renamed multiset ordering to free up nice <# etc. symbols for the standard subset
--- a/NEWS Wed Apr 08 15:04:06 2015 +0200
+++ b/NEWS Wed Apr 08 15:21:20 2015 +0200
@@ -330,6 +330,12 @@
- Introduced "replicate_mset" operation.
- Introduced alternative characterizations of the multiset ordering in
"Library/Multiset_Order".
+ - Renamed multiset ordering:
+ <# ~> #<#
+ <=# ~> #<=#
+ \<subset># ~> #\<subset>#
+ \<subseteq># ~> #\<subseteq>#
+ INCOMPATIBILITY.
- Renamed
in_multiset_of ~> in_multiset_in_set
INCOMPATIBILITY.
--- a/src/HOL/Library/Multiset.thy Wed Apr 08 15:04:06 2015 +0200
+++ b/src/HOL/Library/Multiset.thy Wed Apr 08 15:21:20 2015 +0200
@@ -1778,21 +1778,21 @@
subsubsection {* Partial-order properties *}
-definition less_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<#" 50) where
- "M' <# M \<longleftrightarrow> (M', M) \<in> mult {(x', x). x' < x}"
-
-definition le_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<=#" 50) where
- "M' <=# M \<longleftrightarrow> M' <# M \<or> M' = M"
-
-notation (xsymbols) less_multiset (infix "\<subset>#" 50)
-notation (xsymbols) le_multiset (infix "\<subseteq>#" 50)
+definition less_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "#<#" 50) where
+ "M' #<# M \<longleftrightarrow> (M', M) \<in> mult {(x', x). x' < x}"
+
+definition le_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "#<=#" 50) where
+ "M' #<=# M \<longleftrightarrow> M' #<# M \<or> M' = M"
+
+notation (xsymbols) less_multiset (infix "#\<subset>#" 50)
+notation (xsymbols) le_multiset (infix "#\<subseteq>#" 50)
interpretation multiset_order: order le_multiset less_multiset
proof -
- have irrefl: "\<And>M :: 'a multiset. \<not> M \<subset># M"
+ have irrefl: "\<And>M :: 'a multiset. \<not> M #\<subset># M"
proof
fix M :: "'a multiset"
- assume "M \<subset># M"
+ assume "M #\<subset># M"
then have MM: "(M, M) \<in> mult {(x, y). x < y}" by (simp add: less_multiset_def)
have "trans {(x'::'a, x). x' < x}"
by (rule transI) simp
@@ -1809,13 +1809,13 @@
by (induct rule: finite_induct) (auto intro: order_less_trans)
with aux1 show False by simp
qed
- have trans: "\<And>K M N :: 'a multiset. K \<subset># M \<Longrightarrow> M \<subset># N \<Longrightarrow> K \<subset># N"
+ have trans: "\<And>K M N :: 'a multiset. K #\<subset># M \<Longrightarrow> M #\<subset># N \<Longrightarrow> K #\<subset># N"
unfolding less_multiset_def mult_def by (blast intro: trancl_trans)
show "class.order (le_multiset :: 'a multiset \<Rightarrow> _) less_multiset"
by default (auto simp add: le_multiset_def irrefl dest: trans)
qed
-lemma mult_less_irrefl [elim!]: "M \<subset># (M::'a::order multiset) ==> R"
+lemma mult_less_irrefl [elim!]: "M #\<subset># (M::'a::order multiset) ==> R"
by simp
@@ -1829,21 +1829,21 @@
apply (simp add: add.assoc)
done
-lemma union_less_mono2: "B \<subset># D ==> C + B \<subset># C + (D::'a::order multiset)"
+lemma union_less_mono2: "B #\<subset># D ==> C + B #\<subset># C + (D::'a::order multiset)"
apply (unfold less_multiset_def mult_def)
apply (erule trancl_induct)
apply (blast intro: mult1_union)
apply (blast intro: mult1_union trancl_trans)
done
-lemma union_less_mono1: "B \<subset># D ==> B + C \<subset># D + (C::'a::order multiset)"
+lemma union_less_mono1: "B #\<subset># D ==> B + C #\<subset># D + (C::'a::order multiset)"
apply (subst add.commute [of B C])
apply (subst add.commute [of D C])
apply (erule union_less_mono2)
done
lemma union_less_mono:
- "A \<subset># C ==> B \<subset># D ==> A + B \<subset># C + (D::'a::order multiset)"
+ "A #\<subset># C ==> B #\<subset># D ==> A + B #\<subset># C + (D::'a::order multiset)"
by (blast intro!: union_less_mono1 union_less_mono2 multiset_order.less_trans)
interpretation multiset_order: ordered_ab_semigroup_add plus le_multiset less_multiset
@@ -2044,19 +2044,19 @@
multiset_inter_left_commute
lemma mult_less_not_refl:
- "\<not> M \<subset># (M::'a::order multiset)"
+ "\<not> M #\<subset># (M::'a::order multiset)"
by (fact multiset_order.less_irrefl)
lemma mult_less_trans:
- "K \<subset># M ==> M \<subset># N ==> K \<subset># (N::'a::order multiset)"
+ "K #\<subset># M ==> M #\<subset># N ==> K #\<subset># (N::'a::order multiset)"
by (fact multiset_order.less_trans)
lemma mult_less_not_sym:
- "M \<subset># N ==> \<not> N \<subset># (M::'a::order multiset)"
+ "M #\<subset># N ==> \<not> N #\<subset># (M::'a::order multiset)"
by (fact multiset_order.less_not_sym)
lemma mult_less_asym:
- "M \<subset># N ==> (\<not> P ==> N \<subset># (M::'a::order multiset)) ==> P"
+ "M #\<subset># N ==> (\<not> P ==> N #\<subset># (M::'a::order multiset)) ==> P"
by (fact multiset_order.less_asym)
ML {*
--- a/src/HOL/Library/Multiset_Order.thy Wed Apr 08 15:04:06 2015 +0200
+++ b/src/HOL/Library/Multiset_Order.thy Wed Apr 08 15:21:20 2015 +0200
@@ -198,7 +198,7 @@
end
lemma less_multiset_less_multiset\<^sub>H\<^sub>O:
- "M \<subset># N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
+ "M #\<subset># N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
unfolding less_multiset_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def ..
lemmas less_multiset\<^sub>D\<^sub>M = mult\<^sub>D\<^sub>M[folded less_multiset_def]
@@ -206,10 +206,10 @@
lemma le_multiset\<^sub>H\<^sub>O:
fixes M N :: "('a \<Colon> linorder) multiset"
- shows "M \<subseteq># N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))"
+ shows "M #\<subseteq># N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))"
by (auto simp: le_multiset_def less_multiset\<^sub>H\<^sub>O)
-lemma wf_less_multiset: "wf {(M \<Colon> ('a \<Colon> wellorder) multiset, N). M \<subset># N}"
+lemma wf_less_multiset: "wf {(M \<Colon> ('a \<Colon> wellorder) multiset, N). M #\<subset># N}"
unfolding less_multiset_def by (auto intro: wf_mult wf)
lemma order_multiset: "class.order
@@ -234,52 +234,52 @@
lemma le_multiset_total:
fixes M N :: "('a \<Colon> linorder) multiset"
- shows "\<not> M \<subseteq># N \<Longrightarrow> N \<subseteq># M"
+ shows "\<not> M #\<subseteq># N \<Longrightarrow> N #\<subseteq># M"
by (metis multiset_linorder.le_cases)
lemma less_eq_imp_le_multiset:
fixes M N :: "('a \<Colon> linorder) multiset"
- shows "M \<le> N \<Longrightarrow> M \<subseteq># N"
+ shows "M \<le> N \<Longrightarrow> M #\<subseteq># N"
unfolding le_multiset_def less_multiset\<^sub>H\<^sub>O
by (auto dest: leD simp add: less_eq_multiset.rep_eq)
lemma less_multiset_right_total:
fixes M :: "('a \<Colon> linorder) multiset"
- shows "M \<subset># M + {#undefined#}"
+ shows "M #\<subset># M + {#undefined#}"
unfolding le_multiset_def less_multiset\<^sub>H\<^sub>O by simp
lemma le_multiset_empty_left[simp]:
fixes M :: "('a \<Colon> linorder) multiset"
- shows "{#} \<subseteq># M"
+ shows "{#} #\<subseteq># M"
by (simp add: less_eq_imp_le_multiset)
lemma le_multiset_empty_right[simp]:
fixes M :: "('a \<Colon> linorder) multiset"
- shows "M \<noteq> {#} \<Longrightarrow> \<not> M \<subseteq># {#}"
+ shows "M \<noteq> {#} \<Longrightarrow> \<not> M #\<subseteq># {#}"
by (metis le_multiset_empty_left multiset_order.antisym)
lemma less_multiset_empty_left[simp]:
fixes M :: "('a \<Colon> linorder) multiset"
- shows "M \<noteq> {#} \<Longrightarrow> {#} \<subset># M"
+ shows "M \<noteq> {#} \<Longrightarrow> {#} #\<subset># M"
by (simp add: less_multiset\<^sub>H\<^sub>O)
lemma less_multiset_empty_right[simp]:
fixes M :: "('a \<Colon> linorder) multiset"
- shows "\<not> M \<subset># {#}"
+ shows "\<not> M #\<subset># {#}"
using le_empty less_multiset\<^sub>D\<^sub>M by blast
lemma
fixes M N :: "('a \<Colon> linorder) multiset"
shows
- le_multiset_plus_left[simp]: "N \<subseteq># (M + N)" and
- le_multiset_plus_right[simp]: "M \<subseteq># (M + N)"
+ le_multiset_plus_left[simp]: "N #\<subseteq># (M + N)" and
+ le_multiset_plus_right[simp]: "M #\<subseteq># (M + N)"
using [[metis_verbose = false]] by (metis less_eq_imp_le_multiset mset_le_add_left add.commute)+
lemma
fixes M N :: "('a \<Colon> linorder) multiset"
shows
- less_multiset_plus_plus_left_iff[simp]: "M + N \<subset># M' + N \<longleftrightarrow> M \<subset># M'" and
- less_multiset_plus_plus_right_iff[simp]: "M + N \<subset># M + N' \<longleftrightarrow> N \<subset># N'"
+ less_multiset_plus_plus_left_iff[simp]: "M + N #\<subset># M' + N \<longleftrightarrow> M #\<subset># M'" and
+ less_multiset_plus_plus_right_iff[simp]: "M + N #\<subset># M + N' \<longleftrightarrow> N #\<subset># N'"
unfolding less_multiset\<^sub>H\<^sub>O by auto
lemma add_eq_self_empty_iff: "M + N = M \<longleftrightarrow> N = {#}"
@@ -288,21 +288,21 @@
lemma
fixes M N :: "('a \<Colon> linorder) multiset"
shows
- less_multiset_plus_left_nonempty[simp]: "M \<noteq> {#} \<Longrightarrow> N \<subset># M + N" and
- less_multiset_plus_right_nonempty[simp]: "N \<noteq> {#} \<Longrightarrow> M \<subset># M + N"
+ less_multiset_plus_left_nonempty[simp]: "M \<noteq> {#} \<Longrightarrow> N #\<subset># M + N" and
+ less_multiset_plus_right_nonempty[simp]: "N \<noteq> {#} \<Longrightarrow> M #\<subset># M + N"
using [[metis_verbose = false]]
by (metis add.right_neutral less_multiset_empty_left less_multiset_plus_plus_right_iff
add.commute)+
-lemma ex_gt_imp_less_multiset: "(\<exists>y \<Colon> 'a \<Colon> linorder. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M \<subset># N"
+lemma ex_gt_imp_less_multiset: "(\<exists>y \<Colon> 'a \<Colon> linorder. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M #\<subset># N"
unfolding less_multiset\<^sub>H\<^sub>O by (metis less_irrefl less_nat_zero_code not_gr0)
lemma ex_gt_count_imp_less_multiset:
- "(\<forall>y \<Colon> 'a \<Colon> linorder. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M \<subset># N"
+ "(\<forall>y \<Colon> 'a \<Colon> linorder. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M #\<subset># N"
unfolding less_multiset\<^sub>H\<^sub>O by (metis add.left_neutral add_lessD1 dual_order.strict_iff_order
less_not_sym mset_leD mset_le_add_left)
-lemma union_less_diff_plus: "P \<le> M \<Longrightarrow> N \<subset># P \<Longrightarrow> M - P + N \<subset># M"
+lemma union_less_diff_plus: "P \<le> M \<Longrightarrow> N #\<subset># P \<Longrightarrow> M - P + N #\<subset># M"
by (drule ordered_cancel_comm_monoid_diff_class.diff_add[symmetric]) (metis union_less_mono2)
end