--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Commutative_Ring.thy Tue Sep 20 14:10:29 2005 +0200
@@ -0,0 +1,327 @@
+(* ID: $Id$
+ Author: Bernhard Haeupler
+
+Proving equalities in commutative rings done "right" in Isabelle/HOL.
+*)
+
+header {* Proving equalities in commutative rings *}
+
+theory Commutative_Ring
+imports Main
+uses ("comm_ring.ML")
+begin
+
+text {* Syntax of multivariate polynomials (pol) and polynomial expressions. *}
+
+datatype 'a pol =
+ Pc 'a
+ | Pinj nat "'a pol"
+ | PX "'a pol" nat "'a pol"
+
+datatype 'a polex =
+ Pol "'a pol"
+ | Add "'a polex" "'a polex"
+ | Sub "'a polex" "'a polex"
+ | Mul "'a polex" "'a polex"
+ | Pow "'a polex" nat
+ | Neg "'a polex"
+
+text {* Interpretation functions for the shadow syntax. *}
+
+consts
+ Ipol :: "'a::{comm_ring,recpower} list \<Rightarrow> 'a pol \<Rightarrow> 'a"
+ Ipolex :: "'a::{comm_ring,recpower} list \<Rightarrow> 'a polex \<Rightarrow> 'a"
+
+primrec
+ "Ipol l (Pc c) = c"
+ "Ipol l (Pinj i P) = Ipol (drop i l) P"
+ "Ipol l (PX P x Q) = Ipol l P * (hd l)^x + Ipol (drop 1 l) Q"
+
+primrec
+ "Ipolex l (Pol P) = Ipol l P"
+ "Ipolex l (Add P Q) = Ipolex l P + Ipolex l Q"
+ "Ipolex l (Sub P Q) = Ipolex l P - Ipolex l Q"
+ "Ipolex l (Mul P Q) = Ipolex l P * Ipolex l Q"
+ "Ipolex l (Pow p n) = Ipolex l p ^ n"
+ "Ipolex l (Neg P) = - Ipolex l P"
+
+text {* Create polynomial normalized polynomials given normalized inputs. *}
+
+constdefs
+ mkPinj :: "nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol"
+ "mkPinj x P \<equiv> (case P of
+ Pc c \<Rightarrow> Pc c |
+ Pinj y P \<Rightarrow> Pinj (x + y) P |
+ PX p1 y p2 \<Rightarrow> Pinj x P)"
+
+constdefs
+ mkPX :: "'a::{comm_ring,recpower} pol \<Rightarrow> nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol"
+ "mkPX P i Q == (case P of
+ Pc c \<Rightarrow> (if (c = 0) then (mkPinj 1 Q) else (PX P i Q)) |
+ Pinj j R \<Rightarrow> PX P i Q |
+ PX P2 i2 Q2 \<Rightarrow> (if (Q2 = (Pc 0)) then (PX P2 (i+i2) Q) else (PX P i Q)) )"
+
+text {* Defining the basic ring operations on normalized polynomials *}
+
+consts
+ add :: "'a::{comm_ring,recpower} pol \<times> 'a pol \<Rightarrow> 'a pol"
+ mul :: "'a::{comm_ring,recpower} pol \<times> 'a pol \<Rightarrow> 'a pol"
+ neg :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol"
+ sqr :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol"
+ pow :: "'a::{comm_ring,recpower} pol \<times> nat \<Rightarrow> 'a pol"
+
+text {* Addition *}
+recdef add "measure (\<lambda>(x, y). size x + size y)"
+ "add (Pc a, Pc b) = Pc (a + b)"
+ "add (Pc c, Pinj i P) = Pinj i (add (P, Pc c))"
+ "add (Pinj i P, Pc c) = Pinj i (add (P, Pc c))"
+ "add (Pc c, PX P i Q) = PX P i (add (Q, Pc c))"
+ "add (PX P i Q, Pc c) = PX P i (add (Q, Pc c))"
+ "add (Pinj x P, Pinj y Q) =
+ (if x=y then mkPinj x (add (P, Q))
+ else (if x>y then mkPinj y (add (Pinj (x-y) P, Q))
+ else mkPinj x (add (Pinj (y-x) Q, P)) ))"
+ "add (Pinj x P, PX Q y R) =
+ (if x=0 then add(P, PX Q y R)
+ else (if x=1 then PX Q y (add (R, P))
+ else PX Q y (add (R, Pinj (x - 1) P))))"
+ "add (PX P x R, Pinj y Q) =
+ (if y=0 then add(PX P x R, Q)
+ else (if y=1 then PX P x (add (R, Q))
+ else PX P x (add (R, Pinj (y - 1) Q))))"
+ "add (PX P1 x P2, PX Q1 y Q2) =
+ (if x=y then mkPX (add (P1, Q1)) x (add (P2, Q2))
+ else (if x>y then mkPX (add (PX P1 (x-y) (Pc 0), Q1)) y (add (P2,Q2))
+ else mkPX (add (PX Q1 (y-x) (Pc 0), P1)) x (add (P2,Q2)) ))"
+
+text {* Multiplication *}
+recdef mul "measure (\<lambda>(x, y). size x + size y)"
+ "mul (Pc a, Pc b) = Pc (a*b)"
+ "mul (Pc c, Pinj i P) = (if c=0 then Pc 0 else mkPinj i (mul (P, Pc c)))"
+ "mul (Pinj i P, Pc c) = (if c=0 then Pc 0 else mkPinj i (mul (P, Pc c)))"
+ "mul (Pc c, PX P i Q) =
+ (if c=0 then Pc 0 else mkPX (mul (P, Pc c)) i (mul (Q, Pc c)))"
+ "mul (PX P i Q, Pc c) =
+ (if c=0 then Pc 0 else mkPX (mul (P, Pc c)) i (mul (Q, Pc c)))"
+ "mul (Pinj x P, Pinj y Q) =
+ (if x=y then mkPinj x (mul (P, Q))
+ else (if x>y then mkPinj y (mul (Pinj (x-y) P, Q))
+ else mkPinj x (mul (Pinj (y-x) Q, P)) ))"
+ "mul (Pinj x P, PX Q y R) =
+ (if x=0 then mul(P, PX Q y R)
+ else (if x=1 then mkPX (mul (Pinj x P, Q)) y (mul (R, P))
+ else mkPX (mul (Pinj x P, Q)) y (mul (R, Pinj (x - 1) P))))"
+ "mul (PX P x R, Pinj y Q) =
+ (if y=0 then mul(PX P x R, Q)
+ else (if y=1 then mkPX (mul (Pinj y Q, P)) x (mul (R, Q))
+ else mkPX (mul (Pinj y Q, P)) x (mul (R, Pinj (y - 1) Q))))"
+ "mul (PX P1 x P2, PX Q1 y Q2) =
+ add (mkPX (mul (P1, Q1)) (x+y) (mul (P2, Q2)),
+ add (mkPX (mul (P1, mkPinj 1 Q2)) x (Pc 0), mkPX (mul (Q1, mkPinj 1 P2)) y (Pc 0)) )"
+(hints simp add: mkPinj_def split: pol.split)
+
+text {* Negation*}
+primrec
+ "neg (Pc c) = Pc (-c)"
+ "neg (Pinj i P) = Pinj i (neg P)"
+ "neg (PX P x Q) = PX (neg P) x (neg Q)"
+
+text {* Substraction *}
+constdefs
+ sub :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol \<Rightarrow> 'a pol"
+ "sub p q \<equiv> add (p, neg q)"
+
+text {* Square for Fast Exponentation *}
+primrec
+ "sqr (Pc c) = Pc (c * c)"
+ "sqr (Pinj i P) = mkPinj i (sqr P)"
+ "sqr (PX A x B) = add (mkPX (sqr A) (x + x) (sqr B),
+ mkPX (mul (mul (Pc (1 + 1), A), mkPinj 1 B)) x (Pc 0))"
+
+text {* Fast Exponentation *}
+lemma pow_wf:"odd n \<Longrightarrow> (n::nat) div 2 < n" by (cases n) auto
+recdef pow "measure (\<lambda>(x, y). y)"
+ "pow (p, 0) = Pc 1"
+ "pow (p, n) = (if even n then (pow (sqr p, n div 2)) else mul (p, pow (sqr p, n div 2)))"
+(hints simp add: pow_wf)
+
+lemma pow_if:
+ "pow (p,n) =
+ (if n = 0 then Pc 1 else if even n then pow (sqr p, n div 2)
+ else mul (p, pow (sqr p, n div 2)))"
+ by (cases n) simp_all
+
+(*
+lemma number_of_nat_B0: "(number_of (w BIT bit.B0) ::nat) = 2* (number_of w)"
+by simp
+
+lemma number_of_nat_even: "even (number_of (w BIT bit.B0)::nat)"
+by simp
+
+lemma pow_even : "pow (p, number_of(w BIT bit.B0)) = pow (sqr p, number_of w)"
+ ( is "pow(?p,?n) = pow (_,?n2)")
+proof-
+ have "even ?n" by simp
+ hence "pow (p, ?n) = pow (sqr p, ?n div 2)"
+ apply simp
+ apply (cases "IntDef.neg (number_of w)")
+ apply simp
+ done
+*)
+
+text {* Normalization of polynomial expressions *}
+
+consts norm :: "'a::{comm_ring,recpower} polex \<Rightarrow> 'a pol"
+primrec
+ "norm (Pol P) = P"
+ "norm (Add P Q) = add (norm P, norm Q)"
+ "norm (Sub p q) = sub (norm p) (norm q)"
+ "norm (Mul P Q) = mul (norm P, norm Q)"
+ "norm (Pow p n) = pow (norm p, n)"
+ "norm (Neg P) = neg (norm P)"
+
+text {* mkPinj preserve semantics *}
+lemma mkPinj_ci: "Ipol l (mkPinj a B) = Ipol l (Pinj a B)"
+ by (induct B) (auto simp add: mkPinj_def ring_eq_simps)
+
+text {* mkPX preserves semantics *}
+lemma mkPX_ci: "Ipol l (mkPX A b C) = Ipol l (PX A b C)"
+ by (cases A) (auto simp add: mkPX_def mkPinj_ci power_add ring_eq_simps)
+
+text {* Correctness theorems for the implemented operations *}
+
+text {* Negation *}
+lemma neg_ci: "\<And>l. Ipol l (neg P) = -(Ipol l P)"
+ by (induct P) auto
+
+text {* Addition *}
+lemma add_ci: "\<And>l. Ipol l (add (P, Q)) = Ipol l P + Ipol l Q"
+proof (induct P Q rule: add.induct)
+ case (6 x P y Q)
+ show ?case
+ proof (rule linorder_cases)
+ assume "x < y"
+ with 6 show ?case by (simp add: mkPinj_ci ring_eq_simps)
+ next
+ assume "x = y"
+ with 6 show ?case by (simp add: mkPinj_ci)
+ next
+ assume "x > y"
+ with 6 show ?case by (simp add: mkPinj_ci ring_eq_simps)
+ qed
+next
+ case (7 x P Q y R)
+ have "x = 0 \<or> x = 1 \<or> x > 1" by arith
+ moreover
+ { assume "x = 0" with 7 have ?case by simp }
+ moreover
+ { assume "x = 1" with 7 have ?case by (simp add: ring_eq_simps) }
+ moreover
+ { assume "x > 1" from 7 have ?case by (cases x) simp_all }
+ ultimately show ?case by blast
+next
+ case (8 P x R y Q)
+ have "y = 0 \<or> y = 1 \<or> y > 1" by arith
+ moreover
+ { assume "y = 0" with 8 have ?case by simp }
+ moreover
+ { assume "y = 1" with 8 have ?case by simp }
+ moreover
+ { assume "y > 1" with 8 have ?case by simp }
+ ultimately show ?case by blast
+next
+ case (9 P1 x P2 Q1 y Q2)
+ show ?case
+ proof (rule linorder_cases)
+ assume a: "x < y" hence "EX d. d + x = y" by arith
+ with 9 a show ?case by (auto simp add: mkPX_ci power_add ring_eq_simps)
+ next
+ assume a: "y < x" hence "EX d. d + y = x" by arith
+ with 9 a show ?case by (auto simp add: power_add mkPX_ci ring_eq_simps)
+ next
+ assume "x = y"
+ with 9 show ?case by (simp add: mkPX_ci ring_eq_simps)
+ qed
+qed (auto simp add: ring_eq_simps)
+
+text {* Multiplication *}
+lemma mul_ci: "\<And>l. Ipol l (mul (P, Q)) = Ipol l P * Ipol l Q"
+ by (induct P Q rule: mul.induct)
+ (simp_all add: mkPX_ci mkPinj_ci ring_eq_simps add_ci power_add)
+
+text {* Substraction *}
+lemma sub_ci: "Ipol l (sub p q) = Ipol l p - Ipol l q"
+ by (simp add: add_ci neg_ci sub_def)
+
+text {* Square *}
+lemma sqr_ci:"\<And>ls. Ipol ls (sqr p) = Ipol ls p * Ipol ls p"
+ by (induct p) (simp_all add: add_ci mkPinj_ci mkPX_ci mul_ci ring_eq_simps power_add)
+
+
+text {* Power *}
+lemma even_pow:"even n \<Longrightarrow> pow (p, n) = pow (sqr p, n div 2)" by (induct n) simp_all
+
+lemma pow_ci: "\<And>p. Ipol ls (pow (p, n)) = (Ipol ls p) ^ n"
+proof (induct n rule: nat_less_induct)
+ case (1 k)
+ have two:"2 = Suc (Suc 0)" by simp
+ show ?case
+ proof (cases k)
+ case (Suc l)
+ show ?thesis
+ proof cases
+ assume EL: "even l"
+ have "Suc l div 2 = l div 2"
+ by (simp add: nat_number even_nat_plus_one_div_two [OF EL])
+ moreover
+ from Suc have "l < k" by simp
+ with 1 have "\<forall>p. Ipol ls (pow (p, l)) = Ipol ls p ^ l" by simp
+ moreover
+ note Suc EL even_nat_plus_one_div_two [OF EL]
+ ultimately show ?thesis by (auto simp add: mul_ci power_Suc even_pow)
+ next
+ assume OL: "odd l"
+ with prems have "\<lbrakk>\<forall>m<Suc l. \<forall>p. Ipol ls (pow (p, m)) = Ipol ls p ^ m; k = Suc l; odd l\<rbrakk> \<Longrightarrow> \<forall>p. Ipol ls (sqr p) ^ (Suc l div 2) = Ipol ls p ^ Suc l"
+ proof(cases l)
+ case (Suc w)
+ from prems have EW: "even w" by simp
+ from two have two_times:"(2 * (w div 2))= w"
+ by (simp only: even_nat_div_two_times_two[OF EW])
+ have A: "\<And>p. (Ipol ls p * Ipol ls p) = (Ipol ls p) ^ (Suc (Suc 0))"
+ by (simp add: power_Suc)
+ from A two [symmetric] have "ALL p.(Ipol ls p * Ipol ls p) = (Ipol ls p) ^ 2"
+ by simp
+ with prems show ?thesis
+ by (auto simp add: power_mult[symmetric, of _ 2 _] two_times mul_ci sqr_ci)
+ qed simp
+ with prems show ?thesis by simp
+ qed
+ next
+ case 0
+ then show ?thesis by simp
+ qed
+qed
+
+text {* Normalization preserves semantics *}
+lemma norm_ci:"Ipolex l Pe = Ipol l (norm Pe)"
+ by (induct Pe) (simp_all add: add_ci sub_ci mul_ci neg_ci pow_ci)
+
+text {* Reflection lemma: Key to the (incomplete) decision procedure *}
+lemma norm_eq:
+ assumes eq: "norm P1 = norm P2"
+ shows "Ipolex l P1 = Ipolex l P2"
+proof -
+ from eq have "Ipol l (norm P1) = Ipol l (norm P2)" by simp
+ thus ?thesis by (simp only: norm_ci)
+qed
+
+
+text {* Code generation *}
+(*
+Does not work, since no generic ring operations implementation is there
+generate_code ("ring.ML") test = "norm"*)
+
+use "comm_ring.ML"
+setup "CommRing.setup"
+
+end
--- a/src/HOL/Library/Library.thy Tue Sep 20 14:06:00 2005 +0200
+++ b/src/HOL/Library/Library.thy Tue Sep 20 14:10:29 2005 +0200
@@ -18,6 +18,7 @@
Word
Zorn
Char_ord
+ Commutative_Ring
begin
end
(*>*)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/comm_ring.ML Tue Sep 20 14:10:29 2005 +0200
@@ -0,0 +1,142 @@
+(* ID: $Id$
+ Author: Amine Chaieb
+
+Tactic for solving equalities over commutative rings.
+*)
+
+signature COMM_RING =
+sig
+ val comm_ring_tac : int -> tactic
+ val comm_ring_method: int -> Proof.method
+ val algebra_method: int -> Proof.method
+ val setup : (theory -> theory) list
+end
+
+structure CommRing: COMM_RING =
+struct
+
+(* The Cring exception for erronous uses of cring_tac *)
+exception CRing of string;
+
+(* Zero and One of the commutative ring *)
+fun cring_zero T = Const("0",T);
+fun cring_one T = Const("1",T);
+
+(* reification functions *)
+(* add two polynom expressions *)
+fun polT t = Type ("Commutative_Ring.pol",[t]);
+fun polexT t = Type("Commutative_Ring.polex",[t]);
+val nT = HOLogic.natT;
+fun listT T = Type ("List.list",[T]);
+
+(* Reification of the constructors *)
+(* Nat*)
+val succ = Const("Suc",nT --> nT);
+val zero = Const("0",nT);
+val one = Const("1",nT);
+
+(* Lists *)
+fun reif_list T [] = Const("List.list.Nil",listT T)
+ | reif_list T (x::xs) = Const("List.list.Cons",[T,listT T] ---> listT T)
+ $x$(reif_list T xs);
+
+(* pol*)
+fun pol_Pc t = Const("Commutative_Ring.pol.Pc",t --> polT t);
+fun pol_Pinj t = Const("Commutative_Ring.pol.Pinj",[nT,polT t] ---> polT t);
+fun pol_PX t = Const("Commutative_Ring.pol.PX",[polT t, nT, polT t] ---> polT t);
+
+(* polex *)
+fun polex_add t = Const("Commutative_Ring.polex.Add",[polexT t,polexT t] ---> polexT t);
+fun polex_sub t = Const("Commutative_Ring.polex.Sub",[polexT t,polexT t] ---> polexT t);
+fun polex_mul t = Const("Commutative_Ring.polex.Mul",[polexT t,polexT t] ---> polexT t);
+fun polex_neg t = Const("Commutative_Ring.polex.Neg",polexT t --> polexT t);
+fun polex_pol t = Const("Commutative_Ring.polex.Pol",polT t --> polexT t);
+fun polex_pow t = Const("Commutative_Ring.polex.Pow",[polexT t, nT] ---> polexT t);
+(* reification of natural numbers *)
+fun reif_nat n =
+ if n>0 then succ$(reif_nat (n-1))
+ else if n=0 then zero
+ else raise CRing "ring_tac: reif_nat negative n";
+
+(* reification of polynoms : primitive cring expressions *)
+fun reif_pol T vs t =
+ case t of
+ Free(_,_) =>
+ let val i = find_index_eq t vs
+ in if i = 0
+ then (pol_PX T)$((pol_Pc T)$ (cring_one T))
+ $one$((pol_Pc T)$(cring_zero T))
+ else (pol_Pinj T)$(reif_nat i)$
+ ((pol_PX T)$((pol_Pc T)$ (cring_one T))
+ $one$
+ ((pol_Pc T)$(cring_zero T)))
+ end
+ | _ => (pol_Pc T)$ t;
+
+
+(* reification of polynom expressions *)
+fun reif_polex T vs t =
+ case t of
+ Const("op +",_)$a$b => (polex_add T)
+ $ (reif_polex T vs a)$(reif_polex T vs b)
+ | Const("op -",_)$a$b => (polex_sub T)
+ $ (reif_polex T vs a)$(reif_polex T vs b)
+ | Const("op *",_)$a$b => (polex_mul T)
+ $ (reif_polex T vs a)$ (reif_polex T vs b)
+ | Const("uminus",_)$a => (polex_neg T)
+ $ (reif_polex T vs a)
+ | (Const("Nat.power",_)$a$n) => (polex_pow T) $ (reif_polex T vs a) $ n
+
+ | _ => (polex_pol T) $ (reif_pol T vs t);
+
+(* reification of the equation *)
+val cr_sort = Sign.read_sort (the_context ()) "{comm_ring,recpower}";
+fun reif_eq sg (eq as Const("op =",Type("fun",a::_))$lhs$rhs) =
+ if Sign.of_sort (the_context()) (a,cr_sort)
+ then
+ let val fs = term_frees eq
+ val cvs = cterm_of sg (reif_list a fs)
+ val clhs = cterm_of sg (reif_polex a fs lhs)
+ val crhs = cterm_of sg (reif_polex a fs rhs)
+ val ca = ctyp_of sg a
+ in (ca,cvs,clhs, crhs)
+ end
+ else raise CRing "reif_eq: not an equation over comm_ring + recpower"
+ | reif_eq sg _ = raise CRing "reif_eq: not an equation";
+
+(*The cring tactic *)
+(* Attention: You have to make sure that no t^0 is in the goal!! *)
+(* Use simply rewriting t^0 = 1 *)
+fun cring_ss sg = simpset_of sg
+ addsimps
+ (map thm ["mkPX_def", "mkPinj_def","sub_def",
+ "power_add","even_def","pow_if"])
+ addsimps [sym OF [thm "power_add"]];
+
+val norm_eq = thm "norm_eq"
+fun comm_ring_tac i =(fn st =>
+ let
+ val g = List.nth (prems_of st, i - 1)
+ val sg = sign_of_thm st
+ val (ca,cvs,clhs,crhs) = reif_eq sg (HOLogic.dest_Trueprop g)
+ val norm_eq_th = simplify (cring_ss sg)
+ (instantiate' [SOME ca] [SOME clhs, SOME crhs, SOME cvs]
+ norm_eq)
+ in ((cut_rules_tac [norm_eq_th] i)
+ THEN (simp_tac (cring_ss sg) i)
+ THEN (simp_tac (cring_ss sg) i)) st
+ end);
+
+fun comm_ring_method i = Method.METHOD (fn facts =>
+ Method.insert_tac facts 1 THEN comm_ring_tac i);
+val algebra_method = comm_ring_method;
+
+val setup =
+ [Method.add_method ("comm_ring",
+ Method.no_args (comm_ring_method 1),
+ "reflective decision procedure for equalities over commutative rings"),
+ Method.add_method ("algebra",
+ Method.no_args (algebra_method 1),
+ "Method for proving algebraic properties: for now only comm_ring")];
+
+end;