removed dead code;
authorwenzelm
Sat, 15 Feb 2014 18:48:43 +0100
changeset 55506 46f3e31c5a87
parent 55505 2a1ca7f6607b
child 55507 5f27fb2110e0
removed dead code; tuned;
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Decision_Procs/ferrante_rackoff_data.ML
src/HOL/Decision_Procs/langford.ML
src/HOL/Decision_Procs/mir_tac.ML
--- a/src/HOL/Decision_Procs/Approximation.thy	Sat Feb 15 18:28:18 2014 +0100
+++ b/src/HOL/Decision_Procs/Approximation.thy	Sat Feb 15 18:48:43 2014 +0100
@@ -3242,7 +3242,6 @@
 
 oracle approximation_oracle = {* fn (thy, t) =>
 let
-
   fun bad t = error ("Bad term: " ^ Syntax.string_of_term_global thy t);
 
   fun term_of_bool true = @{term True}
@@ -3424,10 +3423,8 @@
        end
     end
 
-  (* copied from Tools/induct.ML should probably in args.ML *)
   val free = Args.context -- Args.term >> (fn (_, Free (n, _)) => n | (ctxt, t) =>
     error ("Bad free variable: " ^ Syntax.string_of_term ctxt t));
-
 *}
 
 lemma intervalE: "a \<le> x \<and> x \<le> b \<Longrightarrow> \<lbrakk> x \<in> { a .. b } \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
@@ -3455,7 +3452,7 @@
       THEN DETERM (Reification.tac ctxt form_equations NONE i)
       THEN rewrite_interpret_form_tac ctxt prec splitting taylor i
       THEN gen_eval_tac (approximation_conv ctxt) ctxt i))
- *} "real number approximation"
+*} "real number approximation"
 
 ML {*
   fun calculated_subterms (@{const Trueprop} $ t) = calculated_subterms t
@@ -3473,7 +3470,9 @@
     | dest_interpret t = raise TERM ("dest_interpret", [t])
 
 
-  fun dest_float (@{const "Float"} $ m $ e) = (snd (HOLogic.dest_number m), snd (HOLogic.dest_number e))
+  fun dest_float (@{const "Float"} $ m $ e) =
+    (snd (HOLogic.dest_number m), snd (HOLogic.dest_number e))
+
   fun dest_ivl (Const (@{const_name "Some"}, _) $
                 (Const (@{const_name Pair}, _) $ u $ l)) = SOME (dest_float u, dest_float l)
     | dest_ivl (Const (@{const_name "None"}, _)) = NONE
@@ -3516,7 +3515,8 @@
     in (sgn * (digits + x * (Integer.pow e10 10)), ~e10)
     end)
 
-  fun mk_result prec (SOME (l, u)) = (let
+  fun mk_result prec (SOME (l, u)) =
+    (let
       fun mk_float10 rnd x = (let val (m, e) = float2_float10 prec rnd x
                          in if e = 0 then HOLogic.mk_number @{typ real} m
                        else if e = 1 then @{term "divide :: real \<Rightarrow> real \<Rightarrow> real"} $
@@ -3529,7 +3529,8 @@
       in @{term "atLeastAtMost :: real \<Rightarrow> real \<Rightarrow> real set"} $ mk_float10 true l $ mk_float10 false u end)
     | mk_result _ NONE = @{term "UNIV :: real set"}
 
-  fun realify t = let
+  fun realify t =
+    let
       val t = Logic.varify_global t
       val m = map (fn (name, _) => (name, @{typ real})) (Term.add_tvars t [])
       val t = Term.subst_TVars m t
@@ -3579,13 +3580,12 @@
        |> dest_ivl
        |> mk_result prec
 
-   fun approx prec ctxt t = if type_of t = @{typ prop} then approx_form prec ctxt t
-     else if type_of t = @{typ bool} then approx_form prec ctxt (@{const Trueprop} $ t)
-     else approx_arith prec ctxt t
+  fun approx prec ctxt t =
+    if type_of t = @{typ prop} then approx_form prec ctxt t
+    else if type_of t = @{typ bool} then approx_form prec ctxt (@{const Trueprop} $ t)
+    else approx_arith prec ctxt t
 *}
 
-setup {*
-  Value.add_evaluator ("approximate", approx 30)
-*}
+setup {* Value.add_evaluator ("approximate", approx 30) *}
 
 end
--- a/src/HOL/Decision_Procs/ferrante_rackoff_data.ML	Sat Feb 15 18:28:18 2014 +0100
+++ b/src/HOL/Decision_Procs/ferrante_rackoff_data.ML	Sat Feb 15 18:48:43 2014 +0100
@@ -68,9 +68,7 @@
 
 fun match ctxt tm =
   let
-    fun match_inst
-        ({minf, pinf, nmi, npi, ld, qe, atoms},
-         fns as {isolate_conv, whatis, simpset}) pat =
+    fun match_inst ({minf, pinf, nmi, npi, ld, qe, atoms}, fns) pat =
        let
         fun h instT =
           let
--- a/src/HOL/Decision_Procs/langford.ML	Sat Feb 15 18:28:18 2014 +0100
+++ b/src/HOL/Decision_Procs/langford.ML	Sat Feb 15 18:48:43 2014 +0100
@@ -2,24 +2,24 @@
     Author:     Amine Chaieb, TU Muenchen
 *)
 
-signature LANGFORD_QE = 
+signature LANGFORD_QE =
 sig
   val dlo_tac : Proof.context -> int -> tactic
   val dlo_conv : Proof.context -> cterm -> thm
 end
 
-structure LangfordQE :LANGFORD_QE = 
+structure LangfordQE: LANGFORD_QE =
 struct
 
 val dest_set =
- let 
-  fun h acc ct = 
+ let
+  fun h acc ct =
    case term_of ct of
      Const (@{const_name Orderings.bot}, _) => acc
    | Const (@{const_name insert}, _) $ _ $ t => h (Thm.dest_arg1 ct :: acc) (Thm.dest_arg ct)
 in h [] end;
 
-fun prove_finite cT u = 
+fun prove_finite cT u =
 let val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
     fun ins x th =
      Thm.implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg)
@@ -31,47 +31,47 @@
     (Conv.arg_conv
       (Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms ball_simps simp_thms})));
 
-fun basic_dloqe ctxt stupid dlo_qeth dlo_qeth_nolb dlo_qeth_noub gather ep = 
- case term_of ep of 
-  Const(@{const_name Ex},_)$_ => 
-   let 
+fun basic_dloqe ctxt stupid dlo_qeth dlo_qeth_nolb dlo_qeth_noub gather ep =
+ case term_of ep of
+  Const(@{const_name Ex},_)$_ =>
+   let
      val p = Thm.dest_arg ep
      val ths =
       simplify (put_simpset HOL_basic_ss ctxt addsimps gather) (instantiate' [] [SOME p] stupid)
-     val (L,U) = 
-       let 
-         val (x,q) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of ths))
+     val (L,U) =
+       let
+         val (_, q) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of ths))
        in (Thm.dest_arg1 q |> Thm.dest_arg1, Thm.dest_arg q |> Thm.dest_arg1)
        end
-     fun proveneF S =         
+     fun proveneF S =
        let val (a,A) = Thm.dest_comb S |>> Thm.dest_arg
            val cT = ctyp_of_term a
-           val ne = instantiate' [SOME cT] [SOME a, SOME A] 
+           val ne = instantiate' [SOME cT] [SOME a, SOME A]
                     @{thm insert_not_empty}
            val f = prove_finite cT (dest_set S)
        in (ne, f) end
 
-     val qe = case (term_of L, term_of U) of 
-      (Const (@{const_name Orderings.bot}, _),_) =>  
+     val qe = case (term_of L, term_of U) of
+      (Const (@{const_name Orderings.bot}, _),_) =>
         let
-          val (neU,fU) = proveneF U 
+          val (neU,fU) = proveneF U
         in simp_rule ctxt (Thm.transitive ths (dlo_qeth_nolb OF [neU, fU])) end
-    | (_,Const (@{const_name Orderings.bot}, _)) =>  
+    | (_,Const (@{const_name Orderings.bot}, _)) =>
         let
           val (neL,fL) = proveneF L
         in simp_rule ctxt (Thm.transitive ths (dlo_qeth_noub OF [neL, fL])) end
 
-    | (_,_) =>  
-      let 
+    | (_,_) =>
+      let
        val (neL,fL) = proveneF L
        val (neU,fU) = proveneF U
-      in simp_rule ctxt (Thm.transitive ths (dlo_qeth OF [neL, neU, fL, fU])) 
+      in simp_rule ctxt (Thm.transitive ths (dlo_qeth OF [neL, neU, fL, fU]))
       end
-   in qe end 
+   in qe end
  | _ => error "dlo_qe : Not an existential formula";
 
-val all_conjuncts = 
- let fun h acc ct = 
+val all_conjuncts =
+ let fun h acc ct =
   case term_of ct of
    @{term HOL.conj}$_$_ => h (h acc (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
   | _ => ct::acc
@@ -86,10 +86,10 @@
 
 val list_conj = fold1 (fn c => fn c' => Thm.apply (Thm.apply @{cterm HOL.conj} c) c') ;
 
-fun mk_conj_tab th = 
- let fun h acc th = 
+fun mk_conj_tab th =
+ let fun h acc th =
    case prop_of th of
-   @{term "Trueprop"}$(@{term HOL.conj}$p$q) => 
+   @{term "Trueprop"}$(@{term HOL.conj}$p$q) =>
      h (h acc (th RS conjunct2)) (th RS conjunct1)
   | @{term "Trueprop"}$p => (p,th)::acc
 in fold (Termtab.insert Thm.eq_thm) (h [] th) Termtab.empty end;
@@ -97,22 +97,22 @@
 fun is_conj (@{term HOL.conj}$_$_) = true
   | is_conj _ = false;
 
-fun prove_conj tab cjs = 
- case cjs of 
+fun prove_conj tab cjs =
+ case cjs of
    [c] => if is_conj (term_of c) then prove_conj tab (conjuncts c) else tab c
  | c::cs => conjI OF [prove_conj tab [c], prove_conj tab cs];
 
-fun conj_aci_rule eq = 
- let 
+fun conj_aci_rule eq =
+ let
   val (l,r) = Thm.dest_equals eq
   fun tabl c = the (Termtab.lookup (mk_conj_tab (Thm.assume l)) (term_of c))
   fun tabr c = the (Termtab.lookup (mk_conj_tab (Thm.assume r)) (term_of c))
   val ll = Thm.dest_arg l
   val rr = Thm.dest_arg r
-  
-  val thl  = prove_conj tabl (conjuncts rr) 
+
+  val thl  = prove_conj tabl (conjuncts rr)
                 |> Drule.implies_intr_hyps
-  val thr  = prove_conj tabr (conjuncts ll) 
+  val thr  = prove_conj tabr (conjuncts ll)
                 |> Drule.implies_intr_hyps
   val eqI = instantiate' [] [SOME ll, SOME rr] @{thm iffI}
  in Thm.implies_elim (Thm.implies_elim eqI thl) thr |> mk_meta_eq end;
@@ -123,53 +123,52 @@
    Const(@{const_name HOL.eq},_)$l$r => l aconv term_of x orelse r aconv term_of x
  | _ => false ;
 
-local 
-fun proc ctxt ct = 
+local
+fun proc ctxt ct =
  case term_of ct of
-  Const(@{const_name Ex},_)$Abs (xn,_,_) => 
-   let 
+  Const(@{const_name Ex},_)$Abs (xn,_,_) =>
+   let
     val e = Thm.dest_fun ct
     val (x,p) = Thm.dest_abs (SOME xn) (Thm.dest_arg ct)
-    val Pp = Thm.apply @{cterm "Trueprop"} p 
+    val Pp = Thm.apply @{cterm "Trueprop"} p
     val (eqs,neqs) = List.partition (is_eqx x) (all_conjuncts p)
    in case eqs of
-      [] => 
-        let 
+      [] =>
+        let
          val (dx,ndx) = List.partition (contains x) neqs
          in case ndx of [] => NONE
                       | _ =>
-            conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp 
+            conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp
                  (Thm.apply @{cterm Trueprop} (list_conj (ndx @dx))))
-           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e 
-           |> Conv.fconv_rule (Conv.arg_conv 
+           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e
+           |> Conv.fconv_rule (Conv.arg_conv
                (Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms ex_simps})))
            |> SOME
           end
-    | _ => conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp 
+    | _ => conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp
                  (Thm.apply @{cterm Trueprop} (list_conj (eqs@neqs))))
-           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e 
-           |> Conv.fconv_rule (Conv.arg_conv 
+           |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e
+           |> Conv.fconv_rule (Conv.arg_conv
                (Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms ex_simps})))
            |> SOME
    end
  | _ => NONE;
-in val reduce_ex_simproc = 
-  Simplifier.make_simproc 
+in val reduce_ex_simproc =
+  Simplifier.make_simproc
   {lhss = [@{cpat "EX x. ?P x"}] , name = "reduce_ex_simproc",
    proc = K proc, identifier = []}
 end;
 
-fun raw_dlo_conv ctxt dlo_ss 
-          ({qe_bnds, qe_nolb, qe_noub, gst, gs, atoms}:Langford_Data.entry) = 
- let 
+fun raw_dlo_conv ctxt dlo_ss ({qe_bnds, qe_nolb, qe_noub, gst, gs, ...}: Langford_Data.entry) =
+ let
   val ctxt' = put_simpset dlo_ss ctxt addsimps @{thms "dnf_simps"} addsimprocs [reduce_ex_simproc]
   val dnfex_conv = Simplifier.rewrite ctxt'
   val pcv =
     Simplifier.rewrite
       (put_simpset dlo_ss ctxt
         addsimps @{thms simp_thms ex_simps all_simps all_not_ex not_all ex_disj_distrib})
- in fn p => 
-   Qelim.gen_qelim_conv pcv pcv dnfex_conv cons 
+ in fn p =>
+   Qelim.gen_qelim_conv pcv pcv dnfex_conv cons
                   (Thm.add_cterm_frees p [])  (K Thm.reflexive) (K Thm.reflexive)
                   (K (basic_dloqe ctxt gst qe_bnds qe_nolb qe_noub gs)) p
  end;
@@ -201,7 +200,7 @@
 in h end;
 
 fun dlo_instance ctxt tm =
-  (fst (Langford_Data.get ctxt), 
+  (fst (Langford_Data.get ctxt),
    Langford_Data.match ctxt (grab_atom_bop 0 tm));
 
 fun dlo_conv ctxt tm =
@@ -209,8 +208,8 @@
     (_, NONE) => raise CTERM ("dlo_conv (langford): no corresponding instance in context!", [tm])
   | (ss, SOME instance) => raw_dlo_conv ctxt ss instance tm);
 
-fun generalize_tac f = CSUBGOAL (fn (p, i) => PRIMITIVE (fn st =>
- let 
+fun generalize_tac f = CSUBGOAL (fn (p, _) => PRIMITIVE (fn st =>
+ let
    fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"}
    fun gen x t = Thm.apply (all (ctyp_of_term x)) (Thm.lambda x t)
    val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p)
@@ -219,12 +218,12 @@
 
 
 fun cfrees ats ct =
- let 
+ let
   val ins = insert (op aconvc)
-  fun h acc t = 
+  fun h acc t =
    case (term_of t) of
-    b$_$_ => if member (op aconvc) ats (Thm.dest_fun2 t) 
-                then ins (Thm.dest_arg t) (ins (Thm.dest_arg1 t) acc) 
+    _$_$_ => if member (op aconvc) ats (Thm.dest_fun2 t)
+                then ins (Thm.dest_arg t) (ins (Thm.dest_arg1 t) acc)
                 else h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
   | _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
   | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
--- a/src/HOL/Decision_Procs/mir_tac.ML	Sat Feb 15 18:28:18 2014 +0100
+++ b/src/HOL/Decision_Procs/mir_tac.ML	Sat Feb 15 18:48:43 2014 +0100
@@ -4,16 +4,12 @@
 
 signature MIR_TAC =
 sig
-  val trace: bool Unsynchronized.ref
   val mir_tac: Proof.context -> bool -> int -> tactic
 end
 
-structure Mir_Tac =
+structure Mir_Tac: MIR_TAC =
 struct
 
-val trace = Unsynchronized.ref false;
-fun trace_msg s = if !trace then tracing s else ();
-
 val mir_ss = 
 let val ths = [@{thm "real_of_int_inject"}, @{thm "real_of_int_less_iff"}, @{thm "real_of_int_le_iff"}]
 in simpset_of (@{context} delsimps ths addsimps (map (fn th => th RS sym) ths))
@@ -38,21 +34,8 @@
 val comp_ths = ths @ comp_arith @ @{thms simp_thms};
 
 
-val zdvd_int = @{thm "zdvd_int"};
-val zdiff_int_split = @{thm "zdiff_int_split"};
-val all_nat = @{thm "all_nat"};
-val ex_nat = @{thm "ex_nat"};
-val split_zdiv = @{thm "split_zdiv"};
-val split_zmod = @{thm "split_zmod"};
 val mod_div_equality' = @{thm "mod_div_equality'"};
-val split_div' = @{thm "split_div'"};
-val imp_le_cong = @{thm "imp_le_cong"};
-val conj_le_cong = @{thm "conj_le_cong"};
 val mod_add_eq = @{thm "mod_add_eq"} RS sym;
-val mod_add_left_eq = @{thm "mod_add_left_eq"} RS sym;
-val mod_add_right_eq = @{thm "mod_add_right_eq"} RS sym;
-val nat_div_add_eq = @{thm "div_add1_eq"} RS sym;
-val int_div_add_eq = @{thm "zdiv_zadd1_eq"} RS sym;
 
 fun prepare_for_mir q fm = 
   let
@@ -136,10 +119,8 @@
              then mirfr_oracle (false, cterm_of thy (Envir.eta_long [] t1))
              else mirfr_oracle (true, cterm_of thy (Envir.eta_long [] t1))
     in 
-          (trace_msg ("calling procedure with term:\n" ^
-             Syntax.string_of_term ctxt t1);
-           ((pth RS iffD2) RS pre_thm,
-            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
+       ((pth RS iffD2) RS pre_thm,
+        assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))
     end
       | _ => (pre_thm, assm_tac i)
   in rtac (((mp_step nh) o (spec_step np)) th) i THEN tac end);