New theory for converting between predicates and sets.
authorberghofe
Wed, 07 Feb 2007 17:25:39 +0100
changeset 22259 476604be7d88
parent 22258 0967b03844b5
child 22260 45f01828cb69
New theory for converting between predicates and sets.
src/HOL/Predicate.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Predicate.thy	Wed Feb 07 17:25:39 2007 +0100
@@ -0,0 +1,482 @@
+(*  Title:      HOL/Predicate.thy
+    ID:         $Id$
+    Author:     Stefan Berghofer, TU Muenchen
+*)
+
+header {* Predicates *}
+
+theory Predicate
+imports Inductive
+begin
+
+subsection {* Converting between predicates and sets *}
+
+definition
+  member :: "'a set => 'a => bool" where
+  "member == %S x. x : S"
+
+lemma memberI[intro!, Pure.intro!]: "x : S ==> member S x"
+  by (simp add: member_def)
+
+lemma memberD[dest!, Pure.dest!]: "member S x ==> x : S"
+  by (simp add: member_def)
+
+lemma member_eq[simp]: "member S x = (x : S)"
+  by (simp add: member_def)
+
+lemma member_Collect_eq[simp]: "member (Collect P) = P"
+  by (simp add: member_def)
+
+lemma Collect_member_eq[simp]: "Collect (member S) = S"
+  by (simp add: member_def)
+
+lemma split_set: "(!!S. PROP P S) == (!!S. PROP P (Collect S))"
+proof
+  fix S
+  assume "!!S. PROP P S"
+  show "PROP P (Collect S)" .
+next
+  fix S
+  assume "!!S. PROP P (Collect S)"
+  have "PROP P {x. x : S}" .
+  thus "PROP P S" by simp
+qed
+
+lemma split_predicate: "(!!S. PROP P S) == (!!S. PROP P (member S))"
+proof
+  fix S
+  assume "!!S. PROP P S"
+  show "PROP P (member S)" .
+next
+  fix S
+  assume "!!S. PROP P (member S)"
+  have "PROP P (member {x. S x})" .
+  thus "PROP P S" by simp
+qed
+
+lemma member_right_eq: "(x == member y) == (Collect x == y)"
+  by (rule equal_intr_rule, simp, drule symmetric, simp)
+
+definition
+  member2 :: "('a * 'b) set => 'a => 'b \<Rightarrow> bool" where
+  "member2 == %S x y. (x, y) : S"
+
+definition
+  Collect2 :: "('a => 'b => bool) => ('a * 'b) set" where
+  "Collect2 == %P. {(x, y). P x y}"
+
+lemma member2I[intro!, Pure.intro!]: "(x, y) : S ==> member2 S x y"
+  by (simp add: member2_def)
+
+lemma member2D[dest!, Pure.dest!]: "member2 S x y ==> (x, y) : S"
+  by (simp add: member2_def)
+
+lemma member2_eq[simp]: "member2 S x y = ((x, y) : S)"
+  by (simp add: member2_def)
+
+lemma Collect2I: "P x y ==> (x, y) : Collect2 P"
+  by (simp add: Collect2_def)
+
+lemma Collect2D: "(x, y) : Collect2 P ==> P x y"
+  by (simp add: Collect2_def)
+
+lemma member2_Collect2_eq[simp]: "member2 (Collect2 P) = P"
+  by (simp add: member2_def Collect2_def)
+
+lemma Collect2_member2_eq[simp]: "Collect2 (member2 S) = S"
+  by (auto simp add: member2_def Collect2_def)
+
+lemma mem_Collect2_eq[iff]: "((x, y) : Collect2 P) = P x y"
+  by (iprover intro: Collect2I dest: Collect2D)
+
+lemma member2_Collect_split_eq [simp]: "member2 (Collect (split P)) = P"
+  by (simp add: expand_fun_eq)
+
+lemma split_set2: "(!!S. PROP P S) == (!!S. PROP P (Collect2 S))"
+proof
+  fix S
+  assume "!!S. PROP P S"
+  show "PROP P (Collect2 S)" .
+next
+  fix S
+  assume "!!S. PROP P (Collect2 S)"
+  have "PROP P (Collect2 (member2 S))" .
+  thus "PROP P S" by simp
+qed
+
+lemma split_predicate2: "(!!S. PROP P S) == (!!S. PROP P (member2 S))"
+proof
+  fix S
+  assume "!!S. PROP P S"
+  show "PROP P (member2 S)" .
+next
+  fix S
+  assume "!!S. PROP P (member2 S)"
+  have "PROP P (member2 (Collect2 S))" .
+  thus "PROP P S" by simp
+qed
+
+lemma member2_right_eq: "(x == member2 y) == (Collect2 x == y)"
+  by (rule equal_intr_rule, simp, drule symmetric, simp)
+
+ML_setup {*
+local
+
+fun vars_of b (v as Var _) = if b then [] else [v]
+  | vars_of b (t $ u) = vars_of true t union vars_of false u
+  | vars_of b (Abs (_, _, t)) = vars_of false t
+  | vars_of _ _ = [];
+
+fun rew ths1 ths2 th = Drule.forall_elim_vars 0
+  (rewrite_rule ths2 (rewrite_rule ths1 (Drule.forall_intr_list
+    (map (cterm_of (theory_of_thm th)) (vars_of false (prop_of th))) th)));
+
+val get_eq = Simpdata.mk_eq o thm;
+
+val split_predicate = get_eq "split_predicate";
+val split_predicate2 = get_eq "split_predicate2";
+val split_set = get_eq "split_set";
+val split_set2 = get_eq "split_set2";
+val member_eq = get_eq "member_eq";
+val member2_eq = get_eq "member2_eq";
+val member_Collect_eq = get_eq "member_Collect_eq";
+val member2_Collect2_eq = get_eq "member2_Collect2_eq";
+val mem_Collect2_eq = get_eq "mem_Collect2_eq";
+val member_right_eq = thm "member_right_eq";
+val member2_right_eq = thm "member2_right_eq";
+
+val rew' = Thm.symmetric o rew [split_set2] [split_set,
+  member_right_eq, member2_right_eq, member_Collect_eq, member2_Collect2_eq];
+
+val rules1 = [split_predicate, split_predicate2, member_eq, member2_eq];
+val rules2 = [split_set, mk_meta_eq mem_Collect_eq, mem_Collect2_eq];
+
+structure PredSetConvData = GenericDataFun
+(struct
+  val name = "HOL/pred_set_conv";
+  type T = thm list;
+  val empty = [];
+  val extend = I;
+  fun merge _ = Drule.merge_rules;
+  fun print _ _ = ()
+end)
+
+fun mk_attr ths1 ths2 f = Attrib.syntax (Attrib.thms >> (fn ths =>
+  Thm.rule_attribute (fn ctxt => rew ths1 (map (f o Simpdata.mk_eq)
+    (ths @ PredSetConvData.get ctxt) @ ths2))));
+
+val pred_set_conv_att = Attrib.no_args (Thm.declaration_attribute
+  (Drule.add_rule #> PredSetConvData.map));
+
+in
+
+val _ = ML_Context.>> (PredSetConvData.init #>
+  Attrib.add_attributes
+    [("pred_set_conv", pred_set_conv_att,
+        "declare rules for converting between predicate and set notation"),
+     ("to_set", mk_attr [] rules1 I, "convert rule to set notation"),
+     ("to_pred", mk_attr [split_set2] rules2 rew',
+        "convert rule to predicate notation")])
+
+end;
+*}
+
+lemma member_inject [pred_set_conv]: "(member R = member S) = (R = S)"
+  by (auto simp add: expand_fun_eq)
+
+lemma member2_inject [pred_set_conv]: "(member2 R = member2 S) = (R = S)"
+  by (auto simp add: expand_fun_eq)
+
+lemma member_mono [pred_set_conv]: "(member R <= member S) = (R <= S)"
+  by fast
+
+lemma member2_mono [pred_set_conv]: "(member2 R <= member2 S) = (R <= S)"
+  by fast
+
+lemma member_empty [pred_set_conv]: "(%x. False) = member {}"
+  by (simp add: expand_fun_eq)
+
+lemma member2_empty [pred_set_conv]: "(%x y. False) = member2 {}"
+  by (simp add: expand_fun_eq)
+
+
+subsubsection {* Binary union *}
+
+lemma member_Un [pred_set_conv]: "join (member R) (member S) = member (R Un S)"
+  by (simp add: expand_fun_eq join_fun_eq join_bool_eq)
+
+lemma member2_Un [pred_set_conv]: "join (member2 R) (member2 S) = member2 (R Un S)"
+  by (simp add: expand_fun_eq join_fun_eq join_bool_eq)
+
+lemma join1_iff [simp]: "(join A B x) = (A x | B x)"
+  by (simp add: join_fun_eq join_bool_eq)
+
+lemma join2_iff [simp]: "(join A B x y) = (A x y | B x y)"
+  by (simp add: join_fun_eq join_bool_eq)
+
+lemma join1I1 [elim?]: "A x ==> join A B x"
+  by simp
+
+lemma join2I1 [elim?]: "A x y ==> join A B x y"
+  by simp
+
+lemma join1I2 [elim?]: "B x ==> join A B x"
+  by simp
+
+lemma join2I2 [elim?]: "B x y ==> join A B x y"
+  by simp
+
+text {*
+  \medskip Classical introduction rule: no commitment to @{text A} vs
+  @{text B}.
+*}
+
+lemma join1CI [intro!]: "(~ B x ==> A x) ==> join A B x"
+  by auto
+
+lemma join2CI [intro!]: "(~ B x y ==> A x y) ==> join A B x y"
+  by auto
+
+lemma join1E [elim!]: "join A B x ==> (A x ==> P) ==> (B x ==> P) ==> P"
+  by simp iprover
+
+lemma join2E [elim!]: "join A B x y ==> (A x y ==> P) ==> (B x y ==> P) ==> P"
+  by simp iprover
+
+
+subsubsection {* Binary intersection *}
+
+lemma member_Int [pred_set_conv]: "meet (member R) (member S) = member (R Int S)"
+  by (simp add: expand_fun_eq meet_fun_eq meet_bool_eq)
+
+lemma member2_Int [pred_set_conv]: "meet (member2 R) (member2 S) = member2 (R Int S)"
+  by (simp add: expand_fun_eq meet_fun_eq meet_bool_eq)
+
+lemma meet1_iff [simp]: "(meet A B x) = (A x & B x)"
+  by (simp add: meet_fun_eq meet_bool_eq)
+
+lemma meet2_iff [simp]: "(meet A B x y) = (A x y & B x y)"
+  by (simp add: meet_fun_eq meet_bool_eq)
+
+lemma meet1I [intro!]: "A x ==> B x ==> meet A B x"
+  by simp
+
+lemma meet2I [intro!]: "A x y ==> B x y ==> meet A B x y"
+  by simp
+
+lemma meet1D1: "meet A B x ==> A x"
+  by simp
+
+lemma meet2D1: "meet A B x y ==> A x y"
+  by simp
+
+lemma meet1D2: "meet A B x ==> B x"
+  by simp
+
+lemma meet2D2: "meet A B x y ==> B x y"
+  by simp
+
+lemma meet1E [elim!]: "meet A B x ==> (A x ==> B x ==> P) ==> P"
+  by simp
+
+lemma meet2E [elim!]: "meet A B x y ==> (A x y ==> B x y ==> P) ==> P"
+  by simp
+
+
+subsubsection {* Unions of families *}
+
+lemma member_SUP: "(SUP i. member (r i)) = member (UN i. r i)"
+  by (simp add: SUP_def Sup_fun_eq Sup_bool_eq expand_fun_eq) blast
+
+lemma member2_SUP: "(SUP i. member2 (r i)) = member2 (UN i. r i)"
+  by (simp add: SUP_def Sup_fun_eq Sup_bool_eq expand_fun_eq) blast
+
+lemma SUP1_iff [simp]: "((SUP x. B x) b) = (EX x. B x b)"
+  by (simp add: SUP_def Sup_fun_eq Sup_bool_eq) blast
+
+lemma SUP2_iff [simp]: "((SUP x. B x) b c) = (EX x. B x b c)"
+  by (simp add: SUP_def Sup_fun_eq Sup_bool_eq) blast
+
+lemma SUP1_I [intro]: "B a b ==> (SUP x. B x) b"
+  by auto
+
+lemma SUP2_I [intro]: "B a b c ==> (SUP x. B x) b c"
+  by auto
+
+lemma SUP1_E [elim!]: "(SUP x. B x) b ==> (!!x. B x b ==> R) ==> R"
+  by simp iprover
+
+lemma SUP2_E [elim!]: "(SUP x. B x) b c ==> (!!x. B x b c ==> R) ==> R"
+  by simp iprover
+
+
+subsection {* Composition of two relations *}
+
+inductive2
+  pred_comp  :: "['b => 'c => bool, 'a => 'b => bool] => 'a => 'c => bool"
+    (infixr "OO" 75)
+  for r :: "'b => 'c => bool" and s :: "'a => 'b => bool"
+where
+  pred_compI [intro]: "s a b ==> r b c ==> (r OO s) a c"
+
+inductive_cases2 pred_compE [elim!]: "(r OO s) a c"
+
+lemma pred_comp_rel_comp_eq [pred_set_conv]:
+  "(member2 r OO member2 s) = member2 (r O s)"
+  by (auto simp add: expand_fun_eq elim: pred_compE)
+
+
+subsection {* Converse *}
+
+inductive2
+  conversep :: "('a => 'b => bool) => 'b => 'a => bool"
+    ("(_^--1)" [1000] 1000)
+  for r :: "'a => 'b => bool"
+where
+  conversepI: "r a b ==> r^--1 b a"
+
+notation (xsymbols)
+  conversep  ("(_\<inverse>\<inverse>)" [1000] 1000)
+
+lemma conversepD:
+  assumes ab: "r^--1 a b"
+  shows "r b a" using ab
+  by cases simp
+
+lemma conversep_iff [iff]: "r^--1 a b = r b a"
+  by (iprover intro: conversepI dest: conversepD)
+
+lemma conversep_converse_eq [pred_set_conv]:
+  "(member2 r)^--1 = member2 (r^-1)"
+  by (auto simp add: expand_fun_eq)
+
+lemma conversep_conversep [simp]: "(r^--1)^--1 = r"
+  by (iprover intro: order_antisym conversepI dest: conversepD)
+
+lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1"
+  by (iprover intro: order_antisym conversepI pred_compI
+    elim: pred_compE dest: conversepD)
+
+lemma converse_meet: "(meet r s)^--1 = meet r^--1 s^--1"
+  by (simp add: meet_fun_eq meet_bool_eq)
+    (iprover intro: conversepI ext dest: conversepD)
+
+lemma converse_join: "(join r s)^--1 = join r^--1 s^--1"
+  by (simp add: join_fun_eq join_bool_eq)
+    (iprover intro: conversepI ext dest: conversepD)
+
+lemma conversep_noteq [simp]: "(op ~=)^--1 = op ~="
+  by (auto simp add: expand_fun_eq)
+
+lemma conversep_eq [simp]: "(op =)^--1 = op ="
+  by (auto simp add: expand_fun_eq)
+
+
+subsection {* Domain *}
+
+inductive2
+  DomainP :: "('a => 'b => bool) => 'a => bool"
+  for r :: "'a => 'b => bool"
+where
+  DomainPI [intro]: "r a b ==> DomainP r a"
+
+inductive_cases2 DomainPE [elim!]: "DomainP r a"
+
+lemma member2_DomainP [pred_set_conv]: "DomainP (member2 r) = member (Domain r)"
+  by (blast intro!: Orderings.order_antisym)
+
+
+subsection {* Range *}
+
+inductive2
+  RangeP :: "('a => 'b => bool) => 'b => bool"
+  for r :: "'a => 'b => bool"
+where
+  RangePI [intro]: "r a b ==> RangeP r b"
+
+inductive_cases2 RangePE [elim!]: "RangeP r b"
+
+lemma member2_RangeP [pred_set_conv]: "RangeP (member2 r) = member (Range r)"
+  by (blast intro!: Orderings.order_antisym)
+
+
+subsection {* Inverse image *}
+
+definition
+  inv_imagep :: "('b => 'b => bool) => ('a => 'b) => 'a => 'a => bool" where
+  "inv_imagep r f == %x y. r (f x) (f y)"
+
+lemma [pred_set_conv]: "inv_imagep (member2 r) f = member2 (inv_image r f)"
+  by (simp add: inv_image_def inv_imagep_def)
+
+lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)"
+  by (simp add: inv_imagep_def)
+
+
+subsection {* Properties of relations - predicate versions *}
+
+abbreviation antisymP :: "('a => 'a => bool) => bool" where
+  "antisymP r == antisym (Collect2 r)"
+
+abbreviation transP :: "('a => 'a => bool) => bool" where
+  "transP r == trans (Collect2 r)"
+
+abbreviation single_valuedP :: "('a => 'b => bool) => bool" where
+  "single_valuedP r == single_valued (Collect2 r)"
+
+
+subsection {* Bounded quantifiers for predicates *}
+
+text {*
+Bounded existential quantifier for predicates (executable).
+*}
+
+inductive2 bexp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+  for P :: "'a \<Rightarrow> bool" and Q :: "'a \<Rightarrow> bool"
+where
+  bexpI [intro]: "P x \<Longrightarrow> Q x \<Longrightarrow> bexp P Q"
+
+lemmas bexpE [elim!] = bexp.cases
+
+syntax
+  Bexp :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool \<Rightarrow> bool" ("(3\<exists>_\<triangleright>_./ _)" [0, 0, 10] 10)
+
+translations
+  "\<exists>x\<triangleright>P. Q" \<rightleftharpoons> "CONST bexp P (\<lambda>x. Q)"
+
+constdefs
+  ballp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+  "ballp P Q \<equiv> \<forall>x. P x \<longrightarrow> Q x"
+
+syntax
+  Ballp :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool \<Rightarrow> bool" ("(3\<forall>_\<triangleright>_./ _)" [0, 0, 10] 10)
+
+translations
+  "\<forall>x\<triangleright>P. Q" \<rightleftharpoons> "CONST ballp P (\<lambda>x. Q)"
+
+(* To avoid eta-contraction of body: *)
+print_translation {*
+let
+  fun btr' syn [A,Abs abs] =
+    let val (x,t) = atomic_abs_tr' abs
+    in Syntax.const syn $ x $ A $ t end
+in
+[("ballp", btr' "Ballp"),("bexp", btr' "Bexp")]
+end
+*}
+
+lemma ballpI [intro!]: "(\<And>x. A x \<Longrightarrow> P x) \<Longrightarrow> \<forall>x\<triangleright>A. P x"
+  by (simp add: ballp_def)
+
+lemma bspecp [dest?]: "\<forall>x\<triangleright>A. P x \<Longrightarrow> A x \<Longrightarrow> P x"
+  by (simp add: ballp_def)
+
+lemma ballpE [elim]: "\<forall>x\<triangleright>A. P x \<Longrightarrow> (P x \<Longrightarrow> Q) \<Longrightarrow> (\<not> A x \<Longrightarrow> Q) \<Longrightarrow> Q"
+  by (unfold ballp_def) blast
+
+lemma ballp_not_bexp_eq: "(\<forall>x\<triangleright>P. Q x) = (\<not> (\<exists>x\<triangleright>P. \<not> Q x))"
+  by (blast dest: bspecp)
+
+declare ballp_not_bexp_eq [THEN eq_reflection, code unfold]
+
+end