add_mono[OF th0] xy have False by simp }
+ thus ?thesis unfolding linorder_not_le[symmetric] by blast
+qed
+
+text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
+lemma reduce_poly_simple:
+ assumes b: "b \<noteq> 0" and n: "n\<noteq>0"
+ shows "\<exists>z. cmod (1 + b * z^n) < 1"
+using n
+proof(induct n rule: nat_less_induct)
+ fix n
+ assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" and n: "n \<noteq> 0"
+ let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
+ {assume e: "even n"
+ hence "\<exists>m. n = 2*m" by presburger
+ then obtain m where m: "n = 2*m" by blast
+ from n m have "m\<noteq>0" "m < n" by presburger+
+ with IH[rule_format, of m] obtain z where z: "?P z m" by blast
+ from z have "?P (csqrt z) n" by (simp add: m power_mult csqrt)
+ hence "\<exists>z. ?P z n" ..}
+ moreover
+ {assume o: "odd n"
+ from b have b': "b^2 \<noteq> 0" unfolding power2_eq_square by simp
+ have "Im (inverse b) * (Im (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) +
+ Re (inverse b) * (Re (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) =
+ ((Re (inverse b))^2 + (Im (inverse b))^2) * \<bar>Im b * Im b + Re b * Re b\<bar>" by algebra
+ also have "\<dots> = cmod (inverse b) ^2 * cmod b ^ 2"
+ apply (simp add: cmod_def) using realpow_two_le_add_order[of "Re b" "Im b"]
+ by (simp add: power2_eq_square)
+ finally
+ have th0: "Im (inverse b) * (Im (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) +
+ Re (inverse b) * (Re (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) =
+ 1"
+ apply (simp add: power2_eq_square norm_mult[symmetric] norm_inverse[symmetric])
+ using right_inverse[OF b']
+ by (simp add: power2_eq_square[symmetric] power_inverse[symmetric] algebra_simps)
+ have th0: "cmod (complex_of_real (cmod b) / b) = 1"
+ apply (simp add: complex_Re_mult cmod_def power2_eq_square Re_complex_of_real Im_complex_of_real divide_inverse algebra_simps )
+ by (simp add: real_sqrt_mult[symmetric] th0)
+ from o have "\<exists>m. n = Suc (2*m)" by presburger+
+ then obtain m where m: "n = Suc (2*m)" by blast
+ from unimodular_reduce_norm[OF th0] o
+ have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
+ apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp)
+ apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp add: diff_def)
+ apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
+ apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult)
+ apply (rule_tac x="- ii" in exI, simp add: m power_mult)
+ apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult diff_def)
+ apply (rule_tac x="ii" in exI, simp add: m power_mult diff_def)
+ done
+ then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast
+ let ?w = "v / complex_of_real (root n (cmod b))"
+ from odd_real_root_pow[OF o, of "cmod b"]
+ have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
+ by (simp add: power_divide complex_of_real_power)
+ have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: norm_divide)
+ hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp
+ have th4: "cmod (complex_of_real (cmod b) / b) *
+ cmod (1 + b * (v ^ n / complex_of_real (cmod b)))
+ < cmod (complex_of_real (cmod b) / b) * 1"
+ apply (simp only: norm_mult[symmetric] right_distrib)
+ using b v by (simp add: th2)
+
+ from mult_less_imp_less_left[OF th4 th3]
+ have "?P ?w n" unfolding th1 .
+ hence "\<exists>z. ?P z n" .. }
+ ultimately show "\<exists>z. ?P z n" by blast
+qed
+
+
+text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
+
+lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
+ using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ]
+ unfolding cmod_def by simp
+
+lemma bolzano_weierstrass_complex_disc:
+ assumes r: "\<forall>n. cmod (s n) \<le> r"
+ shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
+proof-
+ from seq_monosub[of "Re o s"]
+ obtain f g where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"
+ unfolding o_def by blast
+ from seq_monosub[of "Im o s o f"]
+ obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast
+ let ?h = "f o g"
+ from r[rule_format, of 0] have rp: "r \<ge> 0" using norm_ge_zero[of "s 0"] by arith
+ have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>"
+ proof
+ fix n
+ from abs_Re_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
+ qed
+ have conv1: "convergent (\<lambda>n. Re (s ( f n)))"
+ apply (rule Bseq_monoseq_convergent)
+ apply (simp add: Bseq_def)
+ apply (rule exI[where x= "r + 1"])
+ using th rp apply simp
+ using f(2) .
+ have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>"
+ proof
+ fix n
+ from abs_Im_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith
+ qed
+
+ have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
+ apply (rule Bseq_monoseq_convergent)
+ apply (simp add: Bseq_def)
+ apply (rule exI[where x= "r + 1"])
+ using th rp apply simp
+ using g(2) .
+
+ from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
+ by blast
+ hence x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r"
+ unfolding LIMSEQ_def real_norm_def .
+
+ from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
+ by blast
+ hence y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r"
+ unfolding LIMSEQ_def real_norm_def .
+ let ?w = "Complex x y"
+ from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto
+ {fix e assume ep: "e > (0::real)"
+ hence e2: "e/2 > 0" by simp
+ from x[rule_format, OF e2] y[rule_format, OF e2]
+ obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast
+ {fix n assume nN12: "n \<ge> N1 + N2"
+ hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+
+ from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
+ have "cmod (s (?h n) - ?w) < e"
+ using metric_bound_lemma[of "s (f (g n))" ?w] by simp }
+ hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast }
+ with hs show ?thesis by blast
+qed
+
+text{* Polynomial is continuous. *}
+
+lemma poly_cont:
+ assumes ep: "e > 0"
+ shows "\<exists>d >0. \<forall>w. 0 < cmod (w - z) \<and> cmod (w - z) < d \<longrightarrow> cmod (poly p w - poly p z) < e"
+proof-
+ obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)"
+ proof
+ show "degree (offset_poly p z) = degree p"
+ by (rule degree_offset_poly)
+ show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
+ by (rule poly_offset_poly)
+ qed
+ {fix w
+ note q(2)[of "w - z", simplified]}
+ note th = this
+ show ?thesis unfolding th[symmetric]
+ proof(induct q)
+ case 0 thus ?case using ep by auto
+ next
+ case (pCons c cs)
+ from poly_bound_exists[of 1 "cs"]
+ obtain m where m: "m > 0" "\<And>z. cmod z \<le> 1 \<Longrightarrow> cmod (poly cs z) \<le> m" by blast
+ from ep m(1) have em0: "e/m > 0" by (simp add: field_simps)
+ have one0: "1 > (0::real)" by arith
+ from real_lbound_gt_zero[OF one0 em0]
+ obtain d where d: "d >0" "d < 1" "d < e / m" by blast
+ from d(1,3) m(1) have dm: "d*m > 0" "d*m < e"
+ by (simp_all add: field_simps real_mult_order)
+ show ?case
+ proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)
+ fix d w
+ assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "cmod (w-z) < d"
+ hence d1: "cmod (w-z) \<le> 1" "d \<ge> 0" by simp_all
+ from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps)
+ from H have th: "cmod (w-z) \<le> d" by simp
+ from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
+ show "cmod (w - z) * cmod (poly cs (w - z)) < e" by simp
+ qed
+ qed
+qed
+
+text{* Hence a polynomial attains minimum on a closed disc
+ in the complex plane. *}
+lemma poly_minimum_modulus_disc:
+ "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
+proof-
+ {assume "\<not> r \<ge> 0" hence ?thesis unfolding linorder_not_le
+ apply -
+ apply (rule exI[where x=0])
+ apply auto
+ apply (subgoal_tac "cmod w < 0")
+ apply simp
+ apply arith
+ done }
+ moreover
+ {assume rp: "r \<ge> 0"
+ from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp
+ hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" by blast
+ {fix x z
+ assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1"
+ hence "- x < 0 " by arith
+ with H(2) norm_ge_zero[of "poly p z"] have False by simp }
+ then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast
+ from real_sup_exists[OF mth1 mth2] obtain s where
+ s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast
+ let ?m = "-s"
+ {fix y
+ from s[rule_format, of "-y"] have
+ "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y"
+ unfolding minus_less_iff[of y ] equation_minus_iff by blast }
+ note s1 = this[unfolded minus_minus]
+ from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
+ by auto
+ {fix n::nat
+ from s1[rule_format, of "?m + 1/real (Suc n)"]
+ have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"
+ by simp}
+ hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
+ from choice[OF th] obtain g where
+ g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)"
+ by blast
+ from bolzano_weierstrass_complex_disc[OF g(1)]
+ obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
+ by blast
+ {fix w
+ assume wr: "cmod w \<le> r"
+ let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
+ {assume e: "?e > 0"
+ hence e2: "?e/2 > 0" by simp
+ from poly_cont[OF e2, of z p] obtain d where
+ d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast
+ {fix w assume w: "cmod (w - z) < d"
+ have "cmod(poly p w - poly p z) < ?e / 2"
+ using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)}
+ note th1 = this
+
+ from fz(2)[rule_format, OF d(1)] obtain N1 where
+ N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast
+ from reals_Archimedean2[of "2/?e"] obtain N2::nat where
+ N2: "2/?e < real N2" by blast
+ have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2"
+ using N1[rule_format, of "N1 + N2"] th1 by simp
+ {fix a b e2 m :: real
+ have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a
+ ==> False" by arith}
+ note th0 = this
+ have ath:
+ "\<And>m x e. m <= x \<Longrightarrow> x < m + e ==> abs(x - m::real) < e" by arith
+ from s1m[OF g(1)[rule_format]]
+ have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
+ from seq_suble[OF fz(1), of "N1+N2"]
+ have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp
+ have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0"
+ using N2 by auto
+ from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp
+ from g(2)[rule_format, of "f (N1 + N2)"]
+ have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
+ from order_less_le_trans[OF th01 th00]
+ have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
+ from N2 have "2/?e < real (Suc (N1 + N2))" by arith
+ with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
+ have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide)
+ with ath[OF th31 th32]
+ have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith
+ have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c"
+ by arith
+ have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar>
+\<le> cmod (poly p (g (f (N1 + N2))) - poly p z)"
+ by (simp add: norm_triangle_ineq3)
+ from ath2[OF th22, of ?m]
+ have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp
+ from th0[OF th2 thc1 thc2] have False .}
+ hence "?e = 0" by auto
+ then have "cmod (poly p z) = ?m" by simp
+ with s1m[OF wr]
+ have "cmod (poly p z) \<le> cmod (poly p w)" by simp }
+ hence ?thesis by blast}
+ ultimately show ?thesis by blast
+qed
+
+lemma "(rcis (sqrt (abs r)) (a/2)) ^ 2 = rcis (abs r) a"
+ unfolding power2_eq_square
+ apply (simp add: rcis_mult)
+ apply (simp add: power2_eq_square[symmetric])
+ done
+
+lemma cispi: "cis pi = -1"
+ unfolding cis_def
+ by simp
+
+lemma "(rcis (sqrt (abs r)) ((pi + a)/2)) ^ 2 = rcis (- abs r) a"
+ unfolding power2_eq_square
+ apply (simp add: rcis_mult add_divide_distrib)
+ apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric])
+ done
+
+text {* Nonzero polynomial in z goes to infinity as z does. *}
+
+lemma poly_infinity:
+ assumes ex: "p \<noteq> 0"
+ shows "\<exists>r. \<forall>z. r \<le> cmod z \<longrightarrow> d \<le> cmod (poly (pCons a p) z)"
+using ex
+proof(induct p arbitrary: a d)
+ case (pCons c cs a d)
+ {assume H: "cs \<noteq> 0"
+ with pCons.hyps obtain r where r: "\<forall>z. r \<le> cmod z \<longrightarrow> d + cmod a \<le> cmod (poly (pCons c cs) z)" by blast
+ let ?r = "1 + \<bar>r\<bar>"
+ {fix z assume h: "1 + \<bar>r\<bar> \<le> cmod z"
+ have r0: "r \<le> cmod z" using h by arith
+ from r[rule_format, OF r0]
+ have th0: "d + cmod a \<le> 1 * cmod(poly (pCons c cs) z)" by arith
+ from h have z1: "cmod z \<ge> 1" by arith
+ from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
+ have th1: "d \<le> cmod(z * poly (pCons c cs) z) - cmod a"
+ unfolding norm_mult by (simp add: algebra_simps)
+ from complex_mod_triangle_sub[of "z * poly (pCons c cs) z" a]
+ have th2: "cmod(z * poly (pCons c cs) z) - cmod a \<le> cmod (poly (pCons a (pCons c cs)) z)"
+ by (simp add: diff_le_eq algebra_simps)
+ from th1 th2 have "d \<le> cmod (poly (pCons a (pCons c cs)) z)" by arith}
+ hence ?case by blast}
+ moreover
+ {assume cs0: "\<not> (cs \<noteq> 0)"
+ with pCons.prems have c0: "c \<noteq> 0" by simp
+ from cs0 have cs0': "cs = 0" by simp
+ {fix z
+ assume h: "(\<bar>d\<bar> + cmod a) / cmod c \<le> cmod z"
+ from c0 have "cmod c > 0" by simp
+ from h c0 have th0: "\<bar>d\<bar> + cmod a \<le> cmod (z*c)"
+ by (simp add: field_simps norm_mult)
+ have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith
+ from complex_mod_triangle_sub[of "z*c" a ]
+ have th1: "cmod (z * c) \<le> cmod (a + z * c) + cmod a"
+ by (simp add: algebra_simps)
+ from ath[OF th1 th0] have "d \<le> cmod (poly (pCons a (pCons c cs)) z)"
+ using cs0' by simp}
+ then have ?case by blast}
+ ultimately show ?case by blast
+qed simp
+
+text {* Hence polynomial's modulus attains its minimum somewhere. *}
+lemma poly_minimum_modulus:
+ "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
+proof(induct p)
+ case (pCons c cs)
+ {assume cs0: "cs \<noteq> 0"
+ from poly_infinity[OF cs0, of "cmod (poly (pCons c cs) 0)" c]
+ obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" by blast
+ have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith
+ from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
+ obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" by blast
+ {fix z assume z: "r \<le> cmod z"
+ from v[of 0] r[OF z]
+ have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)"
+ by simp }
+ note v0 = this
+ from v0 v ath[of r] have ?case by blast}
+ moreover
+ {assume cs0: "\<not> (cs \<noteq> 0)"
+ hence th:"cs = 0" by simp
+ from th pCons.hyps have ?case by simp}
+ ultimately show ?case by blast
+qed simp
+
+text{* Constant function (non-syntactic characterization). *}
+definition "constant f = (\<forall>x y. f x = f y)"
+
+lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> psize p \<ge> 2"
+ unfolding constant_def psize_def
+ apply (induct p, auto)
+ done
+
+lemma poly_replicate_append:
+ "poly (monom 1 n * p) (x::'a::{recpower, comm_ring_1}) = x^n * poly p x"
+ by (simp add: poly_monom)
+
+text {* Decomposition of polynomial, skipping zero coefficients
+ after the first. *}
+
+lemma poly_decompose_lemma:
+ assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{recpower,idom}))"
+ shows "\<exists>k a q. a\<noteq>0 \<and> Suc (psize q + k) = psize p \<and>
+ (\<forall>z. poly p z = z^k * poly (pCons a q) z)"
+unfolding psize_def
+using nz
+proof(induct p)
+ case 0 thus ?case by simp
+next
+ case (pCons c cs)
+ {assume c0: "c = 0"
+ from pCons.hyps pCons.prems c0 have ?case apply auto
+ apply (rule_tac x="k+1" in exI)
+ apply (rule_tac x="a" in exI, clarsimp)
+ apply (rule_tac x="q" in exI)
+ by (auto simp add: power_Suc)}
+ moreover
+ {assume c0: "c\<noteq>0"
+ hence ?case apply-
+ apply (rule exI[where x=0])
+ apply (rule exI[where x=c], clarsimp)
+ apply (rule exI[where x=cs])
+ apply auto
+ done}
+ ultimately show ?case by blast
+qed
+
+lemma poly_decompose:
+ assumes nc: "~constant(poly p)"
+ shows "\<exists>k a q. a\<noteq>(0::'a::{recpower,idom}) \<and> k\<noteq>0 \<and>
+ psize q + k + 1 = psize p \<and>
+ (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
+using nc
+proof(induct p)
+ case 0 thus ?case by (simp add: constant_def)
+next
+ case (pCons c cs)
+ {assume C:"\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
+ {fix x y
+ from C have "poly (pCons c cs) x = poly (pCons c cs) y" by (cases "x=0", auto)}
+ with pCons.prems have False by (auto simp add: constant_def)}
+ hence th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..
+ from poly_decompose_lemma[OF th]
+ show ?case
+ apply clarsimp
+ apply (rule_tac x="k+1" in exI)
+ apply (rule_tac x="a" in exI)
+ apply simp
+ apply (rule_tac x="q" in exI)
+ apply (auto simp add: power_Suc)
+ apply (auto simp add: psize_def split: if_splits)
+ done
+qed
+
+text{* Fundamental theorem of algebral *}
+
+lemma fundamental_theorem_of_algebra:
+ assumes nc: "~constant(poly p)"
+ shows "\<exists>z::complex. poly p z = 0"
+using nc
+proof(induct n\<equiv> "psize p" arbitrary: p rule: nat_less_induct)
+ fix n fix p :: "complex poly"
+ let ?p = "poly p"
+ assume H: "\<forall>m<n. \<forall>p. \<not> constant (poly p) \<longrightarrow> m = psize p \<longrightarrow> (\<exists>(z::complex). poly p z = 0)" and nc: "\<not> constant ?p" and n: "n = psize p"
+ let ?ths = "\<exists>z. ?p z = 0"
+
+ from nonconstant_length[OF nc] have n2: "n\<ge> 2" by (simp add: n)
+ from poly_minimum_modulus obtain c where
+ c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" by blast
+ {assume pc: "?p c = 0" hence ?ths by blast}
+ moreover
+ {assume pc0: "?p c \<noteq> 0"
+ from poly_offset[of p c] obtain q where
+ q: "psize q = psize p" "\<forall>x. poly q x = ?p (c+x)" by blast
+ {assume h: "constant (poly q)"
+ from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto
+ {fix x y
+ from th have "?p x = poly q (x - c)" by auto
+ also have "\<dots> = poly q (y - c)"
+ using h unfolding constant_def by blast
+ also have "\<dots> = ?p y" using th by auto
+ finally have "?p x = ?p y" .}
+ with nc have False unfolding constant_def by blast }
+ hence qnc: "\<not> constant (poly q)" by blast
+ from q(2) have pqc0: "?p c = poly q 0" by simp
+ from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp
+ let ?a0 = "poly q 0"
+ from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp
+ from a00
+ have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"
+ by simp
+ let ?r = "smult (inverse ?a0) q"
+ have lgqr: "psize q = psize ?r"
+ using a00 unfolding psize_def degree_def
+ by (simp add: expand_poly_eq)
+ {assume h: "\<And>x y. poly ?r x = poly ?r y"
+ {fix x y
+ from qr[rule_format, of x]
+ have "poly q x = poly ?r x * ?a0" by auto
+ also have "\<dots> = poly ?r y * ?a0" using h by simp
+ also have "\<dots> = poly q y" using qr[rule_format, of y] by simp
+ finally have "poly q x = poly q y" .}
+ with qnc have False unfolding constant_def by blast}
+ hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast
+ from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" by auto
+ {fix w
+ have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
+ using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac)
+ also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
+ using a00 unfolding norm_divide by (simp add: field_simps)
+ finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .}
+ note mrmq_eq = this
+ from poly_decompose[OF rnc] obtain k a s where
+ kas: "a\<noteq>0" "k\<noteq>0" "psize s + k + 1 = psize ?r"
+ "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
+ {assume "k + 1 = n"
+ with kas(3) lgqr[symmetric] q(1) n[symmetric] have s0:"s=0" by auto
+ {fix w
+ have "cmod (poly ?r w) = cmod (1 + a * w ^ k)"
+ using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)}
+ note hth = this [symmetric]
+ from reduce_poly_simple[OF kas(1,2)]
+ have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast}
+ moreover
+ {assume kn: "k+1 \<noteq> n"
+ from kn kas(3) q(1) n[symmetric] lgqr have k1n: "k + 1 < n" by simp
+ have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
+ unfolding constant_def poly_pCons poly_monom
+ using kas(1) apply simp
+ by (rule exI[where x=0], rule exI[where x=1], simp)
+ from kas(1) kas(2) have th02: "k+1 = psize (pCons 1 (monom a (k - 1)))"
+ by (simp add: psize_def degree_monom_eq)
+ from H[rule_format, OF k1n th01 th02]
+ obtain w where w: "1 + w^k * a = 0"
+ unfolding poly_pCons poly_monom
+ using kas(2) by (cases k, auto simp add: algebra_simps)
+ from poly_bound_exists[of "cmod w" s] obtain m where
+ m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
+ have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left)
+ from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp
+ then have wm1: "w^k * a = - 1" by simp
+ have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
+ using norm_ge_zero[of w] w0 m(1)
+ by (simp add: inverse_eq_divide zero_less_mult_iff)
+ with real_down2[OF zero_less_one] obtain t where
+ t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
+ let ?ct = "complex_of_real t"
+ let ?w = "?ct * w"
+ have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: algebra_simps power_mult_distrib)
+ also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
+ unfolding wm1 by (simp)
+ finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
+ apply -
+ apply (rule cong[OF refl[of cmod]])
+ apply assumption
+ done
+ with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
+ have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding norm_of_real by simp
+ have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith
+ have "t *cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto
+ then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: norm_mult)
+ from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1"
+ by (simp add: inverse_eq_divide field_simps)
+ with zero_less_power[OF t(1), of k]
+ have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
+ apply - apply (rule mult_strict_left_mono) by simp_all
+ have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))" using w0 t(1)
+ by (simp add: algebra_simps power_mult_distrib norm_of_real norm_power norm_mult)
+ then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
+ using t(1,2) m(2)[rule_format, OF tw] w0
+ apply (simp only: )
+ apply auto
+ apply (rule mult_mono, simp_all add: norm_ge_zero)+
+ apply (simp add: zero_le_mult_iff zero_le_power)
+ done
+ with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp
+ from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
+ by auto
+ from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
+ have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
+ from th11 th12
+ have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" by arith
+ then have "cmod (poly ?r ?w) < 1"
+ unfolding kas(4)[rule_format, of ?w] r01 by simp
+ then have "\<exists>w. cmod (poly ?r w) < 1" by blast}
+ ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast
+ from cr0_contr cq0 q(2)
+ have ?ths unfolding mrmq_eq not_less[symmetric] by auto}
+ ultimately show ?ths by blast
+qed
+
+text {* Alternative version with a syntactic notion of constant polynomial. *}
+
+lemma fundamental_theorem_of_algebra_alt:
+ assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"
+ shows "\<exists>z. poly p z = (0::complex)"
+using nc
+proof(induct p)
+ case (pCons c cs)
+ {assume "c=0" hence ?case by auto}
+ moreover
+ {assume c0: "c\<noteq>0"
+ {assume nc: "constant (poly (pCons c cs))"
+ from nc[unfolded constant_def, rule_format, of 0]
+ have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
+ hence "cs = 0"
+ proof(induct cs)
+ case (pCons d ds)
+ {assume "d=0" hence ?case using pCons.prems pCons.hyps by simp}
+ moreover
+ {assume d0: "d\<noteq>0"
+ from poly_bound_exists[of 1 ds] obtain m where
+ m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
+ have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps)
+ from real_down2[OF dm zero_less_one] obtain x where
+ x: "x > 0" "x < cmod d / m" "x < 1" by blast
+ let ?x = "complex_of_real x"
+ from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" by simp_all
+ from pCons.prems[rule_format, OF cx(1)]
+ have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric])
+ from m(2)[rule_format, OF cx(2)] x(1)
+ have th0: "cmod (?x*poly ds ?x) \<le> x*m"
+ by (simp add: norm_mult)
+ from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps)
+ with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto
+ with cth have ?case by blast}
+ ultimately show ?case by blast
+ qed simp}
+ then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems c0
+ by blast
+ from fundamental_theorem_of_algebra[OF nc] have ?case .}
+ ultimately show ?case by blast
+qed simp
+
+subsection {* Order of polynomial roots *}
+
+definition
+ order :: "'a::{idom,recpower} \<Rightarrow> 'a poly \<Rightarrow> nat"
+where
+ [code del]:
+ "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
+
+lemma degree_power_le: "degree (p ^ n) \<le> degree p * n"
+by (induct n, simp, auto intro: order_trans degree_mult_le)
+
+lemma coeff_linear_power:
+ fixes a :: "'a::{comm_semiring_1,recpower}"
+ shows "coeff ([:a, 1:] ^ n) n = 1"
+apply (induct n, simp_all)
+apply (subst coeff_eq_0)
+apply (auto intro: le_less_trans degree_power_le)
+done
+
+lemma degree_linear_power:
+ fixes a :: "'a::{comm_semiring_1,recpower}"
+ shows "degree ([:a, 1:] ^ n) = n"
+apply (rule order_antisym)
+apply (rule ord_le_eq_trans [OF degree_power_le], simp)
+apply (rule le_degree, simp add: coeff_linear_power)
+done
+
+lemma order_1: "[:-a, 1:] ^ order a p dvd p"
+apply (cases "p = 0", simp)
+apply (cases "order a p", simp)
+apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)")
+apply (drule not_less_Least, simp)
+apply (fold order_def, simp)
+done
+
+lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
+unfolding order_def
+apply (rule LeastI_ex)
+apply (rule_tac x="degree p" in exI)
+apply (rule notI)
+apply (drule (1) dvd_imp_degree_le)
+apply (simp only: degree_linear_power)
+done
+
+lemma order:
+ "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
+by (rule conjI [OF order_1 order_2])
+
+lemma order_degree:
+ assumes p: "p \<noteq> 0"
+ shows "order a p \<le> degree p"
+proof -
+ have "order a p = degree ([:-a, 1:] ^ order a p)"
+ by (simp only: degree_linear_power)
+ also have "\<dots> \<le> degree p"
+ using order_1 p by (rule dvd_imp_degree_le)
+ finally show ?thesis .
+qed
+
+lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0"
+apply (cases "p = 0", simp_all)
+apply (rule iffI)
+apply (rule ccontr, simp)
+apply (frule order_2 [where a=a], simp)
+apply (simp add: poly_eq_0_iff_dvd)
+apply (simp add: poly_eq_0_iff_dvd)
+apply (simp only: order_def)
+apply (drule not_less_Least, simp)
+done
+
+lemma poly_zero:
+ fixes p :: "'a::{idom,ring_char_0} poly"
+ shows "poly p = poly 0 \<longleftrightarrow> p = 0"
+apply (cases "p = 0", simp_all)
+apply (drule poly_roots_finite)
+apply (auto simp add: infinite_UNIV_char_0)
+done
+
+lemma poly_eq_iff:
+ fixes p q :: "'a::{idom,ring_char_0} poly"
+ shows "poly p = poly q \<longleftrightarrow> p = q"
+ using poly_zero [of "p - q"]
+ by (simp add: expand_fun_eq)
+
+
+subsection{* Nullstellenstatz, degrees and divisibility of polynomials *}
+
+lemma nullstellensatz_lemma:
+ fixes p :: "complex poly"
+ assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
+ and "degree p = n" and "n \<noteq> 0"
+ shows "p dvd (q ^ n)"
+using prems
+proof(induct n arbitrary: p q rule: nat_less_induct)
+ fix n::nat fix p q :: "complex poly"
+ assume IH: "\<forall>m<n. \<forall>p q.
+ (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
+ degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"
+ and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
+ and dpn: "degree p = n" and n0: "n \<noteq> 0"
+ from dpn n0 have pne: "p \<noteq> 0" by auto
+ let ?ths = "p dvd (q ^ n)"
+ {fix a assume a: "poly p a = 0"
+ {assume oa: "order a p \<noteq> 0"
+ let ?op = "order a p"
+ from pne have ap: "([:- a, 1:] ^ ?op) dvd p"
+ "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" using order by blast+
+ note oop = order_degree[OF pne, unfolded dpn]
+ {assume q0: "q = 0"
+ hence ?ths using n0
+ by (simp add: power_0_left)}
+ moreover
+ {assume q0: "q \<noteq> 0"
+ from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]
+ obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)
+ from ap(1) obtain s where
+ s: "p = [:- a, 1:] ^ ?op * s" by (rule dvdE)
+ have sne: "s \<noteq> 0"
+ using s pne by auto
+ {assume ds0: "degree s = 0"
+ from ds0 have "\<exists>k. s = [:k:]"
+ by (cases s, simp split: if_splits)
+ then obtain k where kpn: "s = [:k:]" by blast
+ from sne kpn have k: "k \<noteq> 0" by simp
+ let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"
+ from k oop [of a] have "q ^ n = p * ?w"
+ apply -
+ apply (subst r, subst s, subst kpn)
+ apply (subst power_mult_distrib, simp)
+ apply (subst power_add [symmetric], simp)
+ done
+ hence ?ths unfolding dvd_def by blast}
+ moreover
+ {assume ds0: "degree s \<noteq> 0"
+ from ds0 sne dpn s oa
+ have dsn: "degree s < n" apply auto
+ apply (erule ssubst)
+ apply (simp add: degree_mult_eq degree_linear_power)
+ done
+ {fix x assume h: "poly s x = 0"
+ {assume xa: "x = a"
+ from h[unfolded xa poly_eq_0_iff_dvd] obtain u where
+ u: "s = [:- a, 1:] * u" by (rule dvdE)
+ have "p = [:- a, 1:] ^ (Suc ?op) * u"
+ by (subst s, subst u, simp only: power_Suc mult_ac)
+ with ap(2)[unfolded dvd_def] have False by blast}
+ note xa = this
+ from h have "poly p x = 0" by (subst s, simp)
+ with pq0 have "poly q x = 0" by blast
+ with r xa have "poly r x = 0"
+ by (auto simp add: uminus_add_conv_diff)}
+ note impth = this
+ from IH[rule_format, OF dsn, of s r] impth ds0
+ have "s dvd (r ^ (degree s))" by blast
+ then obtain u where u: "r ^ (degree s) = s * u" ..
+ hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
+ by (simp only: poly_mult[symmetric] poly_power[symmetric])
+ let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
+ from oop[of a] dsn have "q ^ n = p * ?w"
+ apply -
+ apply (subst s, subst r)
+ apply (simp only: power_mult_distrib)
+ apply (subst mult_assoc [where b=s])
+ apply (subst mult_assoc [where a=u])
+ apply (subst mult_assoc [where b=u, symmetric])
+ apply (subst u [symmetric])
+ apply (simp add: mult_ac power_add [symmetric])
+ done
+ hence ?ths unfolding dvd_def by blast}
+ ultimately have ?ths by blast }
+ ultimately have ?ths by blast}
+ then have ?ths using a order_root pne by blast}
+ moreover
+ {assume exa: "\<not> (\<exists>a. poly p a = 0)"
+ from fundamental_theorem_of_algebra_alt[of p] exa obtain c where
+ ccs: "c\<noteq>0" "p = pCons c 0" by blast
+
+ then have pp: "\<And>x. poly p x = c" by simp
+ let ?w = "[:1/c:] * (q ^ n)"
+ from ccs
+ have "(q ^ n) = (p * ?w) "
+ by (simp add: smult_smult)
+ hence ?ths unfolding dvd_def by blast}
+ ultimately show ?ths by blast
+qed
+
+lemma nullstellensatz_univariate:
+ "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>
+ p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"
+proof-
+ {assume pe: "p = 0"
+ hence eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
+ apply auto
+ apply (rule poly_zero [THEN iffD1])
+ by (rule ext, simp)
+ {assume "p dvd (q ^ (degree p))"
+ then obtain r where r: "q ^ (degree p) = p * r" ..
+ from r pe have False by simp}
+ with eq pe have ?thesis by blast}
+ moreover
+ {assume pe: "p \<noteq> 0"
+ {assume dp: "degree p = 0"
+ then obtain k where k: "p = [:k:]" "k\<noteq>0" using pe
+ by (cases p, simp split: if_splits)
+ hence th1: "\<forall>x. poly p x \<noteq> 0" by simp
+ from k dp have "q ^ (degree p) = p * [:1/k:]"
+ by (simp add: one_poly_def)
+ hence th2: "p dvd (q ^ (degree p))" ..
+ from th1 th2 pe have ?thesis by blast}
+ moreover
+ {assume dp: "degree p \<noteq> 0"
+ then obtain n where n: "degree p = Suc n " by (cases "degree p", auto)
+ {assume "p dvd (q ^ (Suc n))"
+ then obtain u where u: "q ^ (Suc n) = p * u" ..
+ {fix x assume h: "poly p x = 0" "poly q x \<noteq> 0"
+ hence "poly (q ^ (Suc n)) x \<noteq> 0" by simp
+ hence False using u h(1) by (simp only: poly_mult) simp}}
+ with n nullstellensatz_lemma[of p q "degree p"] dp
+ have ?thesis by auto}
+ ultimately have ?thesis by blast}
+ ultimately show ?thesis by blast
+qed
+
+text{* Useful lemma *}
+
+lemma constant_degree:
+ fixes p :: "'a::{idom,ring_char_0} poly"
+ shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
+proof
+ assume l: ?lhs
+ from l[unfolded constant_def, rule_format, of _ "0"]
+ have th: "poly p = poly [:poly p 0:]" apply - by (rule ext, simp)
+ then have "p = [:poly p 0:]" by (simp add: poly_eq_iff)
+ then have "degree p = degree [:poly p 0:]" by simp
+ then show ?rhs by simp
+next
+ assume r: ?rhs
+ then obtain k where "p = [:k:]"
+ by (cases p, simp split: if_splits)
+ then show ?lhs unfolding constant_def by auto
+qed
+
+lemma divides_degree: assumes pq: "p dvd (q:: complex poly)"
+ shows "degree p \<le> degree q \<or> q = 0"
+apply (cases "q = 0", simp_all)
+apply (erule dvd_imp_degree_le [OF pq])
+done
+
+(* Arithmetic operations on multivariate polynomials. *)
+
+lemma mpoly_base_conv:
+ "(0::complex) \<equiv> poly 0 x" "c \<equiv> poly [:c:] x" "x \<equiv> poly [:0,1:] x" by simp_all
+
+lemma mpoly_norm_conv:
+ "poly [:0:] (x::complex) \<equiv> poly 0 x" "poly [:poly 0 y:] x \<equiv> poly 0 x" by simp_all
+
+lemma mpoly_sub_conv:
+ "poly p (x::complex) - poly q x \<equiv> poly p x + -1 * poly q x"
+ by (simp add: diff_def)
+
+lemma poly_pad_rule: "poly p x = 0 ==> poly (pCons 0 p) x = (0::complex)" by simp
+
+lemma poly_cancel_eq_conv: "p = (0::complex) \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (q = 0) \<equiv> (a * q - b * p = 0)" apply (atomize (full)) by auto
+
+lemma resolve_eq_raw: "poly 0 x \<equiv> 0" "poly [:c:] x \<equiv> (c::complex)" by auto
+lemma resolve_eq_then: "(P \<Longrightarrow> (Q \<equiv> Q1)) \<Longrightarrow> (\<not>P \<Longrightarrow> (Q \<equiv> Q2))
+ \<Longrightarrow> Q \<equiv> P \<and> Q1 \<or> \<not>P\<and> Q2" apply (atomize (full)) by blast
+
+lemma poly_divides_pad_rule:
+ fixes p q :: "complex poly"
+ assumes pq: "p dvd q"
+ shows "p dvd (pCons (0::complex) q)"
+proof-
+ have "pCons 0 q = q * [:0,1:]" by simp
+ then have "q dvd (pCons 0 q)" ..
+ with pq show ?thesis by (rule dvd_trans)
+qed
+
+lemma poly_divides_pad_const_rule:
+ fixes p q :: "complex poly"
+ assumes pq: "p dvd q"
+ shows "p dvd (smult a q)"
+proof-
+ have "smult a q = q * [:a:]" by simp
+ then have "q dvd smult a q" ..
+ with pq show ?thesis by (rule dvd_trans)
+qed
+
+
+lemma poly_divides_conv0:
+ fixes p :: "complex poly"
+ assumes lgpq: "degree q < degree p" and lq:"p \<noteq> 0"
+ shows "p dvd q \<equiv> q = 0" (is "?lhs \<equiv> ?rhs")
+proof-
+ {assume r: ?rhs
+ hence "q = p * 0" by simp
+ hence ?lhs ..}
+ moreover
+ {assume l: ?lhs
+ {assume q0: "q = 0"
+ hence ?rhs by simp}
+ moreover
+ {assume q0: "q \<noteq> 0"
+ from l q0 have "degree p \<le> degree q"
+ by (rule dvd_imp_degree_le)
+ with lgpq have ?rhs by simp }
+ ultimately have ?rhs by blast }
+ ultimately show "?lhs \<equiv> ?rhs" by - (atomize (full), blast)
+qed
+
+lemma poly_divides_conv1:
+ assumes a0: "a\<noteq> (0::complex)" and pp': "(p::complex poly) dvd p'"
+ and qrp': "smult a q - p' \<equiv> r"
+ shows "p dvd q \<equiv> p dvd (r::complex poly)" (is "?lhs \<equiv> ?rhs")
+proof-
+ {
+ from pp' obtain t where t: "p' = p * t" ..
+ {assume l: ?lhs
+ then obtain u where u: "q = p * u" ..
+ have "r = p * (smult a u - t)"
+ using u qrp' [symmetric] t by (simp add: algebra_simps mult_smult_right)
+ then have ?rhs ..}
+ moreover
+ {assume r: ?rhs
+ then obtain u where u: "r = p * u" ..
+ from u [symmetric] t qrp' [symmetric] a0
+ have "q = p * smult (1/a) (u + t)"
+ by (simp add: algebra_simps mult_smult_right smult_smult)
+ hence ?lhs ..}
+ ultimately have "?lhs = ?rhs" by blast }
+thus "?lhs \<equiv> ?rhs" by - (atomize(full), blast)
+qed
+
+lemma basic_cqe_conv1:
+ "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<equiv> False"
+ "(\<exists>x. poly 0 x \<noteq> 0) \<equiv> False"
+ "(\<exists>x. poly [:c:] x \<noteq> 0) \<equiv> c\<noteq>0"
+ "(\<exists>x. poly 0 x = 0) \<equiv> True"
+ "(\<exists>x. poly [:c:] x = 0) \<equiv> c = 0" by simp_all
+
+lemma basic_cqe_conv2:
+ assumes l:"p \<noteq> 0"
+ shows "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)) \<equiv> True"
+proof-
+ {fix h t
+ assume h: "h\<noteq>0" "t=0" "pCons a (pCons b p) = pCons h t"
+ with l have False by simp}
+ hence th: "\<not> (\<exists> h t. h\<noteq>0 \<and> t=0 \<and> pCons a (pCons b p) = pCons h t)"
+ by blast
+ from fundamental_theorem_of_algebra_alt[OF th]
+ show "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)) \<equiv> True" by auto
+qed
+
+lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> (p \<noteq> 0)"
+proof-
+ have "p = 0 \<longleftrightarrow> poly p = poly 0"
+ by (simp add: poly_zero)
+ also have "\<dots> \<longleftrightarrow> (\<not> (\<exists>x. poly p x \<noteq> 0))" by (auto intro: ext)
+ finally show "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> p \<noteq> 0"
+ by - (atomize (full), blast)
+qed
+
+lemma basic_cqe_conv3:
+ fixes p q :: "complex poly"
+ assumes l: "p \<noteq> 0"
+ shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((pCons a p) dvd (q ^ (psize p)))"
+proof-
+ from l have dp:"degree (pCons a p) = psize p" by (simp add: psize_def)
+ from nullstellensatz_univariate[of "pCons a p" q] l
+ show "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((pCons a p) dvd (q ^ (psize p)))"
+ unfolding dp
+ by - (atomize (full), auto)
+qed
+
+lemma basic_cqe_conv4:
+ fixes p q :: "complex poly"
+ assumes h: "\<And>x. poly (q ^ n) x \<equiv> poly r x"
+ shows "p dvd (q ^ n) \<equiv> p dvd r"
+proof-
+ from h have "poly (q ^ n) = poly r" by (auto intro: ext)
+ then have "(q ^ n) = r" by (simp add: poly_eq_iff)
+ thus "p dvd (q ^ n) \<equiv> p dvd r" by simp
+qed
+
+lemma pmult_Cons_Cons: "(pCons (a::complex) (pCons b p) * q = (smult a q) + (pCons 0 (pCons b p * q)))"
+ by simp
+
+lemma elim_neg_conv: "- z \<equiv> (-1) * (z::complex)" by simp
+lemma eqT_intr: "PROP P \<Longrightarrow> (True \<Longrightarrow> PROP P )" "PROP P \<Longrightarrow> True" by blast+
+lemma negate_negate_rule: "Trueprop P \<equiv> \<not> P \<equiv> False" by (atomize (full), auto)
+
+lemma complex_entire: "(z::complex) \<noteq> 0 \<and> w \<noteq> 0 \<equiv> z*w \<noteq> 0" by simp
+lemma resolve_eq_ne: "(P \<equiv> True) \<equiv> (\<not>P \<equiv> False)" "(P \<equiv> False) \<equiv> (\<not>P \<equiv> True)"
+ by (atomize (full)) simp_all
+lemma cqe_conv1: "poly 0 x = 0 \<longleftrightarrow> True" by simp
+lemma cqe_conv2: "(p \<Longrightarrow> (q \<equiv> r)) \<equiv> ((p \<and> q) \<equiv> (p \<and> r))" (is "?l \<equiv> ?r")
+proof
+ assume "p \<Longrightarrow> q \<equiv> r" thus "p \<and> q \<equiv> p \<and> r" apply - apply (atomize (full)) by blast
+next
+ assume "p \<and> q \<equiv> p \<and> r" "p"
+ thus "q \<equiv> r" apply - apply (atomize (full)) apply blast done
+qed
+lemma poly_const_conv: "poly [:c:] (x::complex) = y \<longleftrightarrow> c = y" by simp
+
+end
--- a/src/HOL/Library/Library.thy Wed Feb 11 11:22:42 2009 -0800
+++ b/src/HOL/Library/Library.thy Thu Feb 12 18:14:43 2009 +0100
@@ -23,6 +23,7 @@
Float
Formal_Power_Series
FuncSet
+ Fundamental_Theorem_Algebra
Infinite_Set
ListVector
Mapping
--- a/src/HOL/Library/Univ_Poly.thy Wed Feb 11 11:22:42 2009 -0800
+++ b/src/HOL/Library/Univ_Poly.thy Thu Feb 12 18:14:43 2009 +0100
@@ -344,26 +344,6 @@
apply (erule_tac x="x" in allE, clarsimp)
by (case_tac "n=length p", auto simp add: order_le_less)
-lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)"
- unfolding finite_conv_nat_seg_image
-proof(auto simp add: expand_set_eq image_iff)
- fix n::nat and f:: "nat \<Rightarrow> nat"
- let ?N = "{i. i < n}"
- let ?fN = "f ` ?N"
- let ?y = "Max ?fN + 1"
- from nat_seg_image_imp_finite[of "?fN" "f" n]
- have thfN: "finite ?fN" by simp
- {assume "n =0" hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto}
- moreover
- {assume nz: "n \<noteq> 0"
- hence thne: "?fN \<noteq> {}" by (auto simp add: neq0_conv)
- have "\<forall>x\<in> ?fN. Max ?fN \<ge> x" using nz Max_ge_iff[OF thfN thne] by auto
- hence "\<forall>x\<in> ?fN. ?y > x" by auto
- hence "?y \<notin> ?fN" by auto
- hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto }
- ultimately show "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by blast
-qed
-
lemma (in ring_char_0) UNIV_ring_char_0_infinte:
"\<not> (finite (UNIV:: 'a set))"
proof
@@ -374,7 +354,7 @@
then show "finite (of_nat ` UNIV :: 'a set)" using F by (rule finite_subset)
show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: inj_on_def)
qed
- with UNIV_nat_infinite show False ..
+ with infinite_UNIV_nat show False ..
qed
lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) =
--- a/src/HOL/Nat.thy Wed Feb 11 11:22:42 2009 -0800
+++ b/src/HOL/Nat.thy Thu Feb 12 18:14:43 2009 +0100
@@ -1367,6 +1367,9 @@
end
+lemma mono_iff_le_Suc: "mono f = (\<forall>n. f n \<le> f (Suc n))"
+unfolding mono_def
+by (auto intro:lift_Suc_mono_le[of f])
lemma mono_nat_linear_lb:
"(!!m n::nat. m<n \<Longrightarrow> f m < f n) \<Longrightarrow> f(m)+k \<le> f(m+k)"